
Programming in a Socially Networked World:
the Evolution of the Social Programmer

Christoph Treude, Fernando Figueira Filho, Brendan Cleary, Margaret-Anne Storey
Dept. of Computer Science

University of Victoria
ctreude@uvic.ca, ffilho@uvic.ca, bcleary@uvic.ca, mstorey@uvic.ca

ABSTRACT
Social media has changed how software developers collab-
orate, how they coordinate their work, and where they find
information. Social media sites, such as the Question and An-
swer (Q&A) portal Stack Overflow, fill archives with millions
of entries that contribute to what we know about software de-
velopment, covering a wide range of topics. For today’s soft-
ware developers, reusable code snippets, introductory usage
examples, and pertinent libraries are often just a web search
away. In this position paper, we discuss the opportunities and
challenges for software developers that rely on web content
curated by the crowd, and we envision the future of an indus-
try where individual developers benefit from and contribute
to a body of knowledge maintained by the crowd using social
media.

Author Keywords
Social Media; Software Development; Social Coding

ACM Classification Keywords
D.2 Software Engineering

General Terms
Human Factors.

INTRODUCTION
While the Internet has made a vast body of knowledge acces-
sible to software developers, it is the advance of social media
that has introduced effective mechanisms for a large crowd of
developers to curate content on the web. Users can endorse
articles through mechanisms such as Facebook’s “Like”, they
can give positive or negative ratings to questions and answers
on Q&A websites, and they can annotate and comment on a
wide spectrum of blog posts. Content on social media sites
ranges from tutorials and experience reports to code snippets
and samples.

One of the most successful social media resources for soft-
ware developers is Stack Overflow1, a site that facilitates the
exchange of knowledge between software developers through
a Q&A portal. Since its foundation in 2008, more than 2.3
million questions have been asked on Stack Overflow, and
nearly 5 million answers have been provided, contributing to
a large repository of software development knowledge. Many

1http://stackoverflow.com/

of the questions and answers contain code snippets that can
easily be copied and pasted into one’s source code.

A question asked on Stack Overflow has a median answer
time of 11 minutes [4]. However, users can sometimes start
receiving answers only minutes or even seconds after their
initial post. This virtually real-time access to a community
of millions of other programmers willing and eager to help
is an almost irresistible resource, evidenced by the more than
12 million visitors and 135 million page views which Stack
Overflow receives each month2. Add to the live community
answering questions on demand, an archive of over 7 mil-
lion posts representing the rated and classified knowledge of
millions of programmers, readily accessible through search
engines, and Stack Overflow has the potential to have a sig-
nificant impact on the practices of millions of programmers
worldwide.

The easy access to such a vast repository of knowledge raises
several research questions: Will developers who focus on
reusing content from the web have sufficient understanding
of the inner workings of the software they produce? Are
web resources going to cover all important aspects of a topic?
What meta-data is needed to facilitate technical information-
seeking? How can we address security and copyright con-
cerns that come with using other developers’ code?

In this position paper, we discuss the past, present, and future
of software developers that have access to an unprecedented
amount and diversity of resources on the web. We focus our
discussion on the Q&A portal Stack Overflow due to space
constraints, but we believe that our observations are appli-
cable to other social software and social computing environ-
ments as well.

BACKGROUND AND RELATED WORK
Social media is changing how software developers commu-
nicate and coordinate, and how they produce and consume
documentation. The current adoption of social media in
processes and integrated development environments is just
scratching the surface of what can be done by incorporating
social media approaches and technologies into software de-
velopment.

Storey et al. [7] discuss the impact of social media on soft-
ware engineering practices and tools. Historically, wikis and

2http://www.quantcast.com/stackoverflow.com



blogs were the first social media mechanisms used by soft-
ware developers, utilized mostly in the areas of requirements
engineering and documentation, and to communicate high-
level concepts. Microblogs, such as Twitter, play a role in
conversation and information sharing between software de-
velopers [1], whereas tags can help software developers com-
municate their concerns in task management [9] and add se-
mantic information to source code [6].

Among those technologies, the Stack Overflow Q&A portal
not only provides a unique medium for the interaction be-
tween several communities of practice of developers [2], but
also stands out due to the daily involvement of its design team
within those communities [4]. In a preliminarily categoriza-
tion of the questions found on Stack Overflow, we found that
the website is particularly effective at providing code reviews
and at answering conceptual questions, and that roughly 85%
of the questions on Stack Overflow are answered [8]. Stack
Overflow also attracts a lot of web traffic and can reach a
high level of coverage for a given topic. In a recent study,
we analyzed the Google search results for one particular API
– jQuery – and found at least one Stack Overflow question
on the first page of the search results for 84% of the API’s
methods [5].

BEFORE STACK OVERFLOW
Before the advent of Stack Overflow, the main mechanisms
for Q&A consisted of technical forums, where content is
made available in the form of threaded discussions. The main
problem with this approach is that useful information is typ-
ically mixed with irrelevant context. Stack Overflow, on the
other hand, made popular the concept of collaborative filter-
ing to rank best answers, which are shown up front thus ex-
empting the user from analyzing several pages of content.

Query 
formulation

Screening

Content analysis

Information 
Consumption

before SO

after SO

Figure 1. Search process before and after Stack Overflow.

Figure 1 illustrates the search process before and after Stack
Overflow. A typical search scenario requires effort from the
user to select the most promising results (i.e., screening) and
to analyse each result before eventually consuming informa-
tion. The collaborative filtering approach enables a shorter

search process, since relevant information is pre-ranked based
on community expertise [3].

Another advantage of Stack Overflow over previous knowl-
edge exchange portals is that knowledge reuse is encouraged
within the community and supported by design. Before post-
ing a new question, the system requires the user to check if
the question has already been answered, thus avoiding the
same question being asked repeatedly. This approach facili-
tates technical information scrutiny, as it produces fewer can-
didates to be analyzed after a search query.

AFTER STACK OVERFLOW
The increasing socialization of software development has
only begun to be studied and leads us to consider the ques-
tions: Do we need to rethink our concept of what a program-
mer is and what they do? Do we need to refactor the pro-
grammer?

The Evolution of the Social Programmer
Contrary to popular stereotypes, programmers have always
been social creatures (at least within their own communities).
Indeed, the new electronic communication technologies of
the last several decades (email, bulletin boards, Usenet, IRC,
the web) were most often first colonized by programmers.
The emergence of Stack Overflow is the latest evolution of
this historical trend with programmers inventing or adopting
a technology to meet their need to discuss what it is they do
with other programmers. However, with sites such as Stack
Overflow indexed and made available through search engines,
are we approaching the point where the archive of stored pro-
gramming knowledge reaches a critical mass and where new
programming practices and behaviors will emerge? Have we
already reached that point and what kinds of impact might we
see on programmer practices and the software development
industry as a result?

What Makes a Good Programmer
In a world where a large percentage of programming knowl-
edge is archived and curated by millions of “experts”, do we
have to redefine the attributes of a good programmer? Is the
metric of a good programmer someone with a deep under-
standing of programming and software engineering princi-
ples, or someone who can leverage and synthesize the pro-
gramming community to achieve the same results? When
you are very unlikely to be the first person in the world to
encounter a particular problem, does a smart programmer at-
tempt to diagnose the problem independently or just ask the
community? Has Google become the world’s fastest debug-
ger? Will an entirely new category of programmers emerge,
a Just in Time Programmer, without formal training but with
the ability to combine snippets to craft solutions that will just
meet their needs? What tools will these new programmers
require?

Software Development as a Massively Distributed Activity
If future programmers will require the ability to synthesize a
single solution from the contributions of the many, it raises in-
teresting questions (both positive and negative) about the na-
ture of the software that those programmers produce. Given



an environment where practically all software is developed
with reliance on a shared knowledge base and community,
who actually owns the intellectual property? Is there a risk
that programmers do not really understand how their software
works? Or will it in fact lead to better efficiency by reducing
time spent fixing bugs or re-inventing the wheel? Could the
distributed development approach to programming actually
increase quality by promoting best practice solutions? Is this
a realization of software componentization, different from the
vision of component based development perhaps but effec-
tively a similar result? What organizational changes will this
shift entail in terms of social offshoring (e.g., TopCoder3) and
the ad hoc creation of teams?

Impact on Education and Career Planning
Social media has rapidly changed how programmers adver-
tise their skills and how they manage their time coding, learn-
ing, and strategically planning their careers. For example, one
can observe a growing interest from developers in including
statistics from their Stack Overflow profiles in job applica-
tions. Providing good answers to questions on Stack Over-
flow can be a valuable resource when competing for a posi-
tion4. As a result, Stack Overflow not only provides means
for exchanging information, but also enables a level of trans-
parency never seen before in community portals. For users
that answer questions, Stack Overflow is an opportunity to
help people, to build credibility, and to learn about the prob-
lems encountered by their peers5.

Although social media has gained momentum in the software
industry, we are only beginning to explore what can be re-
alized with those technologies in education. We argue for a
greater use of social media for teaching as a form of preparing
the student to become a socially networked programmer. The
use of collaborative technologies is a fundamental part in this
process and is giving rise to various forms of virtual learning
environments (e.g., Code School6). This emergent scenario
will demand a redefinition of what we understand as good ed-
ucation for a software developer. How do we reformulate the
curricula of academic courses in a world where programming
skills have become less individualized and more socialized?

CONCLUSION
The stereotype of a typical computer programmer has evolved
from an isolated individual who learns by reading computer
science books, to a person who manages his persona across
many social coding sites on the web and collaborates with
other software developers all over the world. This persona
will redefine the social attributes of a good programmer, and
also what we think is essential for planning the curricula of
future academic courses. While we have focused on the Q&A
portal Stack Overflow in this position paper, future research
opportunities lie in the investigation of other social media and
social computing environments and their implications on the
future of collaborative software development.
3http://www.topcoder.com/
4http://blog.stackoverflow.com/2011/08/reputation-not-rep/
5http://meta.stackoverflow.com/questions/22400
6http://www.codeschool.com

REFERENCES
1. Bougie, G., Starke, J., Storey, M.-A., and German, D. M. Towards

understanding twitter use in software engineering: preliminary findings,
ongoing challenges and future questions. In Proc. of the 2nd
Intl. workshop on Web 2.0 for software engineering, Web2SE ’11, ACM
(New York, NY, USA, 2011), 31–36.

2. Figueira Filho, F. M., de Albuquerque, J. P., and de Geus, P. L.
Broadening the perspective on classification systems in the web:
Analysing web classification as a situated activity whithin communities
of practice. In Proc. of the Intl. Conf. on Collaborative Technologies, CT
’10, IADIS Press (July 2010), 117–124.

3. Figueira Filho, F. M., Olson, G. M., and de Geus, P. L. Kolline: a
task-oriented system for collaborative information seeking. In Proc. of
the 28th Intl. Conf. on Design of Communication, SIGDOC ’10, ACM
(New York, NY, USA, September 2010), 89–94.

4. Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., and Hartmann, B.
Design lessons from the fastest q&a site in the west. In Proc. of the
Conf. on human factors in computing systems, CHI ’11, ACM (New
York, NY, USA, 2011), 2857–2866.

5. Parnin, C., and Treude, C. Measuring api documentation on the web. In
Proc. of the 2nd Intl. workshop on Web 2.0 for software engineering,
Web2SE ’11, ACM (New York, NY, USA, 2011), 25–30.

6. Storey, M.-A., Ryall, J., Singer, J., Myers, D., Cheng, L.-T., and Muller,
M. How software developers use tagging to support reminding and
refinding. IEEE Trans. on Software Engineering 35 (July 2009),
470–483.

7. Storey, M.-A., Treude, C., van Deursen, A., and Cheng, L.-T. The impact
of social media on software engineering practices and tools. In Proc. of
the FSE/SDP workshop on Future of software engineering research,
FoSER ’10, ACM (New York, NY, USA, 2010), 359–364.

8. Treude, C., Barzilay, O., and Storey, M.-A. How do programmers ask
and answer questions on the web? (NIER track). In Proc. of the 33rd
Intl. Conf. on Software Engineering, ICSE ’11, ACM (New York, NY,
USA, 2011), 804–807.

9. Treude, C., and Storey, M.-A. Work item tagging: Communicating
concerns in collaborative software development. IEEE Trans. on
Software Engineering 99, PrePrints (2010).

BIOGRAPHIES OF THE AUTHORS
Christoph Treude is a PhD candidate in computer science at the University
of Victoria and an organizer of the workshop on Web 2.0 for Software En-
gineering (Web2SE). In his PhD research, he is exploring the role of social
media artifacts in collaborative software development. He has already stud-
ied the use of tags, dashboards, feeds and a community portal by professional
software developers using IBM’s Jazz.

Fernando Figueira Filho received his PhD from the University of Camp-
inas, Brazil, in 2011 and is currently a post-doctoral fellow at the Univer-
sity of Victoria. His thesis focused on social search and how we can evolve
from traditional information retrieval approaches in order to incorporate so-
cial media aspects into search. His main research interests are in the areas of
software engineering, human-computer interaction and computer supported
cooperative work.

Brendan Cleary received his PhD from the University of Limerick in 2007
and is currently a post-doctoral fellow at the University of Victoria. Brendan
has managed research projects totalling over 2 million euro and is co-founder
of a university start-up in the social learning space. His main research inter-
ests are in the areas of software engineering, recommendation systems and
software comprehension.

Margaret-Anne Storey is a professor of computer science at the Univer-
sity of Victoria, a Canada Research Chair in Human Computer Interaction
for Software Engineering and a principal investigator for the National Cen-
ter for Biomedical Ontology, US. Her research goal is to understand how
technology can help people explore, understand and share complex informa-
tion and knowledge. She applies and evaluates techniques from knowledge
engineering, social software and visual interface design to applications such
as collaborative software development, program comprehension, biomedical
ontology development, and learning in web-based environments.


