
UEDashboard:
Awareness of Unusual Events in Commit Histories

Larissa Leite, Christoph Treude, Fernando Figueira Filho
Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte
Natal, RN, Brazil

larissa.leite@gmail.com, {ctreude,fernando}@dimap.ufrn.br

ABSTRACT
To be able to respond to source code modifications with
large impact or commits that necessitate further examina-
tion, developers and managers in a software development
team need to be aware of anything unusual happening in
their software projects. To address this need, we introduce
UEDashboard, a tool which automatically detects unusual
events in a commit history based on metrics and smells, and
surfaces them in an event feed. Our preliminary evaluation
with a team of professional software developers showed that
our conceptualization of unusual correlates with developers’
perceptions of task difficulty, and that UEDashboard could
be useful in supporting development meetings and for pre-
commit warnings.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

Keywords
Awareness, unusual events, commit history

1. INTRODUCTION AND MOTIVATION
Since the success of software projects largely depends on

the effectiveness of communication and coordination, soft-
ware development teams need to maintain awareness of dif-
ferent aspects ranging from overall project status and pro-
cess bottlenecks to current tasks and incoming artifacts [17].
Many approaches for maintaining awareness have been pro-
posed, including tools to provide developers with insights
into the workspaces of their co-workers such as Palant́ır [15]
and dashboards for high-level status information [17].

When we asked GitHub users in a recent study about the
information they would expect in a summary of development
activity, unusual events stood out as something developers
want to be kept aware of [16]. Participants mentioned sev-
eral examples of such events: “If a developer hasn’t commit-
ted anything in a while, his first commit after a long silence

could be particularly interesting, for example, because it took
him a long time to fix a bug. Also, important commits might
have unusual commit messages, for example including smi-
leys, lots of exclamation marks or something like that. Basi-
cally something indicating that the developer was emotional
about that particular commit.” Another developer added:
“Changes to files that haven’t been changed in a long time or
changes to a large number of files, a large number of dele-
tions.” While there is previous research on automatically
detecting buggy commits (e.g., [5, 10]), little work has been
conducted on detecting unusual events in a commit history.
Visualizations of the software process [8], the commit his-
tory [18], or specific commits [3] can help developers spot
unusual events, but they have not been designed specifically
for this purpose and their usefulness in unusual event detec-
tion has not been evaluated. Awareness of unusual events
can be useful in preventing errors, and in alerting develop-
ers and managers of events that may require justification or
that can affect the work of other developers, especially when
the events relate to significant changes to the project.

In this work, we are introducing the Unusual Events Dash-
board (UEDashboard), a tool which automatically detects
unusual events in a commit history and surfaces them in
an event feed. To do so, we first need to establish what
is “usual” in a given context, and then identify derivations.
Context is important since what is unusual depends on fac-
tors such as team size, work dynamics, software process, de-
velopment cycle, domain, product size, criticality, and devel-
opment model. UEDashboard takes context into account
by collecting commit-related metrics, such as size, complex-
ity, and time since last commit, as well as a number of com-
mit smells [9], and by considering the mean value for these
metrics per developer as the “usual” value. “Unusual” values
are detected if they differ from the mean value by more than
two standard deviations.

We conducted a preliminary evaluation of UEDashboard
by showing usual and unusual commits detected by the tool
in the commit history of a Brazilian software company to
six of the company’s developers. We found our conceptu-
alization of unusual to correlate with developers’ percep-
tion of difficulty, and we received positive feedback regarding
the usefulness of UEDashboard in supporting development
meetings and for pre-commit warnings.

2. UEDASHBOARD
UEDashboard collects data from the commit history of a

project, focusing on different unusual events detailed below.
Unless otherwise noted, commits are flagged as unusual if



their value for at least one metric is different from the mean
for the developer doing the commit by more than two stan-
dard deviations. While the number of standard deviations
is easily configurable in UEDashboard, we chose a value
of two as the default configuration since in a normal distri-
bution, less than 5% of all data points are more than two
standard deviations away from the mean. Although we did
not verify the normal distribution of all variables, a ratio of
roughly 1 in 20 events being classified as unusual conformed
with our intention of these events being unusual yet not
completely uncommon. A more detailed description of the
events is available in a workshop paper [13] and a thesis [12].

Time between commits is considered an indicator of
project activity [11]. UEDashboard analyzes the time be-
tween commits from the perspective of a single developer
and from the perspective of an entire team. While a long
time between commits from an entire team might indicate
infrastructure issues, for a single developer, it can indicate
task difficulty and can potentially lead to merge conflicts.

Time between commits to a file can indicate problems
with particular files. Files that have not been modified in
a long time can indicate that code is stable or has been
“forgotten” and is not up to date with the current status
of requirements, architecture, and design. UEDashboard
detects this event separately for each file in a project.

Number of files added, deleted, and modified are
different indicators of a commit’s impact. Adding a consid-
erable amount of files might be a sign of developing a new
requirement while a large number of deletions might signify
changes to the software architecture or to the project re-
quirements. A high value for the number of files modified
could be caused by a refactoring or the development of a
disruptive task, i.e., a task that changes a lot and “disrupts”
the current code. UEDashboard treats these three metrics
separately and can detect unusual events for each one.

Number of lines of code added, deleted, and mod-
ified are also indicators of a commit’s impact and measures
of its size. We expect the deletion of lines to be less common
than their addition or modification. UEDashboard detects
unusual events separately for these three metrics.

Aggregate change in complexity is a metric to char-
acterize a commit. UEDashboard computes the McCabe
complexity of all methods touched in a commit before and
after the commit, and calculates the sum of the complexity
changes for each commit.

Number of methods added and modified are metrics
where a high value might indicate the development of new
functionality. Similar to a large number of files modified, a
large value for number of methods modified might signify a
change that “disrupts” the current code.

In addition to these metrics, UEDashboard detects a
number of “commit smells” [9] which do not follow our con-
ceptualization of unusual events:

Files changed by many different developers are
more likely to contain post-release vulnerabilities [14]. Us-
ing the mean number of developers that have changed a file
as the usual value in a project and two standard deviations
as the threshold for an unusual number, UEDashboard no-
tifies developers of files that have been changed by an un-
usually large number of developers.

Many modifications in a single file during the life-
time of a project can indicate the presence of faults [6].
Again, UEDashboard uses the mean number of modifica-

Figure 1: Developer event feed

tions made to a file as the usual value, and treats all those
modifications as unusual that exceed a modification count
of the mean plus two standard deviations per file.

Figure 1 shows the user interface of UEDashboard, a
web application written in Python using the Flask web
framework. The design was inspired by our previous work on
dashboards and feeds [17]. Although the main content pro-
vided by the dashboard is the feed of unusual events shown in
Figure 1, UEDashboard also includes graphs, for example
illustrating the number of commits made by each developer
in the last few months. In addition to the feed of personal
events shown in Figure 1, UEDashboard provides a feed of
all unusual events in a team. Events can be filtered by date,
commit, developer, and type. For each commit, detailed
information can be seen in a modal window.

For each event, the user can provide feedback through up-
votes and down-votes to indicate whether a given event is
relevant to them. In addition, each event has a feedback but-
ton (not shown in the figure for space reasons) through which
users can give written feedback for an event, such as a justi-
fication as to why a certain commit was unusual. In future
iterations, we plan for UEDashboard to learn from this
feedback to improve the detection of unusual events. The
current implementation of UEDashboard supports SVN
repositories, and we are working on releasing a version for
Git in the near future.

3. PRELIMINARY EVALUATION
We conducted a preliminary evaluation of the unusual

events detected by UEDashboard at Superintendência de
Informática (SINFO), a company responsible for the devel-
opment and maintenance of all information systems used by
employees, students, and faculty at a university. More than
30 institutions in Brazil rely on SINFO’s technology. Our
evaluation was conducted with the team responsible for the
academic procedures at a university, consisting of approxi-
mately 15 developers.

We applied UEDashboard to the 215 commits made by
the development team under study in March 2015, and we
used additional data from the commits between August 2014
and February 2015 for the calculation of historic means and
standard deviations. Table 1 shows the results. Except for
one type of unusual event (files not modified in a long time),
all events were detected at least 3 times, with the two com-
mit smells (files modified by many different developers, files
modified many times) being the most frequent. Out of 215



event count
long time between commits 13
files not modified in a long time 0
large number of added files 10
large number of deleted files 3
large number of modified files 17
large number of lines of code added 8
large number of lines of code deleted 21
large number of lines of code modified 14
high code complexity 10
low code complexity 3
large number of added methods 19
large number of modified methods 10
files modified by many different developers 43
files modified many times 65

Table 1: Occurrence count of different events

criterion mean unusual mean usual p-value
difficulty 3.3 2.1 0.0139
criticality 3.3 3.6 0.4841
typicality 3.1 4.1 0.0606

Table 2: Unusual vs. usual events

commits, 98 (46%) were detected as unusual by at least one
of the methods for detecting unusual events (59 or 27% if
we disregard the two methods for detecting commit smells).
While these numbers seem relatively high, no type of event
occurred in more than 10% of the commits, except for the
commit smells. In future work, we will prioritize these events
based on user feedback.

To evaluate the idea of detecting unusual events in com-
mit histories, we conducted semi-structured interviews with
five developers and one manager at SINFO. We presented
each participant with four of their own commits and the
corresponding issues from the company’s issue tracking sys-
tem: two commits UEDashboard had classified as unusual
and two commits UEDashboard had not classified as un-
usual. For each of these commits, we asked participants to
rate the corresponding task in terms of how (i) difficult, (ii)
critical, and (iii) typical it was on a five-point Likert scale.
Participants were not told which commits UEDashboard
had detected as being unusual. In addition, we asked all
participants open-ended questions regarding the usefulness
of the approach.

Table 2 shows the results of participants rating commits
and the corresponding tasks regarding difficulty, criticality,
and typicality. The results show that developers found un-
usual commits to be significantly more difficult than usual
commits (Mann-Whitney test, p < 0.05), whereas there
was no statistically significant difference for the other cri-
teria. While developers might be aware of their own diffi-
cult tasks, UEDashboard can automatically alert them of
difficult tasks their colleagues are working on.

The general feedback from the participants was positive,
as this example quote shows: “It makes sense, it would be
useful for the team to understand how the code is evolving,
who is changing what, what classes are more modified than
others. It could also help enhance planning and could poten-
tially increase code quality.” An example of a commit de-
tected as unusual by UEDashboard was described by the
manager: “This commit is not very common. I was looking
closely to this task when the developer was working on it and
I remember it was more difficult than usual.” Mirroring the

findings from our previous work [16], developers explained
that unusual events require justification: “Perhaps if a de-
veloper takes very long in one task the events can be used as
justification as to why it took a long time and how complex
or big the change was.”

Participants also commented on the different methods for
detecting unusual events: “Number of files modified, added
or deleted. If it is far away from the average it might in-
dicate that the solution is not good enough, there might be
some unnecessary changes or something may be missing.”
Another developer added: “Number of methods added, but
also looking at the task. Sometimes a task is simple enough
and it needs only one method to be added, and the developer
could be complicating things by adding more.”

4. EXAMPLE SCENARIOS
The major use case for UEDashboard that emerged from

our interviews is that of a discussion starter or a meeting
agenda. As one developer explained: “It would be useful
to be aware of unusual events from other developers. Since
my tasks are related to bug fixing, the more information I
have about past commits, the better. If I notice a strange
modification or many modifications I can promptly talk to the
developer about it.” Unusual events of new members on the
team might be particularly interesting: “The information
about cyclomatic complexity is very interesting. I also find
it very useful to know how long it has been since the last
commit from a developer. As a manager, it is a way to look
closer to what newcomers are doing, and if it takes a long
time for a newcomer to make a commit, it can indicate that
they are accumulating a lot of changes before a commit or
that the task is too complex for them. The information would
be useful in the meetings, since I could question and talk to
them about their tasks without being too passive and waiting
for them to tell me something.” Another developer added:
“It is good for everyone to know what the others are doing.
We have meetings twice a week, but we don’t go into details
and we don’t have the information the tool provides.”

Another scenario is using the unusual event detection to
notify developers when they are about to make a commit
UEDashboard would flag as unusual. We asked about the
usefulness of such a feature, and one developer responded:
“Yes. It could be an indicator that something might not be
right. It can also be used as justification of something that
the manager could eventually question.”

5. RELATED WORK
Awareness is defined as “an understanding of the activ-

ities of others, which provide context for your own activ-
ity” [4]. Many tools have been developed to support aware-
ness in software development, including Palant́ır [15] which
provides insight into workspaces of other developers, and
FastDASH [1] which uses a representation of a shared code
base to highlight current activities aggregated at the level of
files and methods.

To the best of our knowledge, no awareness tool exists
that focuses specifically on unusual events in a commit his-
tory. However, there is a body of work on the detection
of buggy commits. Kim et al. [10] used a machine learn-
ing classifier to determine whether a new software change is
more similar to prior buggy changes or clean changes. Ey-
olfson et al. [5] found commits submitted between midnight



and 4am to be significantly more bug-prone than those sub-
mitted at other times, and daily-committing developers to
produce less buggy commits. Our goal with UEDashboard
is not the detection of buggy commits, but the detection of
commits that differ from what a normal commit in a given
context looks like. Visualizations, such as Recovered Unified
Process Views [8], visualizations of the change history [18],
or Commit 2.0 [3], can support the identification of unusual
events in a commit history, but they consider fewer dimen-
sions compared to UEDashboard and do not provide an
explicit feed of unusual events.

Conflict awareness tools such as Crystal [2] or WeCode [7]
detect and display a particular kind of unusual event in
a commit history. Crystal, for example, detects if a de-
veloper has not committed for a long time and if a devel-
oper has made changes that conflict with other developers’
changes, break the build, or lead to test failures. WeCode
identifies the outcomes of merging all developers’ code at
once. UEDashboard’s definition of “unusual” is wider, and
its general approach can be applied to artifacts other than
source code or commits.

6. CONCLUSION AND FUTURE WORK
We introduced UEDashboard, an awareness tool for soft-

ware development teams featuring an event feed of unusual
events in a project’s commit history. In addition to a num-
ber of commit smells, unusual events are detected when at
least one metric of a developer’s commit differs from the his-
toric mean for the same developer by more than two stan-
dard deviations. Our preliminary evaluation shows that our
conceptualization of unusual correlates with developers’ per-
ception of task difficulty, and that the output of UEDash-
board could be used for monitoring new developers, for
pre-commit warnings, and as an agenda for discussions and
meetings. The ultimate goal of UEDashboard is to im-
prove development processes through the avoidance of col-
laboration conflicts by making developers aware of unusual
events in their software repositories.

The first step of our future work lies in expanding the
detection of unusual events to other development artifacts
beyond commits, in particular issues and pull requests. This
will also enable us to draw on connections between these
artifacts, e.g., a high number of added files in a commit
related to a new use case might be expected, but the same
event would be unusual if it occurred in a commit related to a
bug fix. Similarly, taking into consideration the development
cycle of a project, work on new features might be common at
the beginning of an iteration but unusual towards the end
of it. We are currently applying UEDashboard to other
projects to conduct a more thorough evaluation of the idea
that development teams benefit from awareness of anything
unusual happening in their repositories.

Acknowledgements
This work is partially supported by CNPq Jovens Talentos
grant 407455/2013-2, CNPq Universal grant 460904/2014-0,
and CAPES/PROAP.

7. REFERENCES
[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G.

Robertson. Fastdash: A visual dashboard for fostering
awareness in software teams. In Proc. of the Conf. on

Human Factors in Computing Systems, pages
1313–1322, 2007.

[2] Y. Brun, R. Holmes, M. Ernst, and D. Notkin. Early
detection of collaboration conflicts and risks. IEEE
Trans. on Softw. Eng., 39(10):1358–1375, 2013.

[3] M. D’Ambros, M. Lanza, and R. Robbes. Commit 2.0.
In Proc. of the Intl. Workshop on Web 2.0 for
Softw. Eng., pages 14–19, 2010.

[4] P. Dourish and V. Bellotti. Awareness and
coordination in shared workspaces. In Proc. of the
Conf. on Computer-supported Cooperative Work,
pages 107–114, 1992.

[5] J. Eyolfson, L. Tan, and P. Lam. Do time of day and
developer experience affect commit bugginess? In
Proc. of the Working Conf. on Mining
Softw. Repositories, pages 153–162, 2011.

[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Trans. on Softw. Eng., 26(7):653–661,
2000.

[7] M. Guimarães and A. Silva. Improving early detection
of software merge conflicts. In Proc. of the
Intl. Conf. on Softw. Eng., pages 342–352, 2012.

[8] A. Hindle, M. W. Godfrey, and R. C. Holt. Software
process recovery using recovered unified process views.
In Proc. of the Intl. Conf. on Softw. Maintenance,
pages 1–10, 2010.

[9] S. Johnson and Z. Welch. Bad commit smells, 2013.

[10] S. Kim, E. J. Whitehead, Jr., and Y. Zhang.
Classifying software changes: Clean or buggy? IEEE
Trans. on Softw. Eng., 34(2):181–196, 2008.

[11] C. Kolassa, D. Riehle, and M. A. Salim. The empirical
commit frequency distribution of open source projects.
In Proc. of the Intl. Symp. on Open Collaboration,
pages 18:1–18:8, 2013.

[12] L. Leite. An automatic approach to detect and notify
development teams of unusual events in software
repositories, 2015. B.Sc. thesis.

[13] L. Leite, C. Treude, and F. Figueira Filho. An
automatic approach to detect unusual events in
software repositories. In Proc. of the Latin American
School on Softw. Eng., 2015. To appear.

[14] A. Meneely. Investigating the relationship between
developer collaboration and software security. PhD
thesis, North Carolina State University, 2011.

[15] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
Raising awareness among configuration management
workspaces. In Proc. of the Intl. Conf. on Softw. Eng.,
pages 444–454, 2003.

[16] C. Treude, F. Figueira Filho, and U. Kulesza.
Summarizing and measuring development activity. In
Proc. of the Europ. Softw. Eng. Conf. & the Symp. on
the Foundations of Softw. Eng., 2015. To appear.

[17] C. Treude and M.-A. Storey. Awareness 2.0: Staying
aware of projects, developers and tasks using
dashboards and feeds. In Proc. of the Intl. Conf. on
Softw. Eng. - Vol. 1, pages 365–374, 2010.

[18] F. Van Rysselberghe and S. Demeyer. Studying
software evolution information by visualizing the
change history. In Proc. of the Intl. Conf. on
Softw. Maintenance, pages 328–337, 2004.


	Introduction and Motivation
	UEDashboard
	Preliminary Evaluation
	Example Scenarios
	Related Work
	Conclusion and Future Work
	References

