
Effective Communication of Software Development
Knowledge Through Community Portals

Christoph Treude, Margaret-Anne Storey
Dept. of Computer Science, University of Victoria

ctreude@uvic.ca, mstorey@uvic.ca

ABSTRACT
Knowledge management plays an important role in many
software organizations. Knowledge can be captured and dis-
tributed using a variety of media, including traditional help
files and manuals, videos, technical articles, wikis, and blogs.
In recent years, web-based community portals have emerged
as an important mechanism for combining various commu-
nication channels. However, there is little advice on how
they can be effectively deployed in a software project.

In this paper, we present a first study of a community por-
tal used by a closed source software project. Using grounded
theory, we develop a model that characterizes documen-
tation artifacts along several dimensions, such as content
type, intended audience, feedback options, and review mech-
anisms. Our findings lead to actionable advice for indus-
try by articulating the benefits and possible shortcomings of
the various communication channels in a knowledge-sharing
portal. We conclude by suggesting future research on the
increasing adoption of community portals in software engi-
neering projects.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Documentation, Human Factors

Keywords
Community Portal, Knowledge, Documentation

1. INTRODUCTION AND MOTIVATION
Software development is knowledge-intensive [25], and the

effective management and exchange of knowledge is key
in every software organization. Knowledge is distributed
through various artifacts and media forms, from formal
documentation and technical articles, to blogs and wikis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

However, many organizations struggle with the effective ex-
change and dissemination of knowledge across the commu-
nity [15, 28].

Although various forms of documentation exist, software
projects encounter many knowledge management challenges
[9, 24]: How should knowledge be distributed? How should
knowledge be kept up to date? How should feedback be
solicited? How should knowledge be organized for easy ac-
cess? There is no roadmap for what kind of information is
best presented in a given artifact, and new forms of docu-
mentation, such as wikis and blogs, have evolved [20]. Unlike
more formal mechanisms, wikis and blogs are easy to create
and maintain. However, they do not offer the same author-
itativeness that comes with traditional documentation, and
they can become outdated and less concise over time [5].
While the informality of a wiki page or blog is sometimes
enough, users often expect reviewed technical articles.

One mechanism that has emerged recently and brings var-
ious communication channels together is the use of web or
community portals. Such portals are not just used in soft-
ware communities, but are essential to companies, such as
Amazon.com, eBay or TripAdvisor, where they enable the
development of communities around products. Similarly,
many of today’s software projects wish to solicit feedback
and input from a broader community of users, beta-testers,
and stakeholders. While several projects use community
portals, such as Microsoft’s MSDN1 or IBM’s Jazz2, the use
of portals for software development projects has not been
studied yet. It is unclear how portals can play an effective
role in software development, and how different communi-
cation channels and artifacts should be utilized.

This paper presents a first study of a successful software
project – IBM’s Rational Team Concert – and its use of a
community portal. Our methodology follows a grounded
theory approach, using data from 13 semi-structured in-
terviews with developers, ethnographic field notes gathered
during observations on-site, and quantitative data on the
content of the community portal. Based on our findings,
we develop a model of artifacts in a community portal that
characterizes the artifacts along different dimensions, such
as intended audience, content type, feedback options, and
review mechanisms. We provide actionable advice on how a
community portal can provide benefits to a software project,
and we discuss how the different channels and artifacts avail-
able in a portal can be used effectively. We also identify
the shortcomings of different artifacts, and suggest improve-

1http://msdn.microsoft.com/en-us/
2https://jazz.net/pub/index.jsp

91

ments to current tools and processes. With this research,
we aim to assist managers and developers in their decisions
about using community portals.

The remainder of this paper is structured as follows. Re-
lated work is summarized in Section 2. In Section 3, we
describe the community portal case study, and in Section
4, we introduce our methodology. In Section 5, we report
our findings and describe a knowledge artifact model. We
discuss our findings in Section 6, and we report limitations
of our work in Section 7. Section 8 concludes the paper and
outlines future work.

2. BACKGROUND AND RELATED WORK
We discuss three areas that are key to our research: knowl-

edge management, documentation in software development,
and the use of community portals to share information.

2.1 Knowledge in Software Development
Knowledge management has long been recognized as es-

sential to software development [14]. Rowley [26] defines
knowledge management as “concerned with the exploitation
and development of the knowledge assets of an organization
with a view to furthering the organization’s objectives. The
knowledge to be managed includes both explicit, documented
knowledge, and tacit, subjective knowledge.” How knowl-
edge is managed in an organization depends on the particu-
lar style of software development. Plan-based or traditional
methods usually rely on the management of explicit knowl-
edge, while Agile methods rely on the management of tacit
knowledge [22].

The number of studies on knowledge management in soft-
ware development projects is limited. An overview of knowl-
edge management in software engineering was conducted by
Rus et al. [27]. The focus of their review is on motivations for
knowledge management, different approaches to knowledge
management, and factors that are important when imple-
menting knowledge management strategies in companies.

Dingsøyr and Conradi [8] report on a literature survey
of the lessons learned on the actions taken by companies,
the effects and benefits of these actions, and descriptions
of the strategies for knowledge management. Bjørnson and
Dingsøyr [2] also identified the following main finding across
several papers: there is a need not to focus exclusively on
explicit knowledge but also on tacit knowledge.

Within knowledge management, the transfer of knowledge
is particularly challenging. As described by Komi-Sirviö et
al. [17], sharing knowledge is difficult in the light of short-
term goals and companies often fall back to needs-based
approaches for knowledge transfer. Knowledge transfer is
essential when integrating new developers into a team. In a
recent study using grounded theory, Dagenais et al. [4] iden-
tify early experimentation, internalization of structures and
cultures, and progress validation as the main factors for the
integration of newcomers. They also found that documen-
tation was often not helpful and outdated.

Our research focuses on the knowledge captured in a com-
munity portal and on how to present it effectively.

2.2 Documentation in Software Development
Documentation has long been prominent in the list of rec-

ommended software engineering practices [6]. In 1986, Par-
nas and Clements [23] described a design process in which
documentation plays a major role. They argue that many

developers regard documentation as a necessary evil, writ-
ten only as an afterthought to adhere to bureaucratic regu-
lations. Therefore, documentation ends up being incomplete
and inaccurate. Parnas and Clements identified four orga-
nizational issues that lead to those problems: poor organi-
zation of the documents which makes it harder to maintain
them, boring prose that leads to inattentive reading, con-
fusing and inconsistent terminology, and myopia caused by
authors who know the documented system too well to take
a comprehensive point of view.

In a survey of software professionals, Forward and Leth-
bridge [10] found that content, up-to-dateness, availability,
and the use of examples are the most important document
attributes. In a related study, Lethbridge et al. [19] ex-
plored how software engineers use and maintain documen-
tation. They found that most software engineers do not up-
date documentation in a timely manner, with the exception
being highly-structured, easily-maintained forms of docu-
mentation, such as test cases and in-line comments.

Kajko-Mattsson [15] reports on a study in which she found
poor documentation practices, even though her interviewees
understood the necessity of documentation. Her partici-
pants identified the lack of a detailed documentation model
as the main problem. Similar results were found in a study
by Visconti and Cook [28]. They discovered a maturity gap
between policies and the adherence to those policies.

Dagenais and Robillard [5] conducted a study to under-
stand how documentation in open source projects is created
and maintained. Among other findings, they report that
the use of wikis for documentation has several shortcom-
ings, such as a lack of authoritativeness, and that the use of
a separate documentation team results in naming inconsis-
tencies and out-of-date documentation.

Recent trends, such as agile documentation [1], suggest
that executable products should be preferred over static doc-
umentation. From the agile point-of-view, documentation
should be just good enough and it should only be updated
“when it hurts” [1]. The rationale behind this is that the fun-
damental issue is communication, not documentation, and
that comprehensive documentation does not ensure project
success. While the developers in our study did not use agile
documentation, only some of the documentation was for-
mally organized, whereas other parts of the community por-
tal evolved without strict rules.

2.3 Research on Community Portals
Community portals have become a platform used by on-

line communities for the dissemination of information on
the Web [13]. Members of a community can find relevant
information on portals and can often contribute their own
content. These community portals attract a disproportion-
ately large amount of web traffic and engage visitors with
free content [7]. Kondatova and Goldfarb [18] identify three
objectives of such portals and the communities surrounding
them: to supply content to users, to encourage members
to contribute, and to facilitate communication and interac-
tion. Portals aim to meet these objectives by offering var-
ious forums, wikis, mailing lists, and other communication
mechanisms [18]. As Millen [21] points out, the archive of
conversation in an online community is often a valuable in-
formation resource.

To date, research on community portals has focused on
areas such as education and e-Government. Katz [16] exam-

92

ines how the use of portals allows educational institutions to
integrate information and services used by their communi-
ties, and aims to guide institutions in their decisions about
using portals. Gant and Gant [12] found the responsibili-
ties of simultaneously providing breadth and depth in online
content to be a challenge for governments using portals.

As mentioned earlier, the use of community portals by
software development projects has not been studied yet.
Several open source projects, such as Eclipse3, PHP4 or the
Apache HTTP Server5, offer portals that bring together a
variety of artifacts, such as bug trackers, mailing lists, fo-
rums, wikis, and events. More recently, commercial prod-
ucts, such as Microsoft’s Visual Studio or IBM’s Jazz, have
started using community portals. For example, the MSDN
portal6 features a library with API references, code samples
and tutorials, a learning section, forums, and a blog. Next,
we describe the IBM Jazz community portal in more detail.

3. THE COMMUNITY PORTAL
IBM’s Jazz is a technology platform for collaborative soft-

ware delivery and the development of products on top of the
platform is made transparent through the community portal
jazz.net. The first product developed on the Jazz platform
is Rational Team Concert (RTC), a software development
team collaboration tool that was first released in 2008. Re-
cent additions to the Jazz platform include products such as
Rational Insight and Rational Build Forge. In our study, we
focus on RTC as it is the most mature of the Jazz products.

Jazz.net hosts the entire development process including
work items, developer mailing lists, the development wiki,
forums, the team blog, and a library. The library features
technical articles, podcasts, presentations, videos, and of-
ficial product documentation, with tags organizing all arti-
facts in the library. All artifacts on jazz.net contain informa-
tion that indicates their associated product, with some ar-
tifacts belonging to more than one product. Figure 1 shows
a screenshot of one of the portal pages. All content is acces-
sible to users after a free registration.

Figure 1: The IBM Jazz community portal

Technical articles are written by developers and product
experts, and explore tasks, use cases, solutions, and con-
cepts in depth. Podcasts stem from various sources, includ-
ing news and updates about Jazz products, and often feature
Jazz developers and managers. The presentations have been
given by developers and product managers at conferences,

3http://www.eclipse.org/
4http://www.php.net/
5http://httpd.apache.org/
6http://msdn.microsoft.com/en-us/

or they are simply informational. Videos are produced by
Jazz developers or experts, and typically demonstrate the
use of Jazz products or introduce enhancements. The offi-
cial product documentation consists of HTML content that
is part of the product releases. The content is produced by a
separate documentation team and is also accessible through
the product help menus. Table 1 shows the different RTC-
related artifacts that were available on jazz.net at the time
of our study. Developers started to contribute to the com-
munity portal in the summer of 2007.

Table 1: RTC-related artifacts on jazz.net
type amount
forum 8,413 threads
wiki 3,334 pages
mailing list 3,292 messages
blog 77 posts
official product documentation 4 manuals
library 93 articles

58 videos
30 presentations

7 podcasts

4. RESEARCH METHODOLOGY
Here, we outline the research methodology used to under-

stand how software developer knowledge is communicated
through the Jazz portal. We cover the setting of our study,
as well as the data collection and analysis methods used.

4.1 Research Setting
Our study took place with the development team of Ra-

tional Team Concert at IBM in the summer of 2010. The
team consists of approximately 150 contributors in about 30
functional teams, with some teams acting as sub-teams of
larger teams, and with many contributors assigned to multi-
ple teams. The team members are located at approximately
15 locations, primarily in North America and Europe. The
development follows the “Eclipse Way” development process
[11]. Created by the Eclipse Development team, this process
is an agile, iteration-based process with a focus on consis-
tent, on-time delivery of software through continuous inte-
gration, testing, and incremental planning.

4.2 Data Collection
Our methodology followed a mixed methods approach,

collecting both quantitative and qualitative data to allow for
triangulation. To gather quantitative data on jazz.net, we
used web scraping to download the artifacts shown in Table
1, along with their tags. At the time of our data extraction,
the RTC team was working on milestones towards the 3.0
release. The quantitative data was collected to gain initial
insights into the kinds of artifacts available on the commu-
nity portal. These insights were used to guide our qualitative
data collection that was done through a series of 13 semi-
structured interviews. Seven interviews were conducted in
person at an IBM location, and the remaining six interviews
were conducted by phone. We interviewed five developers,
four component leads, the RTC development manager, the
RTC project administrator, and two client developers that
work on Jazz-related projects inside IBM. For the remainder

93

of this paper, we use D1 to D5 to refer to the developers, L1
to L4 to refer to the component leads, M1 and M2 to refer
to the individuals with project-wide tasks, and C1 and C2
to refer to the client developers.

The initial interview script contained about 40 questions
on participants’ use of jazz.net7. As expected with grounded
theory, new questions emerged which led us to refine the in-
terview questions used during the course of the study. We
asked our interviewees how they learn about Jazz function-
alities, what kind of questions they ask using jazz.net, and
how they use the published artifacts. We also investigated
whether they had ever contributed content, and if so, who
or what had triggered that contribution. We asked if there
were perceived gaps in the documentation, and about po-
tential tool and process enhancements. We used follow-up
questions for clarifications and additional details, trying to
understand the scenarios that had led to the creation and
use of different artifacts. In addition, one of our researchers
spent three months on-site, frequently engaging in informal
discussions with developers regarding their use of jazz.net,
and facilitating the member checking of our findings. These
observations were recorded using ethnographic field notes
and allowed for insights into the internal processes that were
not revealed in interviews, in particular the processes that
would ultimately lead to the creation of new artifacts.

4.3 Data Analysis
Our data analysis followed the grounded theory approach

as described by Corbin and Strauss [3]. Grounded theory
implies that data collection and analysis are interrelated
processes, and that concepts are the basic units of analysis.
These concepts are obtained using“open coding” in which the
collected data is conceptualized line by line and concepts are
only created when they are present repeatedly. We applied
open coding to the transcripts of our interviews, to the data
downloaded from jazz.net, and to the field notes collected
on site. Based on the concepts, more abstract categories are
developed and related. Each category is developed in terms
of its properties, dimensions, conditions, and consequences.
In the next step, called “axial coding”, data is put together
in new ways, thus making explicit connections between cat-
egories and sub-categories. Sampling in grounded theory is
done on theoretical grounds where incidents and events are
sampled rather than subjects or data sources. In the final
step of “selective coding”, the core category is identified and
systematically related to other categories. Since all findings
in a grounded theory study are linked to specific evidence,
we are able to attribute all the findings we reported to inter-
view quotes, field notes, or specific content on jazz.net. We
considered all quantitative and qualitative data collected in
our study during the analysis.

5. MODEL OF KNOWLEDGE ARTIFACTS
The “core category” identified in our grounded theory

study is a set of key characteristics of different artifacts in
a community portal. We can distinguish the artifacts along
eight different dimensions that emerged from the axial and
selective coding as part of our data analysis. The dimensions
underline the particular role of each artifact.

7The set of questions used in the interviews is available on-
line at http://tinyurl.com/jazz-net.

Content: the type of content typically presented in the
artifact.

Audience: the audience for which the artifact is intended.
Trigger: the motivation that triggers the creation of a new

artifact.
Collaboration: the extent of collaboration during the cre-

ation of a new artifact.
Review: the extent to which new artifacts are reviewed

before publication.
Feedback: the extent to which readers can give feedback.
Fanfare: the amount of fanfare with which a new artifact

is released.
Time Sensitivity: the time sensitivity of information in

the artifact.
For the official product documentation, technical articles,
blog posts, and the developer wiki, we analyzed these di-
mensions in detail. Figures 2 and 3 summarize the findings
and show an example for each kind of artifact. We focus
on these particular kinds of artifacts because they are also
common in other community portals and in software devel-
opment in general. The findings can be traced back to quotes
from the interviews we conducted, and the interviewees are
noted in the figures and text using subscript. Where rele-
vant, we also discuss the artifacts and the ethnographic field
notes that we analyzed related to the dimensions. The fol-
lowing sections report on each of the dimensions in detail. In
addition, Section 5.9 highlights several explicit and implicit
connections between the artifacts.

5.1 What content is communicated?
Content is the first dimension along which the different

artifacts of the community portal can be distinguished. The
official product documentation is based on features and
does not cover scenarios: “I would try to cover all the corner
cases, and I found those were often omitted in the help doc
because the effort to get into those corner cases were lengthy
things. You would have to have a whole section of how to put
yourself into a corner, and then a whole other section of how
to get yourself out of this corner.”D5 However, documenting
scenarios is important: “It’s always good to document a wid-
get, but it’s more important in many cases to document a
process and being able to follow the process of how you do
an upgrade or how you do a plan and all the widgets that
you touch during that. [...] It’s the context of how you use
the widget that’s much more important.”C2

This need is addressed by technical articles that feature
scenarios and offer more depth than the official documenta-
tion. D4 described the reason to write an article: “Because I
wanted to put in a lot of screenshots, and also explain what’s
happening. [...] You had to write some text around it. Why
you’re doing something and why is that needed.” Technical
articles also differ in their style of writing: “Articles spice it
up a little. There’s more pictures and more personal I guess.
People have their own style.”D1

Tags also shed light on the content of different kinds of
artifacts. The tags are assigned by a single personL3. Table
2 shows the most-used tags per type. Videos are typically
used for high-level overviews or demosL3,D2, whereas pre-
sentations are related to conferences.

Blogs add a personal note to the artifacts on the com-
munity portal: “a personal view on something and not re-
ally documentation. [...] You want to make people aware
of something or tell them about something, but more like a

94

Figure 2: Model of Artifacts in a Community Portal—Findings for Product Documentation and Articles

Table 2: Most-used tags in jazz.net library by type
type top two tags
article agile (15), getting started (15)
video how-to (12), introduction (7)
presentation RSC 2009 (9), agile (5)
podcast agile (3), scrum (2)
official doc help (4)

teaser, you can go somewhere else to find the actual docu-
mentation. It’s more like you write about something new and
cool and what you think about it.”L1 Therefore, the blog also
plays a role in marketingL4,D3,C1. The most commonly-
used tags on blog posts are rational-team-concert (26 posts),
video (13 posts), self-hosting (12 posts), and conference (11

posts). Most blog posts are related to RTC and provide
a conference report or give a view on the Jazz team’s self-
hosting experience.

The developer wiki plays many roles in the internal devel-
opment processes, ranging from planning to descriptions
of scenarios, detailed instructions or lists of references
to other resources. Occasionally, wiki content goes beyond
supporting development processes: “He’s written some really
good wiki topics. The material there is really going beyond
what we typically have in the wiki and really should be as
help or as articles.”L2

5.2 Which audience is reached?
A community portal caters to a diverse audience: “A good

percentage of our community are internal IBMers, business
partners, students, academics as well as customers.”L3 From
a documentation point of view, the distinction of end users

95

Figure 3: Model of Artifacts in a Community Portal—Findings for Blog Posts and Developer Wiki

and client developers is particularly interesting: “There’s
two kinds of customers. We have customers who are using
the product and trying to do something, and then we have
third party developers. And third party developers are – for
them to see the wiki makes sense, because we have instruc-
tions on how to make stuff.”D3 In addition, some commu-
nication with customers is done outside of the community
portal for confidentiality reasonsL2.

The intended audience of the official product documen-
tation, technical articles, and the blog is outside of the
development team. The intended audience for wiki pages
is more difficult to determine, and some of the developers
have contradicting views on the role of the wiki: “For the
wiki it’s developers [...] that I actually have on my [chat] list
or where I can put a name to a face.”D5 However, customers
are occasionally pointed to wiki pages: “We also point cus-
tomers to wiki pages. But wiki pages are typically [more]

interesting for development teams. It’s not as polished usu-
ally as articles and probably also not as maintained.”L1 For
customers, it is important to distinguish between official and
informal wiki content: “I’m not sure if customers should be
taking that [wiki page] and making plans, planning their day
on that.”D5 However, outdated wiki content is of concern:
“Once or twice I’ve had customers say I’m trying to do stuff
from the design document. And it’s structured as instruc-
tions which is dangerous because they’re not correct.”D3

5.3 What triggers the production of new arti-
facts?

There are no formal conventions as to what knowledge
should be externalized in technical articles, blog posts, or
wiki pages: “We haven’t gotten to the point where we’ve had
to dictate how often certain articles are developed. The con-
tent has flown fairly actively, especially with videos. People

96

are getting in the habit of delivering release videos at each
release with demos and how-to articles. So so far it’s been
able to happen organically.”L3 Articles are not written sys-
tematically but ad hocD3,D4, and without a formal process
to trigger articles on certain topics, choosing the right things
to document is subjective: “The features we choose to work
on, they’re chosen in an ad hoc manner and we do the same
thing with our documentation.”D3 Initially, contributions to
the blog were organized: “When we first started doing it,
a [...] bunch of us were pulled together and were asked to
contribute.”L4 However, blog posts now occur in an ad hoc
manner as well, and over the last three years, there have
been 43 different blog authors.

In the following paragraphs, we discuss common motiva-
tions for producing content that emerged from our study:
user questions, organized efforts, self-promotion, and sup-
port of development work.

Knowledge is externalized in the form of articles and
blog posts when users repeatedly ask the same ques-
tionM1,M2,L1,L2,D3,D5, or when developers expect many
questions on a subject: “Because we have a feeling that there
will be so many users that have the same questions that it
will be more beneficial to sit down, write the article once.”D5

Questions arise from the forumM2, they are reported back
from customer representativesL3, they come from feedback
to other parts of the documentationD4, or they come by
email: “I try and take every email conversation that I end
up having and put it into an article.”M2 The motivation for
creating wiki pages is similar: “I wanted not to be the sole
source of this information. I wanted them to have a place
that they could go and look and refer back to.”D2

Some of the articles are the result of organized ef-
forts among developers: “There are efforts internally where
groups of people get together and say, what’s missing? [...]
What are the customers asking for? We need this article or
that article. [...] Some of the articles come up that way,
and then other articles just happen organically as the team
decides [...] they want to write an article on a particular
topic.”L3 Several of our interviewees reported that they had
prompted articles from other individualsM2,L3 or that arti-
cles had been delegated to themL1,D1,D3,D4,D5.

Technical articles and blog posts are also written by devel-
opers who want to promote a feature they authoredL1,D3

or who want to promote themselves: “Part of my thought
is also, when I put my name on something, if and when I
ever want to be interviewed for something, I want it to be on
my resume.”D3 D1 had a similar motivation for his article:
“’Cause I wrote it I want to get exposure.”

The externalization of knowledge to the wiki mainly hap-
pens to support development work, either for an initial
“brain dump”D5, as a central entity for resourcesD1, to facil-
itate a discussionM1,D5, or to “stage something that needs to
be formalized”D5. L4 explains: “It becomes kind of an open
email if you will, to evolve an idea.”

5.4 To what extent is content produced collab-
oratively?

Artifacts on a community portal also differ in the amount
of collaboration that happens around them. The official
product documentation is written by a separate documen-
tation team, a process which involves a certain amount of
interaction with the core developersD5. Authoring techni-
cal articles, blog posts, and wiki pages is usually a solo ef-

fort, and only involves other individuals for reviews. For se-
lected wiki pages such as descriptions of parts of the system
architecture, the amount of collaboration can be higher:
“There’s one wiki page that we have on how to set up the
development environment [...] and this is something where
anybody can add information, and actually also does.”L1

The author information on articles is another indicator of
collaborative content. Out of 93 technical articles, 35 have
1 author associated with them, 9 articles have 2 authors,
2 articles have 3 authors, and 1 article has 5 authors. An
additional 34 articles have at least 1 team name as author,
and 12 articles do not have any author information.

5.5 To what extent is content reviewed before
publication?

Since the official product documentation is part of the
product release, it has to undergo a formal review process
in which content is reviewed by technical writers as well as
by the product teams of the documented components. “They
go through a pretty rigorous process of producing that con-
tent working with the various teams that provide the features.
[...] So the quality of it is very good.”M1 The official product
documentation has commitment from the developers and it
is also the only artifact that is translated into other lan-
guages. Such a process is not transferable to all kinds of
artifacts as it requires a lot of resources and therefore only
happens once for every major release.

Technical articles are less formal. While there are inter-
nal reviews before content is posted online, the style is more
personal: “The articles tend to be an easy read, they’re more
down to earth and personal and not like you learn at school
how they have to be formal and very professional and im-
personal.”D1 Blog posts have to undergo a similar internal
review process where one individual on the team proof-reads
content before it is posted online. Initially, there was some
guidance on blogging: “When we first started writing blogs
for jazz.net, someone who had been a blogger [...] before
that, he basically gave us guidance in the Jazz sphere. He
said read these guidelines before you write blogs.”L4

Wikis are the least formal of the artifacts and are
rarely reviewed. However, contributors are aware that the
wiki is open to the public and some of the wiki content,
such as details of new features, has to be coordinated with
managementM1. The lack of review often leads to inconsis-
tencies on the wiki: “There’s pages that I think they’re just
sitting there, there’s just certain people who know about that
– they’re just often in their own little world.”D2

5.6 To what extent can readers give feedback?
Feedback is another dimension that distinguishes the dif-

ferent kinds of artifacts on a community portal. While the
official documentation does not allow for feedback, and the
developer wiki is read-only for everybody outside the core
developer team, a feedback section has recently been im-
plemented for technical articles, podcasts, and other items
in the library. 40 of the 58 videos on jazz.net are hosted on
YouTube, which provides view counts (considered as implicit
feedback) and allows comments. At the time of our study,
the videos had a median of 1,074 views, ranging from 188 to
17,1578. Only 7 videos had comments, with a maximum of
2 comments per video.

8An introductory video for RTC, available online at
http://www.youtube.com/watch?v=ILvsGQQqAF0.

97

Blog posts invite interaction with a commenting feature.
At the time of our study, there was a total of 183 comments
on 77 blog posts. 28 blog posts had no comments, 15 blog
posts had 1 comment, and 7 posts had 2 comments. 27 posts
had 3 comments or more, with a maximum of 12 comments
per post. Blog posts with a lot of comments are typically
product announcements or discussions of new functionality.

Community members can also vote on blog posts. At
the time of our study, 446 votes had been cast. The most
voted-for post had 22 votes, and only 4 out of the 77 posts
had not received any votes. On average, articles received
4.6 stars out of 5, and only 6 articles received less than 4
stars. A recent addition is the option to “like” posts using
Facebook Connect, and 4 out of the 10 newest posts had
already received more than 10 likes at the time of our study.
While the web traffic9 for artifacts, such as technical articles
in the library, is monitored as well, pure numbers do not
allow conclusions about the usefulness of the contentL3.

Feedback is often generic: “I got a thumbs up, like good
thing to do, but not any specific critique on my writing. More
like, that’s a good thing to do, keep doing that.”D2 Some de-
velopers even go out of their way to search for feedback:
“There’s no feedback and I don’t really know what’s hap-
pened, I don’t know if people read [the article]. [...] Then
by searching just to see how exposed it was, I found a few
forum discussions on jazz.net [about the article].”D1

While the forum and the article comment feature were
designed for users to give feedbackL3,D4, feedback comes
through different channelsL1,L4,D3. Questions about content
on jazz.net are mostly asked through direct communication
channels, such as chatL1,D5 or emailM2,L2. The customers
often work within IBM and therefore have access to the in-
ternal instant messaging systemL1,C1.

Developers are aware that putting their name on artifacts
can lead to many questionsD3 or spamD4. “Usually once
you have documented something that people are using, then
they come back to you directly with questions.”L1 During our
ethnographic observations, we also encountered an instance
of a developer deciding not to write an article because they
anticipated a high workload due to questions and feedback.

5.7 With how much fanfare are new artifacts
released?

Artifacts also differ in the fanfare with which they are re-
leased and in the number of people that are aware of a new
artifact after its creation. While the official product doc-
umentation is released alongside the products once a year,
blog posts have a higher impact than articles. “Articles are
a little bit quieter.”L4 This is confirmed by developers who
are not aware of new articlesM1 or only read articles when
promptedL2. Other developers follow the JazzDotNet twit-
ter account to learn about new articlesC1, or they check the
feed on the front page of the portalD1. New or changed wiki
pages have the lowest amount of fanfare as the wiki imple-
mentation used by this group does not offer notifications.

5.8 How time sensitive is the information?
Some artifacts are more time sensitive than others.

The official product documentation gets outdated quickly,
mainly because it is only updated once a year (see Table 1).
Technical articles are less time sensitive due to the nature of
the topics: “I think the topics are usually chosen so that they

9Data on web traffic was not made available to us.

stay valid for a longer time. [...] An article that describes
for example customization of a work item, these are longer
lived features that we do not break as easily.”L1 For articles,
knowing which release they belong to is important: “We try
to mark every article as relevant to a particular release.”L3

For articles and blog posts, the writing process takes a
few daysL4,D3,D5, and there is more flexibility on when they
are published: “Sometimes we write articles after the fact.
So we didn’t get time, we delivered the feature late or some-
thing, or we didn’t get to document it in time for the release,
so then we say OK, we’re going to write an article.”M1 De-
velopers also choose to write articles after the code freeze
point at the end of a release cycleD3. However, the review
process can lead to publishing delays: “I’ve had experiences
in the past where I want to get something out in timely way
but because of the review it doesn’t necessarily get there.”L4

Technical articles, blog posts, and wiki pages contain
tools to update content, but most authors in our study
have never updated their articlesL1,D1,D3. Since the web-
site is hosted by a specific team, developers were unsure
what the article change process would be after the initial
publicationD1. In other cases, developers passed on the own-
ership of an article before they switched teams to make sure
updates would happen: “For the second release of the prod-
uct, one of my team members here updated the article. [...]
He took ownership.”D4 Blog posts are more time sensitive
than articles, but only one of the developers in our study
had made updates to a blog postM2. This is because blogs
express personal views and usually do not feature technical
detailsL1,L3,C1.

In contrast, wiki pages are quick and easy to create and
modify: “I think the wiki is good ’cause it can be sort of fast
and loose for getting content out there and the articles tend
to be more reviewed, and they’re also harder to change af-
ter the fact.”L2 There is no formal process outlining when
wiki pages should change, and some developers only update
their wiki pages if they are reminded by somebody elseM2,D3

or if they happen to see that something is wrongD1. Up-
dates are usually done to describe new featuresM2, to an-
swer questionsL2, or to reorganize a few pagesL2. Wiki pages
aimed at customers are kept currentL2 and the index is also
kept up to dateM2.

Readers cannot expect all wiki pages to be up to date:
“If it’s incorrect I would say, it’s a wiki, you can’t expect
that to be correct.”D5 A wiki page implicitly conveys the
uncertainty of its content: “It helps us to communicate to
customers that it’s actually not done yet.”M1 As observed by
many of our interviewees, wiki pages can have stale content:
“We write a topic on something and then we walk away from
it, we just ignore it.”D3

5.9 Artifact Connections
Artifacts on a community portal, with all their character-

istics as shown in Figures 2 and 3, cannot be treated sep-
arately. There are several explicit and implicit connections
between them. For example, content or structure can be
reused from different artifacts. The structure for an article
can come from a wiki pageD5, a blog post can be distilled
from wiki pagesL4, wiki pages can draw content from forum
postsL2, and forum posts can be referenced in work itemsD1.

Several wiki pages have the potential to be turned into
technical articles or blog posts, but that does not happen
often: “If we had something that we were formulating on

98

the wiki and we’re getting feedback and so forth and we’re
altering it over time – once we have decided that it’s final,
we could basically copy and paste all the stuff and put it in
a better looking web page. An article possibly, depending on
what it is, or some official document. I can’t actually think
of specific cases where it has [happened]. [...] We tend to
leave a lot of the stuff [on the wiki].”M1 Another example is
an article created by L4: “[I added] an article that basically
has no content just a description and a link to our wiki [...]
using all the keywords that make sense to find it. And that
way when somebody goes in looking for this information, [...]
we point them into the wiki, which isn’t ideal but it does
surface the content.”

Relationships between artifacts also exist from a client
developer’s perspective. C2 describes using the wiki and
technical articles as his first place to go for questions, and
posting to the forum if he cannot locate an answer: “That’s
the fallback. And if I don’t get a response in the forum I
actually will post a defect or an enhancement.”

6. DISCUSSION
One of the goals of our research is to provide advice to

managers and developers on how to effectively use a com-
munity portal. In this section, we present advice on the
findings from our case study of a successful software project
that leverages a community portal.

Make content available, but clearly distinguish differ-
ent media forms.

One major advantage of a community portal is the acces-
sibility of all artifacts: “Because it’s actually just as likely
that an answer for a question is going to be in a forum or in
a mailing list as is it going to be in a wiki.”C2 Even though
not all content is produced with the intent to contribute to
documentation, it can help developers inside and outside of
the team to understand a system.

However, wiki pages that are created to support develop-
ment work and that are often not as well structured as other
documentation sources on the community portal should be
flagged as draft material. This distinction is currently not
always clear: “So people do have confusion about what’s real
and what’s – what’s been approved versus just draft.”M2 In-
dividuals from outside the core development team find it
difficult to navigate the wikiC2 and they encounter stale
contentC1. The lack of structure is also a concern for de-
velopers on the teamD2,D3.

Clearly distinguishing different media forms is also a chal-
lenge for search interfaces: “If you do a search, you’re con-
fronted with a blend of all the media and different types of
it.”C1 Jazz.net offers a main search interface that searches
the entire content of the community portal, as well as
specific searches for the wiki, the library, and the fo-
rum. Most of our interviewees found the current search to
be insufficientL1,L2,L3,D2,D3,D4,C1,C2. As an alternative to
search, the wiki index page is kept up to dateL2 and tags
are used on artifacts in the library.

Make it easier to move content into more formal media
formats.

Different media forms in community portals are often dis-
connected. Content is rarely transferred from informal wiki
pages into more formal articles or into the official prod-

uct documentation. Instead, developers create workarounds,
such as articles, that point to a wiki pageL4. Often, good
content is never published beyond wiki pages because devel-
opers lack the time to push for a new article or blog postL2.
Resources are wasted by replicating information that already
exists in other parts of the community portal. Part of the
problem is the use of a separate documentation team for
producing the official product documentation. With the
plethora of information on a community portal, the first
step when writing a new piece of documentation should be
to check if related content already exists.

Be aware of the implications of different media arti-
facts and channels.

As we have shown with the model of knowledge artifacts
in a community portal, different media artifacts and chan-
nels have different implications (see Figures 2 and 3). To
ensure the effective exchange and dissemination of knowl-
edge, developers and managers need to be aware of these
implications:

• Content in wiki pages is often stale. Therefore, read-
ers will not look at the wiki for reliable information,
but rather use it as a backup option if information is
not available elsewhere. To communicate important
information to the community, articles and blog posts
are better suited.

• The official product documentation is reviewed
rigorously. With that in mind, it can serve as the most
reliable way to communicate knowledge in a commu-
nity portal.

• When content is produced by a separate documenta-
tion team, updates may not be feasible. In such a
case, information may become outdated quickly and
can only be fixed with a new product release. Conse-
quently, an update process for articles may be needed.

• In this project, new blog posts created more “buzz” or
fanfare than articles or wiki pages. Thus, if there is
a need to make a project’s community aware of some-
thing, a blog post may be the best-suited medium.

• Writing can be time consuming, in particular for
technical articles and blog posts. In addition, those
media forms may need to undergo a review process.
To get content out quickly, the wiki may be the best
solution. However, readers may only find wiki pages if
they are pointed to them explicitly.

• To solicit feedback from readers, articles and blog
posts typically offer more comment functionality
than the official product documentation or the wiki.

Offer developers a medium with a low entry barrier for
fast externalization of knowledge.

Developers often prefer to externalize their knowledge
in the form of wiki pages because wikis are easy to add
toL2,D1,D3. To encourage documentation, it is important
that developers have such a medium at hand where they
can externalize knowledge without having to worry about
the correctness of content or whether customers will under-
stand the entire context. While it makes sense to have offi-
cial documentation artifacts, such as articles or blog posts,

99

undergo a review cycle, developers also need a platform for
producing content with a lower entry barrier.

Involve the community in a project’s documentation.
Unlike other forms of documentation, community portals

allow for community involvement. While the number of doc-
umentation contributors outside the development team is
still limitedM1,D1, there have been successful instances: “I
got someone [...] who had been asking me a lot of questions
and I said, well, you write an article. I had a draft ready,
but that was still a skeleton and I said, here’s a draft, go
write your own style to it. It took a while, [...] but he ended
up taking all the screenshots, taking my text and doing stuff
and I just reviewed it.”M2 In particular, articles on topics
such as best practices could be written by client developers
and end usersM1. Such contributions could even be encour-
aged with incentives as they provide considerable value to
the community portalM1. Review processes would have to
be in place to ensure quality. However, giving write access
to community members is not realistic for all content, and
in particular, not for the wiki. Other ways to increase com-
munity involvement could involve more options for mark-
ing up and commenting on content. In general, the entry
barrier for community members to contribute to the docu-
mentation could be loweredD3 by making the process more
obvious and by offering easily-accessed web forms for contri-
butions. Recent additions to jazz.net, such as commenting
and voting features for library content, are steps in the right
directionL3, but more could be done to increase community
involvement.

Provide readers with an option to give feedback.
Feedback on documentation often comes through direct

communication channels. Readers try to contact the con-
tent author via email or chat rather than ask questions on
the forum. While this was not intended, it underlines the
importance of the social aspect of documentation. Read-
ers want to know who authored certain content and they
want to be able to contact those individuals. However, with
different systems for blog, technical articles, official prod-
uct documentation, and the wiki, it is difficult to locate all
contributions of a single individual.

Our study has also shown that readers take advantage of
lightweight ways to give feedback, such as rating of content
or “liking” artifacts using Facebook Connect. These mecha-
nisms have the potential to involve more readers and gather
feedback on the quality and usefulness of content. In ad-
dition, implicit feedback, such as view counts, should be
attended to.

7. LIMITATIONS
As with any research methodology, there are limitations

with our choice of research methods. The first limitation
of our study lies in the number of interviewees. How-
ever, we triangulated data from the interviews with artifact
data from the community portal and with ethnographic field
notes gathered during the three months spent on site with
RTC developers. Also, the interviewees had different back-
grounds, from managers to relatively new team members.
We focused on the authors instead of the readers in this
study to understand their use of the portal. Investigating
the reader’s perspective will be future work.

While the documentation landscape for RTC was fairly
stable at the time of our study, new projects, such as Ratio-
nal Insight, had been added to jazz.net shortly before our
study. We focused our study on RTC as the mature part of
jazz.net, but we cannot rule out that other projects might
have influenced our findings.

Our conclusions are limited to the jazz.net portal commu-
nity. However, Jazz is one of the first platforms that opened
up its development process to the community without being
open source, and therefore provides a unique case between
open source and traditional closed source projects. Also,
we focus on blogs, wikis, official product documentation,
and technical articles in our study. All of these artifacts
are widely used in different contexts to document software.
Other community portals should be studied to gain further
insights into their role in software development.

8. CONCLUSIONS AND FUTURE WORK
Community portals for software projects facilitate the ex-

change and dissemination of knowledge through many differ-
ent kinds of artifacts. In this first case study of a software
project community portal, we found that RTC developers
need different channels, such as blog posts, wiki pages, tech-
nical articles and the official product documentation, to ex-
ternalize different kinds of knowledge. Each of these artifacts
play a role in capturing knowledge that can help users, client
developers, and team members understand a system. Devel-
opers often externalize knowledge without being prompted
by formal processes. They respond to questions, promote
their part of the system or themselves, support development
processes, or contribute through organized efforts.

Unlike traditional forms of documentation, community
portals have the potential to involve a community composed
of client developers and end users in the process of external-
izing developer knowledge. Our study of jazz.net has shown
first evidence of such involvement, and it has also highlighted
areas where tools and processes could be improved to en-
courage more participation.

Recent feature additions, such as mechanisms to “like” ar-
ticles, to vote on blog posts and articles, and to comment
on parts of the documentation, are further steps towards in-
volving external individuals in the process of documenting
software. Further studies will have to be conducted to under-
stand the effects of such mechanisms. In addition, we need
to consider the customer’s perspective on the role of com-
munity portals, and we need to examine other community
portals to fully understand how the burden of documenta-
tion can be lessened by sharing it among a larger group of
contributors with different roles and responsibilities.

We expect the role of community portals to increase in
both open source and closed source projects. The findings
from our study and from future studies will help improve
how they are used to support communication and collabo-
ration in software engineering projects.

Acknowledgments
We wish to thank the team that granted us access to their
repositories and conducted interviews with us. This research
is supported by a fellowship from IBM. We also appreciate
suggestions from Gargi Bougie and Nancy Songtaweesin as
well as the logistical support and editing by Cassandra Pe-
trachenko.

100

9. REFERENCES
[1] S. W. Ambler. Agile/lean documentation: Strategies

for agile software development.
http://www.agilemodeling.com/essays/
agileDocumentation.htm, accessed in March 2011.

[2] F. Bjørnson and T. Dingsøyr. Knowledge management
in software engineering: A systematic review of
studied concepts, findings and research methods used.
Information and Software Technology,
50(11):1055–1068, 2008.

[3] J. M. Corbin and A. Strauss. Grounded theory
research: Procedures, canons, and evaluative criteria.
Qualitative Sociology, 13(1):3–21, 1998.

[4] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P.
Robillard, and J. P. de Vries. Moving into a new
software project landscape. In ICSE ’10: Proc. of the
32nd Intl. Conf. on Software Engineering, pages
275–284, New York, NY, USA, 2010. ACM.

[5] B. Dagenais and M. P. Robillard. Creating and
evolving developer documentation: understanding the
decisions of open source contributors. In FSE ’10:
Proc. of the 18th Intl. Symp. on Foundations of
software engineering, pages 127–136, New York, NY,
USA, 2010. ACM.

[6] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira.
A study of the documentation essential to software
maintenance. In SIGDOC ’05: Proc. of the 23rd
Intl. Conf. on Design of communication, pages 68–75,
New York, NY, USA, 2005. ACM.

[7] R. M. Dewan, M. L. Freimer, A. Seidmann, and
J. Zhang. Web portals: Evidence and analysis of
media concentration. J. Manage. Inf. Syst.,
21:181–199, October 2004.

[8] T. Dingsøyr and R. Conradi. A survey of case studies
of the use of knowledge management in software
engineering. Intl. Journal of Software Engineering and
Knowledge Engineering, 12(4):391–414, 2002.

[9] B. Fluri, M. Würsch, E. Giger, and H. C. Gall.
Analyzing the co-evolution of comments and source
code. Software Quality Control, 17(4):367–394, 2009.

[10] A. Forward and T. C. Lethbridge. The relevance of
software documentation, tools and technologies: a
survey. In DocEng ’02: Proc. of the Symp. on
Document engineering, pages 26–33, New York, NY,
USA, 2002. ACM.

[11] R. Frost. Jazz and the eclipse way of collaboration.
IEEE Softw., 24(6):114–117, 2007.

[12] J. Gant and D. Gant. Web portal functionality and
state government e-service. In Proc. of the 35th
Annual Hawaii Intl. Conf. on System Sciences, pages
1627–1636, 2002.

[13] S. Grzonkowski, A. Gzella, S. R. Kruk, J. G. Breslin,
T. Woroniecki, and J. Dobrzanski. Sharing
information across community portals with foafrealm.
Int. J. Web Based Communities, 5:351–370, 2009.

[14] J. D. Herbsleb and D. Moitra. Guest editors’
introduction: Global software development. IEEE
Softw., 18(2):16–20, 2001.

[15] M. Kajko-Mattsson. A survey of documentation
practice within corrective maintenance. Empirical
Softw. Eng., 10(1):31–55, 2005.

[16] R. N. Katz. Promise and Peril of Portal Technologies
in Higher Education. John Wiley & Sons, Inc., New
York, NY, USA, 2002.

[17] S. Komi-Sirviö, A. Mäntyniemi, and V. Seppänen.
Toward a practical solution for capturing knowledge
for software projects. IEEE Softw., 19(3):60–62, 2002.

[18] I. Kondratova and I. Goldfarb. Design concepts for
virtual research and collaborative environments. In
Proc. of the 10th ISPE Intl. Conf. on Concurrent
Engineering, pages 797–803, The Netherlands, 2003.
A. A. Balkema Publishers.

[19] T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of
the practice. IEEE Softw., 20(6):35–39, 2003.

[20] B. Leuf and W. Cunningham. The Wiki way: quick
collaboration on the Web. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[21] D. R. Millen. Community portals and collective goods:
Conversation archives as an information resource. In
Proc. of the 33rd Hawaii Intl. Conf. on System
Sciences - Volume 3, page 3030, Washington, DC,
USA, 2000. IEEE.

[22] S. Nerur and V. Balijepally. Theoretical reflections on
agile development methodologies. Commun. ACM,
50(3):79–83, 2007.

[23] D. L. Parnas and P. C. Clements. A rational design
process: How and why to fake it. IEEE
Trans. Softw. Eng., 12(2):251–257, 1986.

[24] A. L. Powell, J. C. French, and J. C. Knight. A
systematic approach to creating and maintaining
software documentation. In SAC ’96: Proc. of the
Symp. on Applied Computing, pages 201–208, New
York, NY, USA, 1996. ACM.

[25] P. N. Robillard. The role of knowledge in software
development. Commun. ACM, 42(1):87–92, 1999.

[26] J. Rowley. What is knowledge management. Library
Management, 20(8):416–419, 1999.

[27] I. Rus and M. Lindvall. Guest editors’ introduction:
Knowledge management in software engineering. IEEE
Softw., 19(3):26–38, 2002.

[28] M. Visconti and C. R. Cook. An overview of industrial
software documentation practice. In SCCC ’02:
Proc. of the XII Intl. Conf. of the Chilean Computer
Science Society, page 179, Washington, DC, USA,
2002. IEEE.

101

