
Chapter 15
Facilitating Crowd Sourced Software
Engineering via Stack Overflow

Ohad Barzilay, Christoph Treude, and Alexey Zagalsky

Abstract The open source community, as well as numerous technical blogs and
community web sites, put online vast quantities of free source code, ranging from
snippets to full-blown products. This code embodies the software development
community’s domain knowledge, and mirrors the structure of the Internet: it is dis-
tributed rather than hierarchical; it is chaotic, incomplete, and inconsistent. Stack-
Overflow.com is a Question and Answer (Q&A) website which uses social media
to facilitate knowledge exchange between programmers by mitigating the pitfalls
involved in using code from the Internet. Its design nurtures a community of de-
velopers, and enables crowd sourced software engineering activities ranging from
documentation to providing useful, high quality code snippets to be used in produc-
tion. In this chapter we review Stack Overflow from three perspectives: (1) its design
and its social media characteristics, (2) the role it plays in the software documen-
tation landscape, and (3) the use of Stack Overflow in the context of the example
centric programming paradigm.

15.1 Introduction

Software development has been described as knowledge-intensive [28] and knowl-
edge management plays a central role in many software organizations. The design
and implementation of software systems requires knowledge that is often distributed
among many individuals with different areas of expertise and capabilities.

O. Barzilay (�) • A. Zagalsky
Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
e-mail: ohadbr@tau.ac.il; alexeyza@tau.ac.il

C. Treude
Department of Computer Science, University of Victoria, Victoria, Canada
e-mail: ctreude@uvic.ca

S.E. Sim and R.E. Gallardo-Valencia (eds.), Finding Source Code on the Web
for Remix and Reuse, DOI 10.1007/978-1-4614-6596-6__15,
© Springer Science+Business Media New York 2013

289

mailto:ohadbr@tau.ac.il;
mailto:alexeyza@tau.ac.il
mailto:ctreude@uvic.ca

290 O. Barzilay et al.

The success of social media has introduced new ways of exchanging knowledge
via the Internet. Question and Answer (Q&A) websites such as Yahoo! Answers,1

Quora2 or Facebook Questions3 are founded on the success of social media and
built around an “architecture of participation” [26] where user data is aggregated
as a side-effect of using Web 2.0 applications. Q&A websites archive millions of
entries that are of value to the community [9]. For the domain of software develop-
ment, the website Stack Overflow4 facilitates the exchange of knowledge between
programmers connected via the Internet. In the 4 years since its foundation in 2008,
more than 3.3 million questions have been asked on Stack Overflow, and more than
2.1 million answers have been accepted. On Stack Overflow, a programmer can
ask a question about various programming related topics, and receive a detailed re-
sponse within a median of 10 min [24]. Stack Overflow team explicitly mentions5

the following kinds of questions generally covered by Stack Overflow: a specific
programming problem, a software algorithm, software tools commonly used by pro-
grammers, and practical, answerable problems that are unique to the programming
profession. They also feel that “the best Stack Overflow questions have a bit of
source code in them”. To facilitate the crowd-sourcing of documentation, the Stack
Overflow community explicitly encourages contributions where the person asking
the question also provides an answer. Stack Overflow also introduces the concept
of community wikis6 for addressing cases in which true community collaboration
is needed on a certain topic. The use of community wikis challenges the dichotomy
between Q&A websites and wikis.

As opposed to former Q&A websites that were used as an auxiliary tool for
professional developers, secondary in importance, Stack Overflow is gaining a more
cardinal role in the contemporary programming scene. Answers on Stack Over-
flow often become a substitute for official product documentation when the official
documentation is sparse or not yet existent,7 and developers use Stack Overflow
to employ example centric development. The popularity and dominance of Stack
Overflow and the fact that it embodies so much of the software development do-
main knowledge is somewhat surprising, as organizing professional domain knowl-
edge in the form of questions and answers is not immediately obvious. Books, API
documentation, tutorials and even wikis are examples for alternative viable models
for knowledge organization. So why is Stack Overflow so successful? One explana-
tion is related to the rapid pace in which technologies come and go, which results
in official documentation that is sometimes lagging behind the field. Moreover, as
software development projects often involve numerous technologies, the pragmatic
professional developer is not able to master all of them in the same proficiency

1 http://answers.yahoo.com/.
2 http://www.quora.com/.
3 http://www.facebook.com/questions/.
4 http://stackoverflow.com/.
5 http://stackoverflow.com/faq#questions.
6 http://blog.stackoverflow.com/2011/08/the-future-of-community-wiki/.
7 https://stackoverflow.fogbugz.com/default.asp?W25450.

http://answers.yahoo.com/
http://www.quora.com/
http://www.facebook.com/questions/
http://stackoverflow.com/
http://stackoverflow.com/faq#questions
http://blog.stackoverflow.com/2011/08/the-future-of-community-wiki/
https://stackoverflow.fogbugz.com/default.asp?W25450

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 291

level. Stack Overflow offers “knowledge on demand” – specific solutions for spe-
cific problems, easily searchable, generated, reviewed and rated by the community.

The innovation of Stack Overflow was in bringing together a Q&A website and
social media technology, and creating a whole greater than the sum of its parts. So-
cial media in the context of Stack Overflow is manifested by having the user profiles
explicit in the process of asking questions and answering them. As opposed to for-
mer knowledge exchange formats such as forums or wikis, users on Stack Overflow
are not only affected by the content of the answer, but also from the rating of its
author. The interactions between users on the Stack Overflow platform (answering,
commenting, editing) increase the rating of the interacting users, and encourage fur-
ther activity.

In order to better understand the principles guiding Stack Overflow we first re-
view the design decisions that drove its development. Then, we explore the role it
plays in the software documentation landscape, and finally we describe an appli-
cation, which uses Stack Overflow, that spans beyond mere documentation; a tool
called Example Overflow, which assists example centric programming by extracting
high quality code snippets from Stack Overflow.

15.2 Background and Related Work

StackOverflow.com is a Question and Answer (Q&A) website which uses social
media to facilitate knowledge exchange between programmers. This knowledge is
manifested in the form of questions and answers, and it is embodied in code ex-
amples that often accompany the text. In order to examine these various aspects of
Stack Overflow, we review related work in the following areas: (1) the use of social
media in software engineering, (2) Q&A websites in general and work on questions
that software developers ask, and (3) the example centric programming paradigm.

15.2.1 Social Media in Software Engineering

Social media is an umbrella term that defines the various activities that integrate
technology and social interaction, enabled by recent advances of Web 2.0 technolo-
gies. The W3C organization defines social media as “Online technologies and prac-
tices that people use to share opinions, insights, experiences, and perspectives”.8

Kaplan and Haenlein [19] define social media using the following dimensions: so-
cial presence vs. media richness and self-presentation vs. self-disclosure. They show
that content communities (e.g. YouTube) are considered to be of low self disclosure
and medium social presence, whereas blogs are highly self presented, but with low
social presence. Using these dimensions, a Q&A website, such as Stack Overflow,

8 http://www.w3.org/egov/wiki/Glossary.

http://www.w3.org/egov/wiki/Glossary

292 O. Barzilay et al.

is part of the social media landscape as it promotes user generated professional con-
tent, in which the identity of the users is explicit and affects the knowledge creation
process, by taking into account the user’s rating for example.

Social media provides useful recommendations for many areas of our lives. For
example, when considering what movies to watch, one may use recommendations
from his or her immediate social cycle (e.g. Facebook friends), or elicit the wisdom
of the crowd [35], using, for instance, the ratings on imdb.com. This is part of a
more general trend in which social recommendations (e.g. Facebook) have begun to
replace search (e.g. Google Search).

The Software Engineering (SE) domain is no different; social media has been
shown to be beneficial in many areas of SE including feature prioritization [5], risk
analysis [34], collaborative filtering [14], knowledge management [17], and docu-
mentation [10]. Social media is changing the way software developers communicate
and coordinate, and how they produce and consume documentation [38]. The cur-
rent adoption of social media in processes and integrated development environments
is just scratching the surface of what can be done by incorporating social media ap-
proaches and technologies into software development.

Storey et al. [32] discuss the impact of social media on software engineering prac-
tices and tools. Historically, wikis and blogs were the first social media mechanisms
used by software developers, utilized mostly in the areas of requirements engineer-
ing and documentation, and to communicate high-level concepts. Microblogs, such
as Twitter, play a role in conversation and information sharing between software
developers [10], whereas tags can help software developers communicate their con-
cerns in task management [39] and add semantic information to source code [31].

Among those technologies, the Stack Overflow Q&A portal not only provides
a unique medium for the interaction between several communities of practice of
developers, but also stands out due to the daily involvement of its design team within
those communities [24]. In a preliminarily categorization of the questions found on
Stack Overflow, we found that the website is particularly effective at certain kinds
of questions [37]. Stack Overflow also attracts a lot of web traffic and can reach a
high level of coverage for a given topic. In a recent study, we analyzed the Google
search results for the jQuery API and found at least one Stack Overflow question on
the first page of the search results for 84% of the API’s methods [27].

15.2.2 Q&A Websites and Questions that Software Developers Ask

In order to better situate Q&A websites in the documentation landscape, we review
related work regarding the use of Q&A websites, and their role in knowledge cre-
ation and retrieval.

The use of Yahoo! Answers has been studied by several researchers. Gyongyi
et al. [15] identified three fundamental ways in which Yahoo! Answers is used: for
focused questions, to trigger discussions, and for random thoughts and questions.
Adamic et al. [1] found that users who focused on certain areas of expertise often got

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 293

the best ratings. In order to find high quality content, Agichtein et al. [2] introduce
a framework that is able to separate high quality items from the rest. In a related
project, Shah and Pomerantz [29] found that contextual information such as a user’s
profile can be used to predict content quality.

The above studies suggest that Q&A websites, if used intelligently, may pro-
vide useful information in a narrow professional domain. Therefore, building an
online Q&A community of professionals in the software engineering domain is a
promising approach. But what questions do developers ask in their daily work? Fol-
lowing, we examine studies regarding the questions that software developers ask.
Letovsky [23] identified five main question types: why, how, what, whether and dis-
crepancy. Fritz and Murphy [12] provide a list of questions that focus on issues that
occur within a project. Sillito et al. [30] provide a similar list focusing on questions
during evolution tasks. In their study on information needs in software development,
Ko et al. [20] found that the most frequently sought information included awareness
about artifacts and coworkers.

In contrast to the settings of these studies, Q&A websites provide a platform for
questions aimed at a general audience that is not part of the same project. Q&A
websites contain questions, but can also contain answers to anticipated questions
as well as opinions through comments and ratings. LaToza and Myers [22] found
that the most difficult questions from a developer’s perspective dealt with intent and
rationale. This issue is addressed by the Stack Overflow platform, providing rich
context in the form of questions, answers and discussions, in which the intent and
rationale often become explicit.

15.2.3 Example Centric Programming

The number of code snippets available on Stack Overflow suggests that the Q&A
website can play a major role in Example Centric Programming. Programming
by example was found to be intuitive to many developers, novices and experts
alike [21]. Brandt et al. proposed [11] that embedding a task-specific search engine
in the development environment can significantly reduce the cost of finding infor-
mation and thus allow programmers to write better code more easily. Barzilay [6]
portrayed a comprehensive approach towards example centric programming, which
he calls the Example Embedding Ecosystem, in which example-related concerns are
weaved in the development process, software tools, practices, training, organization
culture and more.

Tools such as Strathcona [18] and PARSEWeb [36] provided developers with
code fragment recommendations, taken from a central code repository, by gener-
ating queries based on code context and the structural details of the developer’s
activity. The quality of the code found by these tools was derived from the overall
quality of the repositories they use.

294 O. Barzilay et al.

Code search engines, on the other hand, such as Krugle9 and Koders,10 search in
a large set of open source repositories, but do not provide explicit mechanisms to
evaluate or improve the quality of the found snippets. Other tools such as MICA [33]
or Exemplar [13, 25] use API calls or API examples to recommend example code,
but they are restricted to providing a limited set of examples based on the API only.

Using social media, however, allows applications built on top of the Stack Over-
flow knowledge base to scale beyond specific code repositories and to leverage hu-
man brainpower [3] to assess the quality of specific code snippets.

15.3 Social Design of Stack Overflow

Stack Overflow is centered around nine design decisions11: Voting is used as a
mechanism to distinguish good answers from bad ones. Users can up-vote answers
they like, and down-vote answers they dislike. In addition, the user asking a question
can accept one answer as the official answer. Tags are used to organize questions.
Users have to attach at least one tag and can attach up to five tags when asking
a question. Editing of both questions and answers allows users to improve their
quality and to turn Q&A exchanges into wiki-like structures. Badges are given to
users to reward them for their contributions once they reach certain thresholds. This
form of karma is used to encourage contribution. Pre-Search helps avoid dupli-
cate questions by showing similar entries as soon as a user has finished typing the
title of a question. Stack Overflow was designed to be used such that Google is UI.
Web pages on StackOverflow.com are optimized towards search engines and per-
formance. To ensure critical mass, several programmers were explicitly asked to
contribute in the early stages of Stack Overflow (Fig. 15.1).

A recent study suggests that software developers are diverse in their approach
towards using code examples from online sources [8]. Despite the engineering chal-
lenges involved in extensive example usage, it was suggested that this diversity
stems from human, rather than engineering, factors [7]. The developers’ approach to
example usage is affected by their sense of professional and community identity, ego
considerations, ownership and trust issues. We see that many of Stack Overflow’s
design decisions address these human factors, and have transformed Stack Over-
flow into a community. The badges and karma give the users a sense of belonging–
of being part of a large developers community. The voting mechanism allows the
community to rank both users and answers, and tackle the quality and trust issues.
Taking ownership of a code snippet taken from Stack Overflow is easier after it has
received community approval, and ego is confronted with community feedback and
the transparency of the ranking mechanism.

9 http://www.krugle.com/.
10 http://www.koders.com/.
11 http://www.youtube.com/watch?v=NWHfY_lvKIQ.

http://www.krugle.com/
http://www.koders.com/
http://www.youtube.com/watch?v=NWHfY_lvKIQ

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 295

Fig. 15.1 Stack overflow screen capture

15.4 Stack Overflow in the Documentation Landscape

In this section, we pose research questions and report preliminary results to identify
the role of Q&A websites in software development using qualitative and quantitative
research methods. Our findings, obtained through the analysis of archival data from
Stack Overflow and qualitative coding, indicate that Q&A websites are particularly
effective at code reviews, explaining conceptual issues and answering newcomer
questions. The most common use of Stack Overflow is for how-to questions, and
its dominant programming languages are C#, Java, PHP and JavaScript. Ultimately,
understanding the processes that lead to the creation of knowledge on Q&A websites
will enable us to make recommendations on how individuals and companies, as
well as tools for programmers, can leverage the knowledge and use Q&A websites
effectively. One such tool, Example Overflow, will be introduced in Sect. 15.5.

296 O. Barzilay et al.

15.4.1 Research Methodology

This section describes the methodology by outlining research questions as well as
the data collection and analysis methods. We will focus on the following two ques-
tions:

1. What kinds of questions are asked on Q&A websites for programmers?
2. Which questions are answered and which ones remain unanswered?

The data collection follows a mixed-methods approach, collecting both quantitative
and qualitative data. A script was used to extract questions along with all answers,
tags and owners using the Stack Overflow API. The data reported here was extracted
on November 23, 2010 and contains all questions that were asked between Novem-
ber 1, 2010 and November 15, 2010. The amount of data extracted is provided in
Table 15.1.

Data item Amount

Questions 38,419
Owners 31,729
Answers 68,467
Tag instances 111,408

Table 15.1: Extracted data

To answer the research questions, quantitative properties of questions, answers
and tags were analyzed, and qualitative codes were applied to a sample of tags and
questions. Qualitative coding was done individually and then codes were confirmed
in collaborative coding sessions.

15.4.2 Preliminary Findings

15.4.2.1 Different Kinds of Questions

To analyze the different kinds of questions asked on Stack Overflow, qualitative
coding of questions and tags was done. The tags were mainly used to learn about
the topics covered by Stack Overflow, while the question coding gave insight into
the nature of the questions.

Each question has between one and five tags that are set by the person asking a
question. Most questions (72.30%) have between two and four tags. Ten thousand
two hundred and seventy-two different keywords were used to tag questions, and
there were 111,408 instances of a tag being applied to a question. Table 15.2 shows
the most frequently used tags.

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 297

Tag keyword Instances

c# 3,765
java 2,909
php 2,599
javascript 2,310
jquery 2,084

Table 15.2: Most used tag keywords

Qualitative coding was applied to the 200 most frequently used tag keywords
in our data. These keywords covered 60,193 of the tag instances (54.03%). Five
categories of tags were identified, and they are shown in Table 15.3, including the
number of instances in each category, the number of different keywords per cate-
gory, and the most used tags per category. For the keyword “homework”, no related
tags were found and thus it was left uncategorized.

Code Keyword Instances Examples

Programming language 63 28,218 c#, java
Framework 48 11,532 jquery, ruby on rails
Environment 45 14,127 Android, iphone
Domain 29 4,125 Regex, database
Non functional 14 2,071 Multithreading
Homework 1 120 Homework

Table 15.3: Tag coding

Users self-code their questions through tags to index them, and to allow others to
navigate to them. Tags reveal the topics covered on Stack Overflow, but only allow
limited insights into the nature of the questions asked. To further understand the
characteristics of questions on Stack Overflow, a random sample of 385 questions
from the data set (1%) was coded. The titles and body texts of these questions were
analyzed and the following categories were found, ordered by their frequency:

how-to. Questions that ask for instructions, e.g. “How to crop image by 160◦
from center in asp.net”.

discrepancy. Some unexpected behavior that the person asking the question wants
explained, e.g. “iphone – Coremotion acceleration always zero”.

environment. Questions about the environment either during development or after
deployment, e.g. “How to use windows emacs as a svn client?”.

error. Questions that include a specific error message, e.g. “C# Obscure
error: file ’ ’ could not be refactored”.

298 O. Barzilay et al.

decision-help. Asking for an opinion, e.g. “Should a business object know about
its corresponding contract object”.

conceptual. Questions that are abstract and do not have a concrete use case, e.g.
“Concept of xml sitemaps”.

review. Questions that are either implicitly or explicitly asking for a code re-
view, e.g. “Simple file download via HTTP – is this sufficient?”.

non-functional. Questions about non-functional requirements such as performance
or memory usage, e.g. “Mac – Max Texture Size for compatibility?”.

novice. Often explicitly states that the person asking the question is a novice,
e.g. “Oracle PL/SQL performance tuning crash course”.

noise. Questions not related to programming, e.g. “Apple Developer Pro-
gram”.

Most questions in the random sample fit into one of these categories, but for some
of the questions (9.61%), two categories were assigned. The most frequent type
of question (39.22%) was how-to, followed by questions about discrepancies and
environment. The first two columns of Table 15.4 show the detailed results:

Answered No
Code Sum Accepted Not accepted answer
how-to 151 67 (44%) 63 (42%) 21 (14%)
discrepancy 50 27 (54%) 11 (22%) 12 (24%)
environment 40 13 (33%) 17 (43%) 10 (25%)
error 36 19 (53%) 14 (39%) 3 (8%)
decision help 22 9 (41%) 10 (45%) 3 (14%)
conceptual 18 10 (56%) 7 (39%) 1 (6%)
how-to/novice 16 10 (63%) 3 (19%) 3 (19%)
review 13 12 (92%) 1 (8%) 0 (0%)
non-functional 10 6 (60%) 1 (10%) 3 (30%)
novice 5 2 (40%) 3 (60%) 0 (0%)
other 24 10 (42%) 11 (46%) 3 (13%)
sum 385 185 (48%) 141 (37%) 59 (15%)

Table 15.4: Question coding

15.4.2.2 Which Questions Are Answered and Which Are Not

Figure 15.2 shows the distribution of answers per question. The number of answers
per question is shown on the x-axis, and the number of questions with that number
of answers is shown on the y-axis using a log scale. 5,450 (14.19%) questions were
not answered. The remaining questions had at least one and up to 23 answers. Only
3,243 out of 68,467 answers (4.74%) were provided by the same person that had
asked the question.

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 299

Fig. 15.2 Answers per question (log scale)

0

1

10

100

1000

10000

100000

1 2

lo
g

 (

q
u

es
ti

o
n

s)

3 4 5 6 7 8 9 10 11 12
answers

13 14 15 16 17 18 19 20 21 22 23

On Stack Overflow, the user who is asking a question can mark at most one an-
swer per question as accepted. This feature was used to examine the implications of
different question characteristics on the success of a question. We define success-
ful and unsuccessful questions as follows: A successful question has an accepted
answer, and an unsuccessful question has no answer. Following these definitions,
the 185 successful questions and 59 unsuccessful questions from the random sam-
ple of 385 questions were analyzed. Table 15.4 shows the number of questions per
category for all questions in our random sample, for all successful questions, for
all questions with answers but no accepted answer, and for all questions without an
answer.

It is interesting to note that the community answered review, conceptual and
how-to/novice questions more frequently than other kinds of questions.

15.4.3 Discussion

A possible reason for the high answer ratio of review questions is the fact that re-
view questions are usually very concrete. They contain code snippets, and often no
external sources are necessary to understand the code and make a recommendation
about its quality. Also, code review questions can have more than one “correct” an-
swer, and often any input is better than no input. The knowledge required to answer
conceptual questions is usually broad. It is available in documentation or books and
only needs to be presented effectively. Novices are easy to sympathize with and their
questions are usually easy to answer.

The type of question is not the only factor for getting good answers. Other factors
seem to include: the technology in question, the identity of the user, the time and

300 O. Barzilay et al.

day in which the question was asked, whether the question included a code snippet,
or the length of the question.

As with any research methodology, there are limitations with the choice of meth-
ods described above. The first limitation lies in the small amount of data analyzed
in the random sample. However, by triangulating the findings through qualitative
coding of tags and questions, we are able to mitigate some of these concerns. The
definitions of successful and unsuccessful questions are limited, but they offer a first
approximation.

15.5 Example Embedding Using Stack Overflow

In the previous section we described Stack Overflow as a knowledge creation
platform and examined it from the documentation perspective. Documentation,
however, is only one manifestation of professional knowledge. In the software
engineering domain much of the domain knowledge is manifested in the source
code, sometimes implicitly. Indeed, many answers on Stack Overflow include code
snippets. Although some of these snippets are executable, they are entangled in free
text and are not easily extracted. Q&A websites are not designed for such direct
code reuse.

Following, we focus on the domain knowledge that resides on Stack Overflow
in the form of code examples by presenting Example Overflow, a code search and
recommendation tool which brings together social media and code recommendation
systems, built on top of Stack Overflow. Example Overflow enables crowd-sourced
software development by utilizing both textual and social information, which ac-
company source code on the Web. We describe the development of the tool, and
discuss its contribution to an example centric programming paradigm.

15.5.1 Overview

Example Overflow leverages the body of knowledge created by the socio-
professional media, to recommend high quality, embeddable code. It uses built-in
social mechanisms of Stack Overflow. Example Overflow is a live system, and is
currently deployed as a public and free website.12 Its initial implementation con-
tains all code snippets that appear in accepted jQuery related answers (more than
33,000 code snippets). jQuery13 is a popular JavaScript library, initially released
in 2006 and is ranked fifth in its popularity on Stack Overflow (with over 150,000
related questions). It was chosen as a case study due to the assumption that Web

12 http://www.exampleoverflow.net/.
13 http://jquery.com/.

http://www.exampleoverflow.net/
http://jquery.com/

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 301

developers would find it easier to adopt an example centric programming approach.
This decision is also supported by the following: (1) as mentioned above, Parnin
and Treude [27] found that Stack Overflow covers 84.4% of the jQuery API, and (2)
20% of the jQuery related questions have a code snippet embedded in their accepted
answer.

Example Overflow development is aligned with the theory of the Example Em-
bedding Ecosystem [6] – an example centric development approach which argues
that the use of examples in professional software development goes beyond being a
mere programming technique, or the use of a specific code retrieval tool. Usage of
existing code should rather be considered as a fundamental software construction ac-
tivity and an expression of community knowledge accumulation and of the software
reuse principle. Habitual and methodological example usage expresses awareness of
the existing body of knowledge and promotes faster and better code writing. Devel-
opers and organizations that implement the Example Embedding theory explicitly
address example usage concerns in their development process, software tools, prac-
tices, training, organization culture and more [6] (Fig. 15.3).

Fig. 15.3 Example overflow Web interface

302 O. Barzilay et al.

15.5.2 Example Overflow Implementation

15.5.2.1 Populating the Repository

Example Overflow uses Stack Overflow’s API to request all the questions relevant
to our current domain, jQuery, and it filters out all the questions without an accepted
answer. It follows a conservative approach by choosing only accepted answers to
ensure retrieval of high quality results. The next step is to check whether each of
these questions has a code snippet inside the accepted answer. If so, that code snippet
is extracted and saved to a database with all the accompanying information: the
question title, the question body, the answer body, the code snippet itself, the user
rating of the answer from Stack Overflow, the view count of the question, the tags
associated with the question and other relevant information. This process can be
executed as a scheduled task to allow keeping the data in sync with the data at Stack
Overflow.

15.5.2.2 Searching

Example Overflow uses keyword search based on the Apache Lucene [16] li-
brary, which internally uses the term frequency-inverse document frequency (tf-idf)
weight [40]. In order for Apache Lucene to search, one needs to define which param-
eters are to be analyzed and indexed. For keyword search index, Example Overflow
uses both the code snippet and the additional metadata which accompanied the code
snippet at Stack Overflow. This allows a developer to find code snippets that may
not contain the search query keyword, but the keyword appears in the contextual
data and indicates that it has been used in that context.

Each code example is represented as a document with several parts: title, tag,
answer, question, code, and social metadata. Example Overflow uses the following
formula to calculate the score of each document representing a code example:

Sdoc = [WtitleStitle +WtagStag +WanswerSanswer +WquestionSquestion

+WcodeScode]Smetadata

15.5.3 Discussion

Searching for code examples is possible using Stack Overflow directly. However
using designated code search tools on top of Stack Overflow may provide better
results in terms of streamlining the various activities involved in example cen-
tric development (search, evaluation, and embedding). Designated tools may also
introduce search mechanisms optimized for code search, they can minimize the con-
text switch involved in leaving the IDE (as implemented in Blueprint [11], Strath-
cona [18], and recently Seahawk [4]), and may even use static analysis techniques

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 303

to assist in embedding the code into the new context. Zagalsky et al. [41] provide a
preliminary evaluation suggesting that using Example Overflow reduces the number
of mouse clicks required to reach a suitable code example compared to using other
code search tools or using plain vanilla Stack Overflow.

Another benefit in using automatic tools on top of the Stack Overflow is the
ability to create a feedback loop, which would contribute data back to the Stack
Overflow knowledge base. The accumulated data may provide important insights
about how the code was actually used, and what changes were made to it, maybe
even after some time and across API versions.

We note that example centric programming is not performed in void. In order
to be productive the software developer should acquire proper skills. She should
be able to critically evaluate the various examples, browse them and merge them.
Without proper practices, systems which are developed using examples extensively
may end up as Frankenstein code [6], and bugs may find their way in, because the
examples used were not properly tested.

Moreover, it is still unknown if crowd sourced software development would
be able to scale well, as currently, Stack Overflow has only relatively small code
snippets.

15.6 Impact and Future Work

Stack Overflow uses social media mechanisms to create and evaluate high quality
professional software engineering domain knowledge. It uses Web 2.0 technology to
gather user generated content, and its design decisions nurture an online community
that is taking part in assessing the quality of this content.

Stack Overflow’s centrality in the software development scene, and the fact that
so much of the programming domain knowledge is organized in the form of ques-
tions and answers, raises many interesting questions regarding the future documen-
tation landscape, and the future of software development in general. It implies that
knowledge should be searchable, rather than consumed sequentially. It implies that
knowledge is distributed between text and code. It suggests that high quality knowl-
edge could be generated by a community that would vouch for its quality rather than
a small group of experts, limited in their capacity for producing and assessing the
knowledge. In a broader context, the design decisions implemented in Stack Over-
flow may be able to reinvent open source development – this time not in the sense
of reusing pieces of code taken from existing open source products, but assembling
pieces that were written in order to demonstrate a feature, and are accompanied with
rich context about their rationale and intension.

More specifically, understanding the interactions on Q&A websites, such as
Stack Overflow, will shed light on the information needs of programmers outside
closed project contexts and will enable recommendations on how individuals, com-
panies and tools can leverage knowledge on Q&A websites. Understanding the role
and effectiveness of ratings to identify the best answers and the role of comments to
facilitate discussion are important venues for future research.

304 O. Barzilay et al.

We also discussed using the code snippets found on Stack Overflow, and de-
scribed a specific application, Example Overflow, that extracts these snippets to
support example centric programming. Example Overflow and other similar tools
introduce fascinating opportunities for the future developer. Integrating such tools
into the IDE would further minimize the developer’s context switching, and allow
the developer to run the code example in a sandbox mode before deciding whether
it is suitable or not. IDE integration would enable auto embedding the example code
into the existing code (similarly to refactoring), and allow to auto suggest search
queries by using the developer’s structural context. By accomplishing these steps,
the usage of examples will become an integral part of the software development
cycle.

References

[1] Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.S.: Knowledge sharing
and yahoo answers: everyone knows something. In: Proceedings of the 17th
international conference on World Wide Web, WWW ’08, pp. 665–674. ACM,
New York, NY, USA (2008). DOI 10.1145/1367497.1367587. URL http://doi.
acm.org/10.1145/1367497.1367587

[2] Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-
quality content in social media. In: Proceedings of the international conference
on Web search and web data mining, WSDM ’08, pp. 183–194. ACM, New
York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1341531.1341557.
URL http://doi.acm.org/10.1145/1341531.1341557

[3] von Ahn, L.: Human computation. In: Design Automation Conference, 2009.
DAC ’09. 46th ACM/IEEE, pp. 418–419 (2009)

[4] Bacchelli, A., Ponzanelli, L., Lanza, M.: Harnessing stack overflow for the ide.
In: Third International Workshop on Recommendation Systems for Software
Engineering (RSSE), pp. 26–30 (2012). DOI 10.1109/RSSE.2012.6233404

[5] Bajic, D., Lyons, K.: Leveraging social media to gather user feedback for soft-
ware development. In: Proceedings of the 2nd International Workshop on Web
2.0 for Software Engineering, Web2SE ’11, pp. 1–6. ACM, New York, NY,
USA (2011). DOI http://doi.acm.org/10.1145/1984701.1984702. URL http://
doi.acm.org/10.1145/1984701.1984702

[6] Barzilay, O.: Example embedding. In: Proceedings of the 10th SIGPLAN sym-
posium on New ideas, new paradigms, and reflections on programming and
software, ONWARD ’11, pp. 137–144. ACM, New York, NY, USA (2011).
DOI 10.1145/2089131.2089135. URL http://doi.acm.org/10.1145/2089131.
2089135

[7] Barzilay, O.: Example embedding: On the diversity of example usage in pro-
fessional software development. Ph.D. thesis, Tel Aviv University (2012)

[8] Barzilay, O., Hazzan, O., Yehudai, A.: Using social media to study the diver-
sity of example usage among professional developers. In: Proceedings of the

http://doi.acm.org/10.1145/1367497.1367587
http://doi.acm.org/10.1145/1367497.1367587
http://doi.acm.org/10.1145/1341531.1341557
http://doi.acm.org/10.1145/1984701.1984702
http://doi.acm.org/10.1145/1984701.1984702
http://doi.acm.org/10.1145/2089131.2089135
http://doi.acm.org/10.1145/2089131.2089135

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 305

19th ACM SIGSOFT symposium and the 13th European conference on Foun-
dations of software engineering, SIGSOFT/FSE ’11, pp. 472–475. ACM, New
York, NY, USA (2011). DOI http://doi.acm.org/10.1145/2025113.2025195.
URL http://doi.acm.org/10.1145/2025113.2025195

[9] Bian, J., Liu, Y., Agichtein, E., Zha, H.: Finding the right facts in the crowd:
factoid question answering over social media. In: Proceedings of the 17th in-
ternational conference on World Wide Web, WWW ’08, pp. 467–476. ACM,
New York, NY, USA (2008). DOI 10.1145/1367497.1367561. URL http://doi.
acm.org/10.1145/1367497.1367561

[10] Bougie, G., Starke, J., Storey, M.A., German, D.M.: Towards understanding
twitter use in software engineering: preliminary findings, ongoing challenges
and future questions. In: Proceeding of the 2nd international workshop on Web
2.0 for software engineering, Web2SE ’11, pp. 31–36. ACM, New York, NY,
USA (2011). DOI http://doi.acm.org/10.1145/1984701.1984707. URL http://
doi.acm.org/10.1145/1984701.1984707

[11] Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S.R.: Example-centric
programming: integrating web search into the development environment. In:
Proceedings of the 28th international conference on Human factors in com-
puting systems, CHI ’10, pp. 513–522. ACM, New York, NY, USA (2010).
DOI http://doi.acm.org/10.1145/1753326.1753402. URL http://doi.acm.org/
10.1145/1753326.1753402

[12] Fritz, T., Murphy, G.C.: Using information fragments to answer the questions
developers ask. In: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ICSE ’10, pp. 175–184. ACM, New
York, NY, USA (2010). DOI 10.1145/1806799.1806828. URL http://doi.acm.
org/10.1145/1806799.1806828

[13] Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., Cumby, C.: A
search engine for finding highly relevant applications. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, pp. 475–484. ACM, New York, NY, USA (2010). DOI 10.1145/
1806799.1806868. URL http://doi.acm.org/10.1145/1806799.1806868

[14] Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-
Koifman, S.: Personalized recommendation of social software items based
on social relations. In: Proceedings of the third ACM conference on Recom-
mender systems, RecSys ’09, pp. 53–60. ACM, New York, NY, USA (2009).
DOI http://doi.acm.org/10.1145/1639714.1639725. URL http://doi.acm.org/
10.1145/1639714.1639725

[15] Gyongyi, Z., Koutrika, G., Pedersen, J., Garcia-Molina, H.: Questioning ya-
hoo! answers (2007)

[16] Hatcher, E., Gospodnetic, O., McCandless, M.: Lucene in Action, 2nd revised
edition. edn. Manning (2010). URL http://amazon.de/o/ASIN/1933988177/

[17] Hattori, T.: Wikigramming: a wiki-based training environment for program-
ming. In: Proceedings of the 2nd International Workshop on Web 2.0 for Soft-
ware Engineering, Web2SE ’11, pp. 7–12. ACM, New York, NY, USA (2011).
DOI http://doi.acm.org/10.1145/1984701.1984703. URL http://doi.acm.org/
10.1145/1984701.1984703

http://doi.acm.org/10.1145/2025113.2025195
http://doi.acm.org/10.1145/1367497.1367561
http://doi.acm.org/10.1145/1367497.1367561
http://doi.acm.org/10.1145/1984701.1984707
http://doi.acm.org/10.1145/1984701.1984707
http://doi.acm.org/10.1145/1753326.1753402
http://doi.acm.org/10.1145/1753326.1753402
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/1806799.1806868
http://doi.acm.org/10.1145/1639714.1639725
http://doi.acm.org/10.1145/1639714.1639725
http://amazon.de/o/ASIN/1933988177/
http://doi.acm.org/10.1145/1984701.1984703
http://doi.acm.org/10.1145/1984701.1984703

306 O. Barzilay et al.

[18] Holmes, R., Murphy, G.C.: Using structural context to recommend source code
examples. In: ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pp. 117–125. ACM (2005). DOI http://doi.acm.org/10.
1145/1062455.1062491

[19] Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and
opportunities of social media. Business Horizons 53(1), 59–68 (2010). DOI
10.1016/j.bushor.2009.09.003. URL http://www.sciencedirect.com/science/
article/pii/S0007681309001232

[20] Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software
development teams. In: Proceedings of the 29th international conference on
Software Engineering, ICSE ’07, pp. 344–353. IEEE Computer Society, Wash-
ington, DC, USA (2007). DOI 10.1109/ICSE.2007.45. URL http://dx.doi.org/
10.1109/ICSE.2007.45

[21] Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficul-
ties of novice programmers. SIGCSE Bull. 37, 14–18 (2005). DOI http:
//doi.acm.org/10.1145/1151954.1067453. URL http://doi.acm.org/10.1145/
1151954.1067453

[22] LaToza, T.D., Myers, B.A.: Hard-to-answer questions about code. In: Evalua-
tion and Usability of Programming Languages and Tools, PLATEAU ’10, pp.
8:1–8:6. ACM, New York, NY, USA (2010). DOI 10.1145/1937117.1937125.
URL http://doi.acm.org/10.1145/1937117.1937125

[23] Letovsky, S.: Cognitive processes in program comprehension. In: Papers pre-
sented at the first workshop on empirical studies of programmers on Empirical
studies of programmers, pp. 58–79. Ablex Publishing Corp., Norwood, NJ,
USA (1986). URL http://dl.acm.org/citation.cfm?id=21842.28886

[24] Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., Hartmann, B.: Design
lessons from the fastest Q&A a site in the west. In: Proceedings of the 2011 an-
nual conference on Human factors in computing systems, CHI ’11, pp. 2857–
2866. ACM, New York, NY, USA (2011). DOI http://doi.acm.org/10.1145/
1978942.1979366. URL http://doi.acm.org/10.1145/1978942.1979366

[25] McMillan, C., Poshyvanyk, D., Grechanik, M.: Recommending source code
examples via api call usages and documentation. In: Proceedings of the
2nd International Workshop on Recommendation Systems for Software En-
gineering, RSSE ’10, pp. 21–25. ACM, New York, NY, USA (2010).
DOI http://doi.acm.org/10.1145/1808920.1808925. URL http://doi.acm.org/
10.1145/1808920.1808925

[26] O’Reilly, T.: What is Web 2.0: Design patterns and business models for the
next generation of software. Communications and Strategies 65(1), 17–37
(2007)

[27] Parnin, C., Treude, C.: Measuring api documentation on the web. In: Pro-
ceedings of the 2nd International Workshop on Web 2.0 for Software En-
gineering, Web2SE ’11, pp. 25–30. ACM, New York, NY, USA (2011).
DOI http://doi.acm.org/10.1145/1984701.1984706. URL http://doi.acm.org/
10.1145/1984701.1984706

http://www.sciencedirect.com/science/article/pii/S0007681309001232
http://www.sciencedirect.com/science/article/pii/S0007681309001232
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/ICSE.2007.45
http://doi.acm.org/10.1145/1151954.1067453
http://doi.acm.org/10.1145/1151954.1067453
http://doi.acm.org/10.1145/1937117.1937125
http://dl.acm.org/citation.cfm?id=21842.28886
http://doi.acm.org/10.1145/1978942.1979366
http://doi.acm.org/10.1145/1808920.1808925
http://doi.acm.org/10.1145/1808920.1808925
http://doi.acm.org/10.1145/1984701.1984706
http://doi.acm.org/10.1145/1984701.1984706

15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 307

[28] Robillard, P.N.: The role of knowledge in software development. Commun.
ACM 42(1), 87–92 (1999). DOI 10.1145/291469.291476. URL http://doi.acm.
org/10.1145/291469.291476

[29] Shah, C., Pomerantz, J.: Evaluating and predicting answer quality in commu-
nity qa. In: Proceeding of the 33rd international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’10, pp. 411–418.
ACM, New York, NY, USA (2010). DOI http://doi.acm.org/10.1145/1835449.
1835518. URL http://doi.acm.org/10.1145/1835449.1835518

[30] Sillito, J., Murphy, G.C., De Volder, K.: Questions programmers ask during
software evolution tasks. In: Proceedings of the 14th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, SIGSOFT
’06/FSE-14, pp. 23–34. ACM, New York, NY, USA (2006). DOI 10.1145/
1181775.1181779. URL http://doi.acm.org/10.1145/1181775.1181779

[31] Storey, M.A., Ryall, J., Singer, J., Myers, D., Cheng, L.T., Muller, M.: How
software developers use tagging to support reminding and refinding. IEEE
Trans. Softw. Eng. 35(4), 470–483 (2009). DOI 10.1109/TSE.2009.15. URL
http://dx.doi.org/10.1109/TSE.2009.15

[32] Storey, M.A., Treude, C., van Deursen, A., Cheng, L.T.: The impact of so-
cial media on software engineering practices and tools. In: Proceedings of
the FSE/SDP workshop on Future of software engineering research, FoSER
’10, pp. 359–364. ACM, New York, NY, USA (2010). DOI 10.1145/1882362.
1882435. URL http://doi.acm.org/10.1145/1882362.1882435

[33] Stylos, J., Myers, B.: Mica: A web-search tool for finding api components
and examples. In: Visual Languages and Human-Centric Computing, 2006.
VL/HCC 2006. IEEE Symposium on, pp. 195–202 (2006). DOI 10.1109/
VLHCC.2006.32

[34] Sureka, A., Goyal, A., Rastogi, A.: Using social network analysis for min-
ing collaboration data in a defect tracking system for risk and vulner-
ability analysis. In: Proceedings of the 4th India Software Engineering
Conference, ISEC ’11, pp. 195–204. ACM, New York, NY, USA (2011).
DOI http://doi.acm.org/10.1145/1953355.1953381. URL http://doi.acm.org/
10.1145/1953355.1953381

[35] Surowiecki, J.: The Wisdom of Crowds. Anchor (2005)
[36] Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant for reusing

open source code on the web. In: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering,
ASE ’07, pp. 204–213. ACM, New York, NY, USA (2007). DOI http:
//doi.acm.org/10.1145/1321631.1321663. URL http://doi.acm.org/10.1145/
1321631.1321663

[37] Treude, C., Barzilay, O., Storey, M.A.: How do programmers ask and answer
questions on the web? (nier track). In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pp. 804–807. ACM, New
York, NY, USA (2011). DOI http://doi.acm.org/10.1145/1985793.1985907.
URL http://doi.acm.org/10.1145/1985793.1985907

http://doi.acm.org/10.1145/291469.291476
http://doi.acm.org/10.1145/291469.291476
http://doi.acm.org/10.1145/1835449.1835518
http://doi.acm.org/10.1145/1181775.1181779
http://dx.doi.org/10.1109/TSE.2009.15
http://doi.acm.org/10.1145/1882362.1882435
http://doi.acm.org/10.1145/1953355.1953381
http://doi.acm.org/10.1145/1953355.1953381
http://doi.acm.org/10.1145/1321631.1321663
http://doi.acm.org/10.1145/1321631.1321663
http://doi.acm.org/10.1145/1985793.1985907

308 O. Barzilay et al.

[38] Treude, C., Filho, F.F., Cleary, B., Storey, M.A.: Programming in a socially
networked world: the evolution of the social programmer. In: FutureCSD ’12:
Proceedings of the CSCW Workshop on the Future of Collaborative Software
Development (2012)

[39] Treude, C., Storey, M.A.: Work item tagging: Communicating concerns in
collaborative software development. IEEE Trans. Softw. Eng. 38(1), 19–
34 (2012). DOI 10.1109/TSE.2010.91. URL http://dx.doi.org/10.1109/TSE.
2010.91

[40] Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting tf-idf term
weights as making relevance decisions. ACM Trans. Inf. Syst. 26, 13:1–
13:37 (2008). DOI http://doi.acm.org/10.1145/1361684.1361686. URL http://
doi.acm.org/10.1145/1361684.1361686

[41] Zagalsky, A., Barzilay, O., Yehudai, A.: Example overflow: Using social media
for code recommendation. In: Third International Workshop on Recommen-
dation Systems for Software Engineering (RSSE), pp. 38–42 (2012). DOI
10.1109/RSSE.2012.6233407

http://dx.doi.org/10.1109/TSE.
2010.91
http://doi.acm.org/10.1145/1361684.1361686
http://doi.acm.org/10.1145/1361684.1361686

	15 Facilitating Crowd Sourced Software Engineering via Stack Overflow
	15.1 Introduction
	15.2 Background and Related Work
	15.2.1 Social Media in Software Engineering
	15.2.2 Q&A Websites and Questions that SoftwareDevelopers Ask
	15.2.3 Example Centric Programming

	15.3 Social Design of Stack Overflow
	15.4 Stack Overflow in the Documentation Landscape
	15.4.1 Research Methodology
	15.4.2 Preliminary Findings
	15.4.2.1 Different Kinds of Questions
	15.4.2.2 Which Questions Are Answered and Which Are Not

	15.4.3 Discussion

	15.5 Example Embedding Using Stack Overflow
	15.5.1 Overview
	15.5.2 Example Overflow Implementation
	15.5.2.1 Populating the Repository
	15.5.2.2 Searching

	15.5.3 Discussion

	15.6 Impact and Future Work
	References

