
Bridging Lightweight and Heavyweight Task Organization:
The Role of Tags in Adopting New Task Categories

Christoph Treude, Margaret-Anne Storey
Dept. of Computer Science, University of Victoria

ctreude@uvic.ca, mstorey@uvic.ca

ABSTRACT
In collaborative software development projects, tasks are of-
ten used as a mechanism to coordinate and track shared
development work. Modern development environments pro-
vide explicit support for task management where tasks are
typically organized and managed through predefined cate-
gories. Although there have been many studies that ana-
lyze data available from task management systems, there
has been relatively little work on the design of task manage-
ment tools. In this paper we explore how tagging with freely
assigned keywords provides developers with a lightweight
mechanism to further categorize and annotate development
tasks. We investigate how tags that are frequently used
over a long period of time reveal the need for additional
predefined categories of keywords in task management tool
support. Finally, we suggest future work to explore how
integrated lightweight tool features in a development envi-
ronment may improve software development practices.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environ-
ments—Integrated environments; D.2.9 [Software Engi-
neering]: Management—Programming Teams

General Terms
Human Factors

Keywords
Collaboration, Software Development, Annotations, Tags

1. INTRODUCTION AND MOTIVATION
Effective task management is essential to the success of

software development projects. In modern development
platforms such as IBM’s Jazz1 or Microsoft’s Visual Stu-

1https://jazz.net/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

dio Team System2, tasks are the fundamental mechanism to
track and coordinate development progress and workflows.
Tasks are the hub for linking development artifacts such as
builds or source code, and they typically provide the inter-
face for integration with other systems3.

Task management systems have traditionally focused on a
limited set of categories per task, such as task summary and
description, a unique id, the creator and the owner of the
task as well as priority and severity. As modern integrated
development environments (IDEs) add explicit support for
collaboration, fields such as comments and tags have been
added to the set of common categories of a development
task. While there has been some research on how to improve
the quality of development tasks from the perspective of a
bug reporter (e.g. [2]), there is surprisingly little work on
task management. Categories of development tasks such as
priority and severity are often taken for granted and rarely
questioned. A notable exception is a study by Herraiz et
al. [5]. Based on the observation that there are fewer clusters
of tasks than severity levels, the authors conclude that there
is a need to simplify the category set of a development task.

Development task categories such as priority and status
can be seen as heavyweight in the sense that there is a lim-
ited and formally defined set of values that can be assigned
to each of them. Changing this set of values is often im-
possible as it affects the entire project and would require
updating all tasks in a system. On the other hand, with the
shift towards built-in support for collaboration, lightweight
collaboration functionalities such as tags and comments have
been added as an additional way to categorize tasks. In a
recent study on the use of social tags for development tasks
in IBM’s Jazz environment [16], we found that developers
used the tagging field to organize tasks. In particular, we
found that tags such as “linux”, “windows” or “testing” were
used to overcome the lack of a corresponding task category.

In the research proposed here, we examine this phe-
nomenon in more detail. We use mailing list data and quan-
titative data on the use of tags over time to analyze the
relationship between the use of heavyweight and lightweight
features. We define heavyweight features as task categories
such as priority and severity that have a set of predefined
values to choose from; and we define lightweight features as
properties that do not have any formal processes attached
to their creation or modification, such as tags. In addition,
we analyze qualitative data from two interviews.

2http://msdn.microsoft.com/teamsystem/
3In this paper, development tasks, bug reports and work
items are considered synonyms.

231

Our preliminary results confirm that there are instances
of tags being adopted into categories. Ultimately, this re-
search can inform the design of task management systems,
and it can make the role of tags in bridging lightweight and
heavyweight task organization more explicit.

The remainder of this paper is structured as follows. Re-
lated work is summarized in Section 2. In Section 3, we
identify our research questions and describe our research
methodology. We report and discuss our preliminary find-
ings in Section 4 and Section 5. Section 6 describes the lim-
itations of our approach before we outline the impact and
future work in Section 7.

2. BACKGROUND AND RELATED WORK
Research related to this work can be divided into work on

tags in software development and work on task management.

Tags in Software Development.
The popularity of social tagging is closely related to the

bottom-up nature of tags: tags do not have to be predefined,
every user can choose their own tags, and the number of tags
per item is arbitrary. Based on these characteristics, tags are
used to classify items in an informal manner, and they stand
in contrast to formal top-down classification mechanisms.

The use of tags by software developers raises the question
of how the informal nature of tags affects software develop-
ment processes. Social tagging in software development has
not been researched extensively yet. The tool TagSEA (Tags
for Software Engineering Activities) described by Storey et
al. [15] uses the ideas of social tagging to support coordina-
tion and communication in software development. TagSEA
allows tagging of locations in source code – called waypoints
– and artifacts such as files. A case study [14] showed that
TagSEA provides the user-defined navigation structures that
are lacking in traditional task annotations. As a complemen-
tary approach, the tools Concern Graphs [11] and Concern-
Mapper [12] enable developers to associate parts of source
code with high level concerns that are defined as needed
by the user. In their research on pre-requirements analysis,
Ossher et al. [9] explore how tags can be hardened as the
requirements emerge.

In our recent empirical study on the use of tags in the work
item component of IBM’s Jazz [16], we showed that tagging
was eagerly adopted by a large project team of 175 develop-
ers. Tagging had become a significant part of many informal
processes such as life-cycle management and the identifica-
tion of cross-cutting concerns. In this paper, we focus on
one aspect identified in this earlier study: the adoption of
new task categories based on tags.

Task Management Systems.
Task management systems play a key role in software de-

velopment processes, and their use has been studied by sev-
eral researchers. Many of these studies focus on mining and
analyzing quantitative data to reveal information about a
system’s evolution [7] or to predict future behaviours [1, 10].
Ellis et al. [3] report results from interviews of how develop-
ers use Bugzilla, a popular task management system. The
motivation for their study was to design a visualization tool
for tasks. One of their key findings was that Bugzilla played
a key role in project management. Sandusky et al. con-
ducted a qualitative analysis of an open source task reposi-

tory to describe how negotiation plays a role in coordination
activities [13]. Bettenburg et al. also report a study to eval-
uate the effectiveness of bug reports [2].

Compared to the large number of studies that analyze
data available from task management systems, there is lit-
tle work on the design of task management systems. In a
study on bug tracking systems, Just et al. [6] revealed sev-
eral hurdles in reporting and resolving bugs. They present
several recommendations for task management systems, in-
cluding contextual assistance, reminders to add information,
and assistance to collect and report crucial information to
developers. By focusing on summaries of bug reports, Ko et
al. [8] found that summaries generally describe a software
entity or behaviour, its inadequacy and an execution con-
text. They suggest new designs for more structured tasks.
However, there is no previous work on using tags to identify
potential task categories in task management systems.

3. RESEARCH METHODOLOGY
This section describes our research methodology by out-

lining our research questions, the research setting, and our
three data collection methods.

Research Questions.

RQ How can tagging play a role in bridging lightweight task
management and heavyweight task management?

1. What role do tags play in the adoption of new
task categories?

2. How can data on the use of tags help determine
the right balance between lightweight and heavy-
weight task organization?

3. How is software developers’ use of tags for task
organization different from the tag use of users
outside of software development?

In this short paper, we focus on the first subquestion.

Research setting.
Our study took place with the Jazz development team

from IBM. The team consists of approximately 150 contribu-
tors in about 30 functional teams, with some teams acting as
sub-teams of larger teams, and many contributors assigned
to multiple teams. The team members are located at 15 lo-
cations worldwide, primarily in North America and Europe.
The developers have been using Jazz for more than three
years and follow the “Eclipse Way” development process [4].
This process, developed by the Eclipse Development team, is
an agile, iteration-based process with a focus on consistent,
on-time delivery of software through continuous integration,
testing, and incremental planning. We used archival data
on the use of tags for development tasks, semi-structured
interviews, and the project mailing lists in our study.

We focused our analysis on the Jazz development team
because it was the first team to use Jazz. Therefore, we were
able to access about three years worth of development data
and we could examine trends over time. IBM’s Jazz was
one of the first development environments to add a social
tagging field to their task management system.

232

Table 1: New categories with their possible values, and the corresponding tags
category allowed possible values tags
How Found Unknown, Customer Use, Self Host, Development, testing, selfhosting/selfhost/self-host

Test, Internal
OS Unknown, Windows, Linux, Mac OS, AIX, Z/OS, windows, linux, mac, aix, ziseries

i5/OS, Other
Client Unknown, Eclipse client, Visual Studio client, eclipse, firefox, ie, safari, browser

Firefox 3.0, Firefox 3.5, Internet Explorer 7,
Internet Explorer 8, Safari 3, Safari 4,
All browsers, Command-line interface, Other

Data collection.
Our methodology followed a mixed method approach, col-

lecting both quantitative and qualitative data to allow for
triangulation. To gather quantitative data on the use of
tags, we accessed the repositories of the team and extracted
65,268 development tasks with a total of 27,252 instances
where a tag was applied to a development task. 1,184 unique
keywords were used for these tags. The data stems from the
time period from June 2006 to April 2009 and covers the
development of the 1.0 release of Jazz as well as most of
the development of the 2.0 release of the client component
Rational Team Concert. The data used in our earlier paper
on tagging [16] was a subset of the data used here.

In addition we examined the mailing lists of the Jazz de-
velopment project to find out which task categories had been
added to the task management system over the period of
three years. We also conducted two interviews focusing on
the role of tags in the adoption of new task categories. We
interviewed one development manager and one developer.
One of our researchers spent seven months on-site over the
last two years, frequently having informal discussions with
developers and observing how they use the task manage-
ment system. The findings gained from our data collection
are mirrored in these observations.

4. PRELIMINARY FINDINGS
Shortly after the 2.0 release of the Jazz client Rational

Team Concert in June 2009, three categories were added to
the task management system. Table 1 shows the category
names as well as the values that can be selected for each of
the categories. We analyzed the tag data to find out which of
the values that could be selected for the new categories had
pre-existed as tags. For most of the values, a corresponding
tag existed. These tags are noted in Table 1.

The assumption that the new categories were added be-
cause of the tags was confirmed through the interviews: “Re-
cently we added some new fields on the work item. For the
defect, we added a client and so forth. So we’re starting
to replace some of the tags. Deprecate some of the tags by
having fields for them in most cases.” This phenomenon was
also described as“training wheels”: “That seems to be almost
training wheels – or it seems to be a way of trying out a field
for work items. [...] Defects have different fields, platform
and other things. And we used to use tags for that, but now
it’s been promoted. That seems to be what tags really get
used for, a cheap way to add fields to work items. I’m not
saying that it’s bad. But I’m saying that that seems to be
how it works out.”

5. DISCUSSION
One of the issues that arises from the adoption of new task

categories based on tags is a large number of categories that
might become overwhelming. As one of our interviewees
pointed out, adding categories that are not always necessary
can have disadvantages: “We’re actually at that point right
now. There’s a client field, I think. There’s something that
lists how the problem was found. So it lists five web browsers,
the CLI, and the Eclipse client. And really, that field should
only apply to work items that deal with the web UI. ’Cause
it was added for the web UI.” It is hard to imagine that
adding a new category would ever be reversed: “I don’t know
how easy it would be to remove attributes from work items,
though. I think that we’ll never lose attributes, we’ll only
gain them.”

An interesting approach is taken by the way labels are im-
plemented in the issue tracker of Google Code4. Their con-
cept of labels is similar to social tagging in other task man-
agement systems. However, the Google Code issue tracker
goes beyond basic labels to support key-value labels. Key-
value labels contain one or more dashes, and the part before
the first dash is considered to be a field name while the
part after that dash is considered to be the value. For each
project, a list of predefined labels and their meaning can
be specified. TagSEA [15] offers similar functionality in a
lightweight way. To our knowledge, the use of labels and
key-value labels in the context of Google Code has not been
studied yet, but it might make the transition between tags
and task categories even easier.

6. LIMITATIONS
As with any chosen research methodology, there are limi-

tations with our choice of research methods. One limitation
lies in the small number of interviewees. However, one of
our researchers spent seven months on-site over the last two
years frequently having informal discussions with developers
regarding their use of tags and the answers in the interviews
were mirrored in his observations.

When the team started using Jazz, the tagging feature
had not been introduced yet. This might have influenced
the specific tagging behaviour. Also, given that the team
was the one implementing Jazz, their willingness to adopt
new technologies might be above-average. However, we have
observed other teams using tags, and we believe that our
conclusions also apply for teams not as biased towards using
new features in Jazz. As more projects adopt Jazz or other

4http://code.google.com/p/support/wiki/
IssueTracker#Labels

233

development environments adopt tagging, additional studies
should be conducted to gain further insights.

The findings from this case study cannot be generalized
beyond the scope of the particular project. However, we
were able to find empirical evidence that tagging can be
useful in the adoption of new task categories. At this early
stage of the research, one of our goals is to explore the ques-
tions we need to ask in order to better understand the role of
tagging in bridging lightweight task management and heavy-
weight task management.

7. IMPACT AND FUTURE WORK
We propose to examine the role of tags in bridging heavy-

weight and lightweight task management for software devel-
opers, and we also contribute questions for future research.
Our preliminary results confirm that there are instances of
tags being adopted into categories. This research can lead to
improvements in the structure of tasks in task management
systems. Given the central role of task management in soft-
ware development, it is crucial to optimize this structure.
Tags can be used to experiment with categories in order to
find the ideal balance between lightweight and heavyweight
task organization.

In future work, we plan to investigate this phenomenon
in other development contexts. In particular, studying how
developers use Google Code’s approach with simple labels
and key-value labels will lead to new insights with regard to
task organization. We also plan to study why some popu-
lar tags are not adopted into categories and how new task
categories are used compared to the corresponding tags. An-
other interesting avenue for future research is the application
of machine learning techniques to help decide on the right
balance between lightweight and heavyweight approaches to
task organization.

Acknowledgments
We wish to thank the team that granted us access to their
repositories and conducted interviews with us. This research
is supported by a fellowship from IBM. We also appreciate
comments from Lars Grammel and Nancy Songtaweesin that
helped improve the paper.

8. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? In ICSE ’06: Proc. of the 28th Intl. Conf.
on Software Engineering, pages 361–370, New York,
NY, USA, 2006. ACM.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In SIGSOFT ’08/FSE-16: Proc. of the
16th SIGSOFT Intl. Symposium on Foundations of
Software Engineering, pages 308–318, New York, NY,
USA, 2008. ACM.

[3] J. B. Ellis, S. Wahid, C. Danis, and W. A. Kellogg.
Task and social visualization in software development:
evaluation of a prototype. In CHI ’07: Proc. of the
SIGCHI Conf. on Human factors in computing
systems, pages 577–586, New York, NY, USA, 2007.
ACM.

[4] R. Frost. Jazz and the Eclipse way of collaboration.
IEEE Software, 24(6):114–117, 2007.

[5] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona,
and G. Robles. Towards a simplification of the bug
report form in eclipse. In MSR ’08: Proc. of the
Intl. working Conf. on Mining software repositories,
pages 145–148, New York, NY, USA, 2008. ACM.

[6] S. Just, R. Premraj, and T. Zimmermann. Towards
the next generation of bug tracking systems. In
VLHCC ’08: Proc. of the Symp. on Visual Languages
and Human-Centric Computing, pages 82–85,
Washington, DC, USA, 2008. IEEE.

[7] H. Kagdi, J. I. Maletic, and B. Sharif. Mining software
repositories for traceability links. In ICPC ’07:
Proc. of the 15th Intl. Conf. on Program
Comprehension, pages 145–154, Washington, DC,
USA, 2007. IEEE.

[8] A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic
analysis of how people describe software problems. In
VLHCC ’06: Proc. of the Visual Languages and
Human-Centric Computing, pages 127–134,
Washington, DC, USA, 2006. IEEE.

[9] H. Ossher, D. Amid, A. Anaby-Tavor, R. Bellamy,
M. Callery, M. Desmond, J. De Vries, A. Fisher,
S. Krasikov, I. Simmonds, and C. Swart. Using
tagging to identify and organize concerns during
pre-requirements analysis. In EA ’09: Proc. of the
ICSE Workshop on Aspect-Oriented Requirements
Engineering and Architecture Design, pages 25–30,
Washington, DC, USA, 2009. IEEE.

[10] T. Ostrand and E. Weyuker. A tool for mining
defect-tracking systems to predict fault-prone files.
IEE Seminar Digests, 2004(917):85–89, 2004.

[11] M. P. Robillard and G. C. Murphy. Concern graphs:
finding and describing concerns using structural
program dependencies. In ICSE ’02: Proc. of the 24th
Intl. Conf. on Software Engineering, pages 406–416,
New York, NY, USA, 2002. ACM.

[12] M. P. Robillard and F. Weigand-Warr.
Concernmapper: simple view-based separation of
scattered concerns. In eclipse ’05: Proc. of the
OOPSLA workshop on Eclipse technology eXchange,
pages 65–69, New York, NY, USA, 2005. ACM.

[13] R. J. Sandusky and L. Gasser. Negotiation and the
coordination of information and activity in distributed
software problem management. In GROUP ’05:
Proc. of the Intl. Conf. on Supporting group work,
pages 187–196, New York, NY, USA, 2005. ACM.

[14] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby.
Shared waypoints and social tagging to support
collaboration in software development. In CSCW ’06:
Proc. of the 20th anniversary Conf. on Computer
supported cooperative work, pages 195–198, New York,
NY, USA, 2006. ACM.

[15] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T.
Cheng, and M. Muller. How software developers use
tagging to support reminding and refinding. IEEE
Trans. on Software Engineering, 35(4):470–483, 2009.

[16] C. Treude and M.-A. Storey. How tagging helps bridge
the gap between social and technical aspects in
software development. In ICSE ’09: Proc. of the 31st
Intl. Conf. on Software Engineering, pages 12–22,
Washington, DC, USA, 2009. IEEE.

234

