Awareness 2.0: Staying Aware of Projects,
Developers and Tasks using Dashboards and Feeds

Christoph Treude, Margaret-Anne Storey
Dept. of Computer Science, University of Victoria

ctreude@uvic.ca, mstorey@uvic.ca

ABSTRACT

Software development teams need to maintain awareness of
various different aspects ranging from overall project status
and process bottlenecks to current tasks and incoming arti-
facts. Currently, there is a lack of theoretical foundations to
guide tool selection and tool design to best support aware-
ness tasks. In this paper, we explore how the combination
of highly configurable project, team and contributor dash-
boards along with individual event feeds is used to accom-
plish extensive awareness. Our results stem from an empiri-
cal study of several large development teams, with a detailed
study of a team of 150 developers and additional data from
another four project teams. We present how dashboards be-
come pivotal to task prioritization in critical project phases
and how they stir competition while feeds are used for short
term planning. Our findings indicate that the distinction
between high-level and low-level awareness is often unclear
and that integrated tooling could improve development prac-
tices.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environ-
ments—Integrated environments

General Terms

Human Factors, Management

Keywords
Collaboration, Dashboards, Feeds, Web 2.0, Awareness

1. INTRODUCTION AND MOTIVATION

The success of software projects largely depends on the ef-
fectiveness of communication and coordination within teams
[13]. As the complexity of software systems increases, main-
taining awareness of the overall status of a project and gain-
ing an understanding of current bottlenecks in the process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

365

becomes a challenge. Awareness tools that display informa-
tion solely based on source code become insufficient as indi-
vidual developers need to take on managerial tasks. Rather
than source code alone, the status of the project arises from
an aggregation of data on open and closed development
tasks, successful and failed builds, delivered and pending
changes, and successful and failed tests as well as evolution-
ary information.

In recent years, development environments are becoming
more advanced with respect to awareness support. In par-
ticular, IBM’s Jazz software development environment [10]
includes feeds and dashboards that aggregate data to im-
prove awareness of high-level and low-level aspects. How-
ever, with these advances comes the need to further our
understanding of what the most appropriate toolset is [14].
Research on collaborative environments often draws on both
Software Engineering and Computer Supported Coopera-
tive Work (CSCW). Most of the related work on awareness
tools for software development has focused on low-level code-
specific tasks rather than higher levels of abstraction [23].
There is still a lack of understanding of how to achieve high-
level awareness of project management issues with low-level
awareness of more fine grained activities such as source code
changes and development task creation.

In this paper, we report on an empirical study of several
development teams and their use of dashboards and feeds in
day-to-day development activities. These teams use IBM’s
Jazz as a development platform. Jazz offers web-based dash-
boards for projects, teams and individual contributors. The
dashboards are highly configurable and offer many different
kinds of widgets. Figure 1 shows an example of a dashboard
in Jazz. Jazz also provides several feeds to keep develop-
ers updated on events such as build results, modifications
to tasks or incoming tasks and approvals. While we did not
explicitly expect to see awareness as the main theme of this
research, it emerged during our study of how and why these
tools are used.

With our study, we aim to assist managers and developers
in their decisions about using awareness tools in software de-
velopment projects. We examine the role of dashboards and
feeds in supporting development activities, and we investi-
gate what advantages and disadvantages are associated with
these tools, as well as how their combination impacts col-
laborative development. While many research tools aiming
to provide awareness of some sort have been implemented,
only very few have been evaluated in an industry setting,
and there is no comprehensive theory on awareness needs
and the interplay of awareness tools in software engineer-

\.‘3 Dashboard: Christoph Treu...

<« C 9% htps/fazz.net,

g8 All Dashhoards =

" Create Dashhoard

General - 2.0

Recently Viewed
2% Christoph Treude's Profile 2 Jazz News (118 niew)

Agility atthe core of siw development L

W'—';S""““”'S Jeaz Hands - Adrministration ane Cost of Cunership
B ghfﬁmph Treude's 3¢ |BM Rational Reguirements Composer Jul 29, 20
rafile

Public Dashhoards
B
[l All Dashboards

Page 1 of 30
1l Recemtly closed (35) Priority
High []
Medium
o [
Unassigned

0 2 4 6

[5] Recently closed (36)

tasks into one task
- 19881: Errar while trying to publish the

<«

MAX_CHAMGE_EVENTS configurable

Tiltering

Page 1 of &

jotCompileLogPublisher results using ecj.
18818 Read time out errors when executing
getbuildResultRecordsForBuildTypes from builds view
16843 BuildEvertCantentProvider : make

g 10 12 14 16 18 20 22 24 I6

20082 Consider combining tearnAccept and tearmFetch

18342 BuildQueryiew summary text ignores the effects of

(= Rl R 5
[1 suto-save

View Profis | B M O[B 4@ | &

Christoph Treude's Public Dashboard

5}, Open Work ltems by Priority

! Show Parameters

1976

New Release: Rational Service Testervd.| & Serice Stubbing

0
Unassigned
Low
Hedium
High

Ll My Links

Eclipse
Jazz

{21 Description Rational Team Concert

A collaborative software development environment

Rational Tearn Concert integrates work itern tracking, builds,

source control, and agile planning. Rational Tearmn Concert

interoperates with other products by providing Yisual Studio 1
integration and connectors and bridges for ClearCase and -

Figure 1: Sample Dashboard in Jazz

ing. Studying the early adoption of dashboards and feeds
in Jazz presents a unique opportunity to start to contribute
to knowledge on how an integrated development environ-
ment (IDE) should provide a comprehensive mechanism for
awareness.

To gain an understanding of the role that dashboards and
feeds play in awareness, we gathered data through the in-
spection of project repositories, by conducting interviews
with developers and project managers, and through a web-
based survey. Our main contribution is the identification
of the different ways in which dashboards and feeds as pro-
vided by Jazz support awareness in software development
and how the interplay of these tools provides awareness on
different levels. We also suggest tool enhancements based
on the results of our study.

The remainder of this paper is structured as follows. In
Section 2, we discuss related work on awareness in collab-
orative software development and lightweight tool support.
We introduce dashboards and feeds in Section 3. Our re-
search questions and methodology are presented in Section
4. Section 5 comprises the main part of this research and
describes how dashboards and feeds are used by software de-
velopers. Subsequently, Section 6 discusses our findings and
we identify limitations of our work in Section 7. Our work
is concluded in Section 8.

2. BACKGROUND AND RELATED WORK

Work related to our research can be divided into two areas:
research on awareness in collaborative software development
and research on lightweight tools to support social develop-
ment processes. Our study can be seen as the intersection
of these areas: exploring lightweight tool support with the
emergent theme of awareness.

366

2.1 Awareness in Software Development

Maintaining awareness of each other’s activities, the over-
all project status and current tasks is challenging as it is
not limited to simple metrics based on source code or the
fulfillment of a single plan item. Dourish and Bellotti define
awareness as “an understanding of the activities of others,
which provides a context for your own activity” [4]. In com-
plex software development processes, awareness includes be-
ing aware of technical and social aspects of the development
[3] as well as current and upcoming articulation work [16].
Depending on the context of the task at hand, the required
granularity of this awareness can vary significantly.

Many researchers have recognized awareness as an essen-
tial part of collaborative software development and collab-
orative work in general. In their studies on groupware,
Gutwin et al. found a need for workspace awareness to sus-
tain effective team cognition and detailed awareness of one
another [11]. Awareness can be maintained in an active or
in a passive manner. While active mechanisms require the
explicit generation of awareness data such as directed mes-
sages, passive awareness exploits information already avail-
able in a shared workspace [4]. Even if achieved passively,
maintaining awareness of other’s activities and the project
status is time-consuming [20] but it is indispensable in the
construction of mental models of a software project [15].

Tool implementations that support awareness have tradi-
tionally focused on source code and information available
from source code management systems. An early example
is Seesoft [6], a software visualization that maps each line
of source code to a thin row and uses colours to indicate
changes. Augur [9] adds software development activities
to a Seesoft style visualization, thus allowing for the ex-
ploration of relationships between artifacts and activities.

FastDASH [2] uses a representation of a shared code base to
highlight current activities aggregated at the level of files and
methods. The workspace awareness tool Palantir [21] follows
a similar approach by providing insight into workspaces of
other developers, in particular artifact changes.

These tools allow for insights regarding the current ac-
tivities in a project. However, in large projects, they often
fail to provide an overview of the overall status of a project.
Researchers have recognized this challenge and have started
to develop tools that allow for higher level insights. Social
Health Overview [7] works at the level of change requests
and mines the history of development artifacts to reveal
social and historical patterns in the development process.
CruiseControl! achieves high-level insights through the use
of a dashboard that focuses on builds rather than source
code. The World View in Palantir also addresses “aware-
ness in the large” [22]. It provides a comprehensive view of
the team dynamics of a project, in particular regarding the
geographical location of developers.

Most of these tools lack evaluation in industry settings. A
notable exception is WIPDash [12], a large screen visualiza-
tion for small co-located teams designed to increase aware-
ness of tasks and source code activity. WIPDash was evalu-
ated with two small teams during a one week field study. In
contrast, the teams in our study have been using the Jazz
awareness tooling for at least one year. Studying the use
of dashboards and feeds in several large projects using Jazz
provides a unique opportunity to examine the role aware-
ness tools play in software development. As Jazz is the first
environment to tightly integrate these awareness tools into
the IDE, it also allows us to study the interplay of awareness
tools rather than to examine isolated features.

2.2 Lightweight Tool Support

Research on lightweight tools to support social develop-
ment processes is not yet far advanced. After the success
of Web 2.0 [18] and its lightweight collaboration and com-
munication mechanisms such as wikis, blogs, tags and feeds,
software developers and researchers have started to ask how
these mechanisms can be transferred into software devel-
opment. For the social aspects of team-based development
practices, lightweight collaboration and an “architecture of
participation” [19] are promising.

Annotating artifacts is one of the mechanisms associated
with Web 2.0. In our previous work, we explored how task
annotations [24] and tagging [25] support informal individ-
ual, team and community processes in software develop-
ment, including life cycle management, task assignment and
task categorization. Websites such as delicious® and face-
book? have found counterparts in software development. For
example, Dogear [17] introduces the idea of social bookmark-
ing for large enterprises and Codebook [1] uses the approach
of facebook for software development.

Here, we explore two further Web 2.0 mechanisms and
their use in software development: dashboards and feeds.

3. DASHBOARDS AND FEEDS

In this section, we introduce the functionality of dash-
boards and feeds as they are implemented in IBM’s Jazz.

http://cruisecontrol . sourceforge.net/
2http://delicious.com/
3http://www.facebook.com/

367

3.1 Dashboards

Dashboards are information resources that support dis-
tributed cognition; they are crucial to many business intel-
ligence applications [5]. Dashboards in the Jazz IDE are
displayed and configured using the web interface. They are
intended to provide information at a glance and to allow
easy navigation to more complete information. By default,
each project and each team within a project have their own
dashboard; and an individual dashboard is created for each
developer when they first open their web interface. Fig-
ure 1 shows an example dashboard. A dashboard consists
of several viewlets. Viewlets are rectangular widgets dis-
playing information about some aspect of a project. Each
viewlet is an instance of a viewlet type. The actual con-
tent shown in a viewlet depends on the viewlet type, e.g.,
visual representations of the current workload or a list of
members on a team, as well as the way the particular in-
stance has been configured. Developers can add viewlets to
their dashboards and configure the viewlets using different
parameters. While the list of available viewlet types is con-
stantly expanding, Table 2 shows common viewlets at the
time of our study with a short description. Viewlets can be
organized into different tabs within a single dashboard.

By default, dashboards only display general purpose view-
lets containing information about developers and teams, and
links to general feeds. In addition to individual customiza-
tions of dashboards, project managers or component leads
can customize the default settings. It is intended that the
development manager of a project is in charge of updating
the project dashboard, the component leads are responsible
for the team dashboards, and individual developers change
their own dashboards.

3.2 Feeds

For awareness on the basis of events, Jazz provides feeds.
Feeds can either be displayed in the client application or
as a viewlet as part of a web-based dashboard. The most
common way to view feeds is through the Team Central view
in the client application. Figure 2 shows an example. Team
Central is not accessible through the web interface.

Team Central is organized into multiple sections that are
updated continually with the latest events. By default, Team
Central displays a bar chart of current work for the signed-
in developer by priority. The event log in the middle of the
view’s default configuration shows feeds. These are config-
ured to include build events for all teams that the signed-in

%% Team Central (2

¥ My Open Work Items By Priority (2110 PM
17

3 (=3
Unassigned Low
¥ Eventlog Events (90 urvead] = (3
% [6] Failed: junit 120080526-1224 2 hours ago -
E & [6] JUnit 4 not really backward compatible (5 £
'L!: Mew reguest for approval '4.4 M1 Approval'
@ & [3] shows green bar while assert false (51) 3

& [6] Failed: junit I20080526-1119 3 hours ago

H [3] Implement new asserfThat (66) 4 hours 200
[Z & [2] [Docs] Cookbook TestRunner section incorre ¥
» Build 1faiing 2. [

Figure 2: The Team Central View in Jazz

developer is part of, work item? changes that are pertinent
to the signed-in developer, and changes to teams. Develop-
ers can add or remove feeds and filter events to personalize
their event log. In addition, incoming events are displayed
as small popup windows in the client application.

Unlike dashboards, feeds and Team Central do not offer
functionality for sharing sections, views or events.

4. RESEARCH METHODOLOGY

This section identifies our research questions and describes
the study setting and data collection methods.

4.1 Research Questions

Our research questions focus on how and why awareness
tools are used, as well as on the impact of awareness tools
on software development practices:

1. What is the role of dashboards in supporting individual
and collaborative software engineering activities?

) How are dashboards adopted and adapted?

Why are dashboards used and which roles do they
support?

Which individual and collaborative processes do
dashboards support?

How does the use of dashboards evolve over the
life cycle of a project?

2. What is the role of feeds in supporting individual and
collaborative software engineering activities?

(a) How are feeds adopted and adapted?

(b) Why are feeds used and which roles do they sup-
port?

(c) How does the use of feeds evolve over the life cycle
of a project?

3. What is the impact of dashboards and feeds on devel-
opment practices?

4. What are potential tool enhancements?

4.2 Methodology

In the following paragraphs, we outline the setting of our
research as well as the data collection methods we used.

4.2.1 Research setting

Our study took place with several development teams
from IBM. We conducted a detailed study using archival
data, semi-structured interviews and a web-based survey
with one team, while the other teams were only invited to
participate in the survey. The team of our detailed case
study develops the Jazz platform and consists of approxi-
mately 150 contributors in about 30 functional teams, with
some teams acting as sub-teams of larger teams, and many
contributors assigned to multiple teams. The team members
are located at 15 locations worldwide, primarily in North
America and Europe. The developers have been using Jazz
for more than three years and follow the “Eclipse Way” devel-
opment process [10]. This process, developed by the Eclipse

“In other development environments, work items are known
as bug reports, modification requests or change requests.

368

Development team, is an agile, iteration-based process with
a focus on consistent, on-time delivery of software through
continuous integration, testing, and incremental planning.

In addition, the survey was sent out to 1,082 Jazz users
that are not part of the Jazz development team. They
have been using Jazz for about one year and mostly de-
velop business intelligence and financial applications. Not
all of these additional developers follow agile development
processes. They work on four interrelated projects.

We focused our analysis on development teams using Jazz
because it is the first development environment that tightly
integrates dashboards and feeds. Thus, it allows for early in-
sights into the role that these tools can play in collaborative
software development.

4.2.2 Data collection

Our methodology followed a mixed method approach, col-
lecting both quantitative and qualitative data to allow for
triangulation. To gather quantitative data on the configu-
ration of dashboards, we accessed the repositories of the de-
tailed case study team and extracted all dashboards along
with the viewlets used and their configurations. We ana-
lyzed 311 dashboards containing a total of 2,975 viewlets.
At the time of our extraction in June 2009, the team was
working on the 2.0 release of their product. For the detailed
case, we collected qualitative data through a series of in-
terviews and a web-based survey. We conducted a total of
nine interviews with the development manager, the project
administrator, one component lead and six developers from
five different component teams.

The web-based survey was given to both the developers
in our detailed case and the developers in the other teams.
It allowed us to reach significantly more participants than
through interviews. We received 21 responses from the de-
velopers in our detailed case (response rate 14%) and 98
responses from other developers (response rate 9%). 76 of
our 119 respondents identified themselves as contributors,
28 were component leads, nine were development managers
and six were project administrators.

The questions asked in our survey and interviews were
similar. Both the survey and the interview scripts contained
about 50 questions on participants’ use of feeds and dash-
boards. Questions inquired about the frequency of use as
well as the reasons for using these tools. We investigated
which viewlet types were mainly used in dashboards and
which sections were mainly used in Team Central, and we
inquired about the reasons behind those usage patterns. We
asked about tool enhancement requests and inquired about
the impact of dashboards and feeds. We also sought infor-
mation about the participants’ roles and the teams’ develop-
ment practices. About half of the survey questions required
a free form response, while the remaining ones were yes/no
or multiple choice questions®. Respondents were allowed to
skip questions. In contrast to the survey, the interviews al-
lowed for clarification questions.

In addition, one of our researchers spent five months on-
site frequently having informal discussions with developers
regarding their use of dashboards and feeds while also facili-
tating member checking of our findings. The findings gained
from our data collection were mirrored in his observations.

®The survey questions are available online at
http://tinyurl.com/awareness20.

S. FINDINGS

This section presents the study findings organized by our
research questions.

5.1 The role of dashboards

In a first step to answer our first research question, we
report the number of dashboards and viewlets to establish
the content of a typical dashboard. Then, to add to the
small body of empirical research on awareness, we report the
reasons for dashboard use and the processes they support.

5.1.1 Adoption and adaption of dashboards

36 of the 74 participants that answered the corresponding
question on our survey indicated that they use dashboards,
and 38 indicated they do not use them at all. How dash-
boards are used varies significantly depending on the role
of the user. While both the project administrator and the
development manager in our detailed case study answered
that they look at dashboards at least once a day, only 26
respondents were able to recall the last time they looked at
a dashboard. Out of these 26 dashboard users, two had used
a dashboard within the last 10 minutes before filling out our
survey, and another four had used dashboards within the
last hour. Seven participants indicated that they had used
a dashboard within the last 24 hours, and 13 respondents
looked at a dashboard within the last week.

Of the 311 dashboards in our detailed case, two were
project level dashboards, 72 belonged to teams, and the re-
maining 237 belonged to individual contributors. While 121
out of 168 contributors owned only one personal dashboard,
there were 47 cases in which contributors created more than
one dashboard. That was particularly the case for develop-
ers that were part of several teams.

Table 1: Number of viewlets per dashboard

viewlets # dashboards
> 100 1
51-100 3

21-50 19
11-20 38
7-10 66
6 73

5 101
<5 10

The number of viewlets per dashboard is shown in Table
1. The majority of dashboards contain five or six viewlets,
which is the number of viewlets included in the default con-
figurations (five for contributors and six for teams).

Table 2 identifies the most used viewlet types, partitioned
by the scope of project, team and contributor. Viewlets ei-
ther show information on project members (e.g., About Me
and Team Members), on artifacts (e.g., Work Item Statis-
tics and Builds) or on events (e.g., Feeds), or they display
static content (e.g., Bookmarks and Description). Overall,
the most used viewlet types are Feeds and Work Item Statis-
tics. Work Item Statistics display a graphical representation
of the results of one work item query, visualized by one pa-
rameter. Data can be presented as bar chart, pie chart, tag
cloud or table. On the project level, Feeds and Reports are
the most common viewlets, while Work Items and Work

369

Item Statistics account for most viewlets on the team level.
Figure 1 shows examples of the six most used viewlet types.

By default, a contributor dashboard displays instructions
on how to customize it, an About Me viewlet and a Feed for
a Jazz newsgroup along with two Bookmarks viewlets. A de-
fault team dashboard shows customization instructions, an
HTML team description, a Feed for team events, the Team
Members, and Plans and Builds for the team. These defaults
can be adjusted per project and per team, but we found
that managers and component leads rarely used that oppor-
tunity. Dashboards are individually customized instead. It
is impossible to report the default viewlets among the com-
mon viewlets as some viewlets may be part of the default
configuration, but have been individually customized by de-
velopers, e.g., by subscribing to a different feed.

5.1.2 Reasons and roles for dashboard use

The reasons for dashboard use can be categorized into
project awareness and individual convenience.

Gaining a high-level overview of the project status
was named 14 times in our survey and in six out of the nine
interviews we conducted: “That’s what dashboards are for:
to give you this sort of overall high-level view of things — it is
a faster way than running separate work item queries to see
which items are [...] in need of attention.” This high-level
overview was found to be particularly useful when looking at
releases. In fact, we found that project and team dashboards
were often organized by releases, with a separate tab for each
release: “It’s really looking at the release at a glance. All the
plan items that we have committed to, the open vs. closed,
some of our burndown, [...] and statistics broken down by
team.” The ability to produce high-level overviews is es-
pecially important for project managers: “The development
manager, that’s the perfect person to be using the dashboards,
‘cause that’s what you want, you want to be reporting things
all the time, based on a lot of data.”

In addition to the awareness of the project status, dash-
boards help with awareness of other developers and teams
and their current focus: “I then found it also helped to give a
peripheral awareness of how the other teams were doing,
which I would not have had if I just ran the query for the
[my team] items.”

Dashboards also help with the identification of bottle-
necks in the development process: “There were so many
things going on late in the game in [release], that I was rely-
ing on that [dashboard] in some respects, too. In the timing
meetings, someone would say, ‘hey, there’s still these items
showing up on the dashboard for [a team], is somebody look-
ing at them?’ [...] As you’re getting towards the end, you’re
paying more close attention to the last few remaining items
as you wind down — and having high-level awareness of what
those are and what state they’re in is good.” Dashboards are
used for “finding out about work items that need to be fixed
or addressed at the end of a development phase.”

For project managers, dashboards provide the opportu-
nity to compare teams against each other and make dif-
ferences between teams visible: “One of the reasons I use
them a lot is [...] for showing the teams against one another,
‘cause it sort of encourages a bit of a competitive thing. Be-
cause when you show defects for example, no one wants to
be the team that’s at the top of the list.”

For individual convenience, some viewlets allow for navi-
gation to the underlying queries and work items by clicking

Table 2: Number of viewlets per viewlet type

type project team individual sum description

Feeds 7(24%) T7(9%) 545 (26%) 629 (21%) internal or external feed

Work Item Statistics 3 (10%) 120 (15%) 298 (14%) 421 (14%) chart of work item query result
Work Items 0(0%) 149 (18%) 168 (8%) 317 (11%) result of work item query

Reports 6 (21%) 111 (14%) 178 (8%) 295 (10%) predefined reports

Bookmarks 2(™) 8(2%) 241 (11%) 261 (9%) customizable list of bookmarks
HTML 0(0%) 6(7%) 188 (9%) 244 (8%) snippet of HTML mark-up

Work Item Queries 1(3%) 0(1%) 176 (8%) 187 (6%) links to executable queries

About Me 0(0%) 3 (0%) 168 (8%) 171 (6%) information about a contributor
Builds 2(™) 3(%) 64 (3%) 139 (5%) notifications from the build engine
Team Members 0(0%) 70(9%) 28 (1%) 98 (3%) list of contributors with roles
Plans 1(3%) 47 (6%) 32 (2%) 80 (3%) progress of plan for an iteration
Description 1(3%) 65(8%) 7(0%) 73 (2%) description of a project or team area
Other 6 (21%) 20 (2%) 34 (2%) 60 (2%) e.g., server status, list of sub-teams
Sum 20 (100%) 819 (100%) 2127 (100%) 2975 (100%)

on the data. 19 out of the 35 participants in our survey who
answered the corresponding question indicated that they use
dashboards for navigation: “I just use that as a shortcut, so
I don’t have to go and remember the [work item] number.”

Sometimes, work items are specifically flagged using the
tagging feature for work items to increase their visibility and
to make sure that they show up on a dashboard: “There’s
things that we specifically track. For example, when we were
doing the [release] cycle and we wanted to track [a specific
issuef, we put a tracking tag on it, so that it would show
up here — it just raised the visibility of it.”

Three out of our nine interviewees use dashboards as a
work item inbox, in part because of the compact presenta-
tion: “I waste less time navigating through work item queries
for things I need to do because they are all on one page.”

We asked our participants if the information displayed in
dashboards was otherwise available. All participants agreed
that it was, but added that it was much easier to access it
through the dashboards: “Yes, but just not as easily. Be-
cause every one of these is based on a query, and all you are
really doing is just categorizing things, showing them with
a particular view. It’s just that you can’t get that instanta-
neous summary of the information, especially if you’ve got
thousands and thousands, that’s difficult.”

While project and team awareness is tentatively more im-
portant for project managers and component leads and in-
dividual convenience is the main use case for developers, it
is hard to separate these roles — partly because individuals
often do not clearly belong to one group or the other. Out
of the 76 respondents that identified themselves as contrib-
utors in our survey, only 25 stated that they spend 100%
of their time on development activities. 27 of the 76 con-
tributors indicated that they spend 50% or less of their time
on development activities. At the same time, 13 of these
contributors spend 50% or more of their time on project
management activities.

5.1.3 Dashboards support individual and collabora-
tive processes

In Jazz, there are dashboards for three different scopes:
project, team and contributor. These dashboards are en-
tirely separate. We found that the dashboards that are
used regularly are almost exclusively project and team dash-

370

boards. Personal dashboards are usually left in their default
configuration, which shows the roles of the developer along
with web links and newsgroups. With the current configu-
ration, default dashboards have practically no value beyond
indicating team membership.

An interesting case where dashboards support an individ-
ual process is the use of feeds viewlets by one developer,
considering that feeds are also available in the client appli-
cation: “Having that viewlet has saved me a couple of times
where ['ve been wanting to look at the work item inbox from
home, and I didn’t have the Eclipse client, so my usual path
[-..] wasn’t available to me. So I used the feed viewlet.”

Developers and managers customize dashboards for their
own benefit but also do so to communicate important in-
sights to their teams: “It’s not just stuff for me. I often put
dashboards up, for things that are not actually things that 1
care so much about, but they’re things that I know the teams
will care about — or that I want them to care about.”

As dashboards are web pages, it is easy to share them and
to send links to dashboards to other project members. This
opportunity is used frequently by managers and component
leads, using tools such as instant messaging or mailing lists,
posting links to dashboard pages on the project wiki, or us-
ing dashboards to follow along during planning calls. When
communicating the current status of a project to executives,
dashboards are also used: “Often we go to some executive
meeting, and they would say — for example, there might be
400 bugs outstanding, and they’d say, ‘what insurance can
you give us all this stuff is going to be fized?’ and I could
say, ‘look, in this 3 week cycle we fized 2500 bugs, so really
fixzing 400 is not a big deal.” ”

5.1.4 Dashboards evolve over project life cycle

As mentioned before, project and team dashboards often
contain release specific information. A prominent example is
given by this quote: “During the [release] cycle, we had this
middle column, which is called the mustfix column, which is
basically all the defects that have to be fized for the release.
And everything else is, well it’s important, but it’s not as
important as what’s in here. [...] And people were constantly
looking at those to see who has stuff that needs to be fized.”

This dependence on releases implies that dashboards have
to be changed when a product version has been released: “So

now, as we’re starting all this new work, this dashboard will
probably change a fair bit.” Jazz does not offer any means
to automate that process — “cleaning up” dashboards is a
manual task. However, 25 out of the 36 developers that
use dashboards indicated that their use is constant across
different project phases. The few exceptions mentioned the
“endgame”, i.e. the last cycle of the project before a release.

5.2 The role of feeds

This section looks at a finer granular awareness tool: feeds.
Since the data on the use of feeds by developers is not stored
on a central server, our findings below are based on the re-
sults from our interviews and our survey.

5.2.1 Adoption and adaption of feeds

Feeds can be accessed through the Team Central view,
through dashboards and through a couple of other mecha-
nisms in the client application such as e-mail notifications.
52 out of 86 participants indicated they made use of the
Team Central view (cf. Figure 2) and only 10 out of 78 par-
ticipants that answered this question indicated that they use
feeds outside of Team Central. When asked what was the
last time they looked at Team Central, nine looked at it in
the last 10 minutes, seven in the last hour, nine in the last
24 hours, 15 in the last week and 12 did not remember when
they last accessed Team Central.

The feed that most developers look at is the My Work
Item Changes feed, an event feed of changes to work items
that the signed-in developer owns, created, modified, or is
subscribed to. Only two developers took advantage of the
opportunity to create their own custom feeds, e.g., based on
individual work item queries.

5.2.2 Reasons and roles for feed use

Feeds are primarily used to “track work at a small scale”.
The majority of participants who answered the correspond-
ing question in our survey indicated that they use feeds “to
see what work items are updated and new ones coming in
quickly and easily.” Then, the work items that catch inter-
est are expanded. Feeds are similar to e-mail notifications
in other systems. In fact, a reason to use feeds is because
“it allows [you] to turn off all work item related e-mail.”

The event log in Team Central is largely seen as a per-
sonal inbox that is primarily used to answer the question
“What should I do next?” and thus helps developers plan
their day. It also helps to quickly get information such as
the due date of a particular feature. The other sections of
Team Central, in particular the team load section, are used
frequently to get information on the overall status of a team.

Team Central and feeds are also used by new developers
on a team to get an overview of what the team is working
on and to understand common work practices.

We found no difference in the use of feeds between different
development roles. While feeds support collaborative work,
how they are used is not shared with other team members.

5.2.3 Feeds evolve over project life cycle

The extent to which developers use Team Central is mostly
constant across different project phases. Out of 52 answers,
only 14 participants in our survey indicated that their use
of Team Central is not constant over time. The exceptions
were developers who are fairly new to developing software
in Jazz and thus were unsure how the view works.

371

5.3 The impact of dashboards and feeds

Awareness tools increase the transparency in collabora-
tive software development. As mentioned in Section 5.1.2,
competition between teams is one of the reasons dashboards
are used by managers and component leads. They are aware
of the peer pressure effect that arises from this competi-
tion, and they see it as one of the benefits of using dash-
boards: “That’s partly why we use them, they definitely do
[create peer pressure]. I mean, it increases the exposure and
the visibility a great deal. [...] An ezecutive is probably un-
likely to be going in writing a query or browsing around in
the work items but it’s easy for them just to go here and
just right away see.” Competition is usually seen as a good
thing: “The need to look like you are making progress is use-
ful.” Any peer pressure is based on data that already exists:
“I mean we’re showing data that’s already there, it’s just
making it visible at a glance.”

Developers and managers are aware that dashboards can
only be as good as the data that they display, i.e. peer pres-
sure should not occur because of outdated or incorrect data:
“The problem is work items are only as good as the data
that’s in the work items and the way they’re being filed, so
obviously, if all of this is going to be useful, we need to en-
sure that the data that’s in the open work items is useful, too.
[--.] If you try to manage purely by numbers, then that’s a big
mistake. You’ve got to always be applying common sense.”
In some cases, correcting steps are taken so that the dash-
boards and feeds are not misleading: “Sometimes we have
to put those caveats on things. For example, there would be
something and would show some team with a really long bar.
Sometimes there are reasons for that. Just because one team
has a lot more defects than another that doesn’t necessarily
mean that the quality of that component is any worse.”

It is worth noting that when we asked developers in our
survey if they would alter their work practices because of in-
formation displayed in dashboards, 26 out of 32 participants
who responded to that question answered no. However, we
noted that some developers look at dashboards to compare
team activities: “Just knowing that you’re not the component
that’s on the critical path for number of bugs remaining.”

Whether awareness tools are distracting or not largely
depends on their use of push vs. pull mechanisms. None of
our respondents found dashboards distracting, in particular
because they are not part of the client application but are
displayed in a web browser instead: “You’ve got to go there
to look at them. Of course you could choose not to look at
them. I guess one thing that can happen, is just in terms
of the amount of noise or information on them — sometimes
people go there and they’re going looking for one particular
thing, and they’re seeing a thousand other things going on.”
Feeds were sometimes considered to be distracting. Six out
of 40 respondents found that they receive irrelevant event no-
tifications. On the other hand, some developers consciously
“try to limit unimportant changes and combine them into
one change” to reduce the number of events.

5.4 Potential tool enhancements

5.4.1 Enhancements for dashboards

One of our findings is that developers are often unaware
of the full functionality of dashboards. In these cases, our
study sometimes helped to raise awareness of features. Two
of our interviewees changed their dashboard configuration

during the interviews because they learned about the avail-
able functionality. While it is difficult to make developers
work through the complete list of features, the utility of
dashboards could be made more apparent by adding ad-
vanced default dashboards. The same applies on a more
fine grained level to different settings for particular viewlets.
We found that developers were often unaware of some of the
available settings, e.g., visualization and feed configuration
settings. Again, default viewlets could help communicate
the full utility of the dashboard functionality.

Developers often miss support for dashboards in the client
applications. An integration would enable them to open
links to artifacts in the client instead of the web browser.

In addition, more inbox functionality would improve
the usefulness of interactions with dashboards. Developers
who use dashboards to check events requested that events
would disappear from the viewlets once read. Also, more
information such as upcoming builds, milestones or feature
freezes and pending approvals should be easier to access.

In dashboards with more than one tab, tabs often get
missed because they are not obvious to the user. In this
case, it would be helpful to show an overview of the avail-
able tabs rather than the first page by default or to offer
filtering mechanisms such as only displaying tabs pertinent
to a certain release.

There were also requests to improve the visualizations
in dashboards. For example, to compare open vs. closed
work items per team, two viewlets need to be created: one
for open work items and one for closed work items. Having
a stacked chart showing both would save screen real estate
and make comparisons easier.

With the heavy reliance of many project and team dash-
boards on the release cycle, it should also be possible to
let viewlets or whole tabs expire when a new version of a
product has been shipped. This would help to avoid having
outdated information on dashboards.

It is impossible to unite data from different projects
into one dashboard right now. For developers working on
more than one project at the same time, a common occur-
rence, this is a major shortcoming.

5.4.2 Enhancements for feeds

Most of the enhancement suggestions for feeds and Team
Central involve adding additional information and perspec-
tives to the tooling. A burndown view that shows a graph-
ical representation of remaining work vs. time was requested
several times, along with schedules, general announcements,
and a section focusing on quality control.

For work item feeds, it would be useful to identify re-
lationships between tasks that are affected by events.
When a sub-task is completed, the tool should show which
parent task it belongs to. It would also be useful to offer
more filter options for feeds. In particular, it should be
possible to distinguish between items that require action,
such as failed builds, and items that do not require any ac-
tion, such as successful builds. Alternatively, the number
of events can be limited by grouping events that belong
together. This is already implemented for some cases, but
can further be improved.

For some developers, the reason not to look at feeds in
their Team Central view is the time interval for the auto
reloads of the event log section. Enabling e-mail notifica-
tions usually displays events faster than the event log.

372

Since the layout of Team Central and the configuration
of specific feeds are not stored on a central server, they are
lost whenever a new version of the client application is in-
stalled or whenever a developer switches clients. For many
developers, this is a reason not to configure their views.

Switching between Team Central and dashboards is te-
dious and could be avoided by having an analog to Team
Central in the web interface.

6. DISCUSSION

This section discusses our findings and identifies future
directions for tool designers.

Reliance on informal tool features for critical phases.

One of our least expected findings is the reliance of de-
velopers and managers on dashboards in the most critical
project phase: the “endgame” right before a release. The
project teams in our study used dashboards to stay aware
of bottlenecks in the process and work items that needed to
be closed before the shipping date. In fact, the defects to be
fixed before a release were identified using a combination of
informal mechanisms: work items were tagged with “must-
fix” to indicate their importance, and then dashboards and
feeds were used to track the state of those work items. In
one of the dashboards, a “mustfix” column was implemented
that only showed viewlets based on the “mustfix” tag, and
feeds were used to see state changes of the “mustfix” items
in real-time. This reliance on informal tools demonstrates
both the versatility and the reliability of informal tools in
software development. Informal tools can be used to orga-
nize artifacts in a lightweight manner and to support tasks
that do not occur every day.

Relationship between dashboards and feeds.

There are three main differences between dashboards and
feeds: granularity, privacy and configurability. Even
though it is possible to make dashboards private, most de-
velopers share dashboards with the whole team. Project
and team dashboards are shared by default with the entire
team. This is in contrast to feeds in the client application:
“In Team Central it’s a bit too introverted, because it’s your
own view of things, and you can’t share that with people.”

The suggestions for tool enhancements indicate that the
relationship between dashboards and feeds is not clear-cut.
It was suggested to introduce dashboard functionality into
Team Central, in particular burndown views and grouping of
events. At the same time, developers requested more inbox
functionality for dashboards, such as viewlets for incoming
work items and work item changes.

Implementing these suggestions would result in Team Cen-
tral being very similar to dashboards and vice versa. There
are two different conclusions possible: first, a clear distinc-
tion between dashboards and Team Central. As one of our
interviewees put it, “there seems to be a split between man-
agers and non-managers” with regard to their tool use. This
border could be sustained, and developers could be required
to use dashboards as soon as they are looking for informa-
tion outside their own work items. Alternatively, dashboards
and Team Central could consciously be aligned to have sim-
ilar functionality and configurations. This could go as far
as changes to sections in Team Central being reflected in
dashboards and vice versa. In the current setting we also

found that individual dashboards do not have obvious uses,
unlike team and project dashboards. Individual dashboards
often remain unchanged, display outdated information such
as links to feeds with expired passwords and are rarely used.
The current distinction between overall project status in
dashboards and pertinent work item changes in the client
application is insufficient as developers and managers need
both: awareness in the large and in the small, but to different
extents. An example are the “mustfix” work items: devel-
opers not looking at the project dashboard regularly had to
rely on being informed by somebody of the “mustfix” tag in
order to adjust their priorities. Our results lead us to believe
that integrating web-based dashboards and Team Central
functionality would solve some enhancement requests and
provide a clearer conceptual model of awareness.
Dashboards and feeds are ephemeral resources in a soft-
ware development environment. The secret of their success
in the projects that we observed may lie in the fact that often
team memberships and roles turned out to be ephemeral as
well. When developers need to take on tasks of project man-
agers and vice versa, a strict distinction between high-level
awareness and low-level awareness is rendered ineffective.

The paradox of choice.

As with many highly configurable user interfaces, dash-
board users suffer from the paradox of choice. Most de-
velopers are unaware of all the options available to them.
This leads to unsatisfactory configurations and to developers
avoiding dashboards due to not understanding their benefits.
Instead of adding more viewlet types and properties, remov-
ing the least used viewlet types and offering well-designed
default configurations would be a better solution.

Towards IDEs as socially translucent systems.

In their work on “socially translucent systems”, Erickson
and Kellogg suggest that systems that support social pro-
cesses have three characteristics: visibility, awareness and
accountability [8]. IDEs are also systems that support so-
cial processes in software development; and thus need to
be designed with these characteristics in mind. These is-
sues were clearly evident in our findings on how dashboards
and feeds provide different levels of awareness in software
development. Many enhancement requests contradict the
original intent of the individual features. When combined,
the enhancement requests point to the need for one inte-
grated system rather than a set of isolated features to im-
prove awareness and visibility.

Research on awareness in collaborative software engineer-
ing lacks a theoretical background. Omne of the most im-
portant themes that came out of our work is the need to
design studies that look beyond one individual tool and fo-
cus on the interplay of processes, artifacts and developers.
We need to evaluate how awareness tools and features are
used across different dimensions of collaboration, and we
need to formulate new theories and add to existing theories
from the domain of Computer Supported Cooperative Work
(CSCW) to be able to assist managers and developers in
software projects.

7. LIMITATIONS

As with any chosen research methodology, there are limi-
tations with our choice of research methods.

373

For usage data on both dashboards and feeds, we had to
rely on answers from interviews and from our survey. Jazz
does not log data on the use of these artifacts. However, a
strength of our mixed method approach is that we are able
to triangulate findings obtained through different methods.
The large number of respondents in our survey also provides
a good basis for our conclusions.

Some of the individuals who participated in our survey
skipped some of the questions while filling out the survey.
Consequently we reported throughout the paper the number
of responses to the questions discussed. Another limitation
lies in the low response rates to our survey. However, as it is
the nature of a large software project that developers do not
have much time to spare and since for ethical reasons, we
did not want the developers to feel coerced to participate,
we were unable to achieve better response rates.

When the teams started on their projects, dashboards
were still being improved and new viewlet types were added.
This might have influenced the specific usage. Because our
detailed case study was conducted with the developers of
Jazz, their willingness to adopt dashboards and feeds might
be above-average. However, we confirmed our findings with
several non-Jazz teams. While the team in our detailed case
used an agile development method, not all of the additional
teams were agile. We found no differences between users
across the different teams and development methods.

Our conclusions are limited to how dashboards and feeds
are implemented in the Jazz environment. However, Jazz is
the first development environment supporting configurable
dashboards for every developer and giving a prominent role
to feeds, thus providing a first chance to study how such tool
features are used. As more projects and development envi-
ronments integrate dashboards and feeds, additional studies
need to be conducted to gain further insights into the use of
these awareness tools in software development.

8. CONCLUSIONS AND FUTURE WORK

The main contributions of this paper are the identifica-
tion of different uses for dashboards and feeds in collabo-
rative software development, the discussion of their impact
and their interplay, as well as concrete suggestions for tool
enhancements and integration.

Awareness in a software development project is composed
of many different aspects: developers need to stay aware
of the overall status of their projects and critical deadlines,
they need to understand current priorities and bottlenecks
in the process, they need to know of dependencies between
components and teams, and they need to be informed of
changes to tasks they are working on in a real-time manner.
Previous efforts have often neglected high-level awareness
and focused on source code or source code management sys-
tems instead. While the awareness of source code is crucial
to software development, it is insufficient when development
is a team effort. Developers need to be able to see current
plans, upcoming deadlines, schedules of other team mem-
bers, and critical components.

Our research has shown how several teams of developers
using IBM’s Jazz use a combination of feeds and dashboards
to maintain awareness of various development aspects: dash-
boards are mainly used to keep track of the overall project
status, to provide peripheral awareness of the work of other
teams and to stir competition between teams. During crit-
ical project phases, dashboards also evolve into the central

entity where priorities of tasks are organized and shared.
Therefore, dashboards depend largely on the project’s life
cycle. Feeds are used to track work at a small scale and to
plan short term development activities.

As developers need to understand issues that span sev-
eral teams and components, the line between requirements
for dashboards and feeds becomes blurred and tool enhance-
ment requests add up to a considerable overlap of both tools.
Future work will have to be conducted to identify the ideal
toolset for awareness in collaborative software development.
Our findings suggest that such a toolset brings awareness of
projects, teams and tasks together and no longer separates
between awareness in the large and awareness in the small.

9. ACKNOWLEDGEMENTS

We wish to thank the team that granted us access to their
repositories and conducted interviews with us as well as the
participants of our survey. This research is supported by
a fellowship from IBM and the second author is a visit-
ing faculty member at IBM. We appreciate comments from
Jean-Michel Lemieux, Tricia Pelz, Adrian Schréter, Nancy
Songtaweesin and Annie Ying that improved the paper.

10. REFERENCES

[1] A. Begel and R. DeLine. Codebook: Social networking
over code. In ICSE Companion ’09: 81st
Intl. Conf. on Software Engineering - Companion
Volume, pages 263—266, Washington, DC, 2009. IEEE.
J. T. Biehl, M. Czerwinski, G. Smith, and G. G.
Robertson. Fastdash: A visual dashboard for fostering
awareness in software teams. In CHI ’07: Proc. of the
Conf. on Human factors in computing systems, pages
1313-1322, New York, 2007. ACM.
C. R. B. de Souza, D. Redmiles, and P. Dourish.
"Breaking the code”, Moving between private and
public work in collaborative software development. In
GROUP °03: Proc. of the Intl. Conf. on Supporting
group work, pages 105-114, New York, 2003. ACM.
P. Dourish and V. Bellotti. Awareness and
coordination in shared workspaces. In CSCW ’92:
Proc. of the Conf. on Computer supported cooperative
work, pages 107-114, New York, 1992. ACM.
W. Eckerson. Performance dashboards: measuring,
monitoring, and managing your business. Wiley, 2005.
S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. Seesoft
- A tool for visualizing line oriented software statistics.
IEEE Trans. on Software Engineering,
18(11):957-968, 1992.
J. B. Ellis, S. Wahid, C. Danis, and W. A. Kellogg.
Task and social visualization in software development:
Evaluation of a prototype. In CHI ’07: Proc. of the
Conf. on Human factors in computing systems, pages
577-586, New York, 2007. ACM.
T. Erickson and W. A. Kellogg. Social translucence:
An approach to designing systems that support social
processes. ACM Trans. on Computer-Human
Interaction, 7(1):59-83, 2000.
J. Froehlich and P. Dourish. Unifying artifacts and
activities in a visual tool for distributed software
development teams. In ICSE ’04: Proc. of the 26th
Intl. Conf. on Software Engineering, pages 387-396,
Washington, DC, 2004. IEEE.

374

[10] R. Frost. Jazz and the Eclipse way of collaboration.
IEEE Software, 24(6):114-117, 2007.

C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
CSCW °04: Proc. of the Conf. on Computer supported
cooperative work, pages 72-81, New York, 2004. ACM.
M. R. Jakobsen, R. Fernandez, M. Czerwinski,

K. Inkpen, O. Kulyk, and G. G. Robertson.
WIPDash: Work item and people dashboard for
software development teams. In INTERACT ’09:
Proc. of the 12th IFIP TC 13 Intl. Conf. on
Human-Computer Interaction, pages 791-804, Berlin,
Heidelberg, 2009. Springer-Verlag.

R. E. Kraut and L. A. Streeter. Coordination in
software development. Commun. ACM, 38(3):69-81,
1995.

F. Lanubile. Collaboration in distributed software
development. Software Engineering: Intl. Summer
Schools, ISSSE 2006-2008, Salerno, Italy, Revised
Tutorial Lectures, pages 174-193, 2009.

T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: A study of developer work habits. In
ICSE ’06: Proc. of the 28th Intl. Conf. on Software
Engineering, pages 492-501, New York, 2006. ACM.
P. Mi and W. Scacchi. Modeling articulation work in
software engineering processes. In Proc. of the 1st
Intl. Conf. on the Software Process, pages 188-201,
1991.

D. R. Millen, J. Feinberg, and B. Kerr. Dogear: Social
bookmarking in the enterprise. In CHI ’06: Proc. of
the Conf. on Human Factors in computing systems,
pages 111-120, New York, 2006. ACM.

S. Murugesan. Understanding Web 2.0. IT
Professional, 9(4):34-41, 2007.

T. O’Reilly. What is Web 2.0: Design patterns and
business models for the next generation of software,
2005.
http://oreilly.com/web2/archive/what-is-web-20.html.
D. E. Perry, N. Staudenmayer, and L. G. Votta.
People, organizations, and process improvement. [EEE
Software, 11(4):36-45, 1994.

A. Sarma, Z. Noroozi, and A. van der Hoek. Palantir:
raising awareness among configuration management
workspaces. In ICSE ’03: Proc. of the 25th

Intl. Conf. on Software Engineering, pages 444-454,
Washington, DC, 2003. IEEE.

A. Sarma and A. van der Hoek. Towards awareness in
the large. In ICGSE °06: Proc. of the Intl. Conf. on
Global Software Engineering, pages 127-131, 2006.

B. Sengupta, S. Chandra, and V. Sinha. A research
agenda for distributed software development. In ICSE
’06: Proc. of the 28th Intl. Conf. on Software
Engineering, pages 731-740, New York, 2006. ACM.
M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T.
Cheng, and M. Muller. How software developers use
tagging to support reminding and refinding. IEEE
Trans. on Software Engineering, 35(4):470-483, 20009.
C. Treude and M.-A. Storey. How tagging helps bridge
the gap between social and technical aspects in
software development. In ICSE ’09: Proc. of the 81st
Intl. Conf. on Software Engineering, pages 12—22,
Washington, DC, 2009. IEEE.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

24]

[25]

