
Improving Tool Support for Software Reverse

Engineering in a Security Context

Brendan Cleary1, Christoph Treude1, Fernando Figueira Filho1,
Margaret-Anne Storey1, and Martin Salois2

1 Dept. of Computer Science, University of Victoria
Victoria, BC, Canada
bcleary@uvic.ca

2 Defence Research and Development Canada – Valcartier
Quebec, QC, Canada

martin.salois@drdc-rddc.gc.ca

Abstract. Illegal cyberspace activities are increasing rapidly and many
software engineers are using reverse engineering methods to respond to
attacks. The security-sensitive nature of these tasks, such as the un-
derstanding of malware or the decryption of encrypted content, brings
unique challenges to reverse engineering: work has to be done offline, files
can rarely be shared, time pressure is immense, and there is a lack of tool
and process support for capturing and sharing the knowledge obtained
while trying to understand assembly code. To help us gain an under-
standing of this reverse engineering work, we conducted an exploratory
study at a government research and development organization to explore
their work processes, tools, and artifacts [1]. We have been using these
findings to improve visualization and collaboration features in assem-
bly reverse engineering tools. In this talk, we will present a review of
the findings from our study, and present prototypes we have developed
to improve capturing and sharing knowledge while analyzing security
concerns.

Keywords: malware, reverse engineering, empirical study.

1 Introduction

In his 1987 article [3], Cohen coined the term “computer virus” to describe self-
reproducing programs designed to infect other computer programs. At that time,
computer viruses were created for experimentation purposes or merely for fun,
therefore causing little damage to real world systems [6].

Today’s landscape shows us a different scenario. Computers are widely used
in criminal activities such as bank fraud, identity theft, and corporate theft.
According to a recent Symantec report [10], 2011 saw more than 187 million
identities exposed in data breaches caused by hacking, and 93% more vulnera-
bilities related to mobile platforms—up to 315 in 2011 from 163 in 2010.

D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC/HCII 2013, LNAI 8027, pp. 113–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



114 B. Cleary et al.

Illegal activities in cyberspace affect national security and threaten citizen’s
rights and privacy, thus having significant political, economic, and social impli-
cations [1]. Organized cyber groups typically communicate using cryptographic
protocols and store information using encrypted files or systems. As a counter-
measure against cybercrime, government institutions and business organizations
have been using reverse engineering methods to analyze malicious code and break
into password protected file systems.

This paper summarizes the findings of a first-of-its-kind field study we con-
ducted with security engineers working in a government research and develop-
ment organization [11] and looks at how we are incorporating these findings into
tools designed to assist security engineers performing exploitability analysis [2].

Our study shows that security engineers have a unique work environment and
experience significant challenges with urgency, documentation, and a limited
ability to share information. Overall, security engineers have special needs in
terms of time sensitivity, coordination, communication, and documentation.

2 Field Study Overflow

Our field study was conducted as an exploratory qualitative study. We conducted
seven semi-structured interviews with engineers at a government research and
development organization tasked with understanding targeted malware. For the
remainder of this paper, we use P1 to P7 to refer to the participants of our study.
A full description of the methodology can be found in [11]

To gain a comprehensive understanding of software reverse engineering in a
government security context, our research questions focus on processes, tools,
and artifacts:

1. What processes are part of reverse engineering in a security context?
2. What tools are being used?
3. What artifacts are being created and shared?

3 Summary of Findings

In this section, we present a summary of our findings from [11], subdivided for
each research question posed in Section 2.

3.1 Processes

Based on the interview data, we identified five processes that are part of reverse
engineering in a security context.

Analyzing. Analyzing assembly code is at the heart of most reverse engineer-
ing projects. Typical projects include the detection of malware, such as trojan
horses, or the decryption of encrypted file systems. Assembly code is more diffi-
cult to understand than source code written in high-level programming languages



Software Reverse Engineering in a Security Context 115

because the code is less structured, often lacks meaningful symbols or data defi-
nitions, and allows for tricks that can mislead reverse engineers in their analysis
efforts. Following the flow of data is challenging: “Understanding the data flow
is a big part of understanding a program.”P4

Documenting. Documenting reverse engineering has several purposes. Some
documentation is done to provide cognitive support for the reverse engineers at
the time of the analysis, some documentation is meant to capture the reverse
engineers’ own understanding of the code, and other documentation is meant to
be shared either with team members or outside stakeholders. While it is already
difficult to document source code written in high-level programming languages,
it is even more difficult when dealing with assembly code. During the exploration
of the assembly code, most reverse engineers document just enough information
to be able to resume a task and do not document the paths that were explored
without success.

Transferring Knowledge. Transferring knowledge is a challenge in reverse
engineering. Documentation alone is often not enough to understand the work
that has been completed by somebody else: “[I would] look at a version with
comments, but I’d still need to jump through to understand.”P7 In the current
setting, information is usually passed on verbally or via email and chat. These
mechanisms do not scale beyond groups of about five reverse engineers. To solve
some of these issues, the idea of a workflow would be useful: “Right now it’s be-
ing done like a craft, and we’d like to have some kind of assembly line”P4. How-
ever, workflows are not consistent for all cases, and most workflow support tools
are too constraining. In addition, documentation conventions and information
sharing standards could improve the reverse engineering process: “Respecting
conventions [would make it] easier to pass from one project to another.”P2

Articulating Work. Articulating work consists of all the items needed to coor-
dinate a particular task, including scheduling sub-tasks, recovering from errors,
and assembling resources [4]. In reverse engineering, where tangible results are
only produced when a path of exploration is successful, constantly re-doing work
is a problem. Work was usually divided based on different pieces of hardware, dif-
ferent vulnerabilities, different functions, or different files. Relating information
from the analysis of different pieces of the problem was very difficult.

Reporting. When external stakeholders are involved, the final step in a project
is reporting the results of the reverse engineering activities. In some cases, report-
ing includes a great deal of articulation work, especially when artifacts can be
co-opted as reports: “Instead of writing a report we shared a Word document.”P6

3.2 Tools

Tools used by the participants in our study can be classified as disassemblers,
office productivity and visualization tools, and communication and coordination
tools.



116 B. Cleary et al.

Disassemblers. Most of the reverse engineering work is performed using IDA
Pro1. IDA Pro is a commercial product that performs automatic code analysis
and offers interactive functionality to support the understanding of disassembly.
Reverse engineers typically start with an automatically generated disassembly
listing, then rename and annotate sections in the listing until they understand
the code. Debuggers are rarely used for malware in the early stages of analysis
since portions of the code required for execution are often missing or because of
the need to first remove anti-debugging tricks used by the malware. As one of
our interviewees described it, the main analysis tool used by reverse engineers
in the security context is “brain power”P6.

Office Productivity and Visualization Tools. Most of the documentation
is written using Microsoft Word, Excel, or OneNote. UML sequence diagrams
are usually drawn to represent control flow understanding. However, the reverse
engineers had “trouble finding good tools that draw graphs and make it easy
to navigate and export graphs”P1. Paper was also used, primarily for workflow
support, small graphs, and articulation work.

Communication and Coordination Tools. For communication, only basic
tools, such as e-mail and chat, were used. Our interviewees work in a co-located
setting that allows face-to-face communication, but data sharing is complicated
by the nature of the classified work. Interviewees coordinated work using tools
such as wikis, bug trackers, and shared documents.

3.3 Artifacts

Artifacts created during the reverse engineering process in our setting consist of
annotations, artifacts created for cognitive support, and reports.

Annotations. IDA Pro supports two notions of annotations: repeatable and
non-repeatable. A repeatable annotation will appear attached to the current item
as well as other items referencing it. Non-repeatable annotations only appear
attached to the current item2. In addition, pre-comments and post-comments
can be attached to lines and functions. All annotations also show up in the IDA
Pro dependency graph.

The reverse engineers used annotations for several reasons: to keep track of
variables, to rename functions, to document jumps, and to record where a partic-
ular piece of code was reading from or writing to. However, one of the challenges
is that annotations are always incomplete: “When you document stuff you tend
to skip stuff that’s obvious at the time.”P6

Cognitive Support Artifacts. Depending on the use case, different docu-
ments are created by the reverse engineers to aid their cognition. These include:

1 http://www.hex-rays.com/idapro
2 http://www.hex-rays.com/idapro/idadoc/480.shtml



Software Reverse Engineering in a Security Context 117

memory maps, Excel or Word tables showing register usage and boot processes,
data flow diagrams, sequence diagrams, and scripts. A common scenario is when
an engineer needs to keep track of different paths that are being explored in
order to understand a particular piece of code. One of our interviewees used
Microsoft OneNote to do that: “I also used OneNote in other projects to keep
track of paths that way. The last line in the OneNote document was the last path
[that I had] explored.”P6

Reports. Companies focused on malware, such as Symantec, frequently create
reports that provide an overview of how a particular piece of malware works.
Such reports rarely include enough detail to understand the inner workings of
the malicious program, mostly because security companies do not want to reveal
their insights to malware writers. In contrast, reports produced in our study set-
ting had more technical content, and often included assembly code for functions
as well as detailed descriptions of all input and output parameters.

4 Discussion of Challenges

Each work process described in the last section involved a different set of tools.
These tools, in turn, were used to produce artifacts in distinct, non-interoperable
formats. Therefore, moving from one process to another required a lot of man-
ual work. By moving from the analysis to the documentation, engineers produce
artifacts that would help them resume their own tasks, as well as transfer their
knowledge to other team members. For example, reverse engineers have tried us-
ing wiki-based systems for sharing mixed content (e.g., details on how particular
hardware works, including pieces of code). However, wikis have shortcomings
when navigating code and related artifacts: “Wikis are very document like, not
ideal for documenting code – some kind of graph tool would have been better.”P1.
Overall, even when knowledge sharing was encouraged, reverse engineers faced
a lack of proper tools to pass information along to others: “There’s also stuff
that we don’t know how to document.”P1. Navigation is particularly a challenge
when dealing with different documents such as the cognitive support artifacts
mentioned above. A map of all documents and their connections usually only
exists in the reverse engineer’s head.

To articulate their work and break problems into pieces, engineers often fol-
lowed a divide-and-conquer strategy: “We go after different pieces. The problem
is how to share information then... different people have different processes.”P2.
This poses an interesting phenomenon: there is no general process in the work
of security reverse engineers. The following factors would influence this
phenomenon:

Task Complexity. Tasks, such as blocking malware and breaking into secure
devices, often include unsolved problems, thus requiring the use of different
approaches, tools, and skills.



118 B. Cleary et al.

Security. The security context further obstructs the reverse engineers’ work.
Classified information cannot be easily shared, and for classified tasks, the re-
verse engineers are only allowed to work on classified, often un-networked, equip-
ment. Often, information cannot be transported since it could belong to different
projects, security classifications, or machines. Even for unclassified contexts, such
as malware, the nature of the code prohibits easy sharing to prevent further in-
fection. This also means that a lot of the work has to be completed offline, and
access to web resources is very limited. Most of the reverse engineers in our study
worked by themselves, often for security reasons: “I’m the only one allowed to
look at it [...] You don’t want others to be infected [with malware]”P2.

Time Constraints. The amount of time pressure depends on the scenario.
Some projects have the goal of understanding everything about a particular piece
of software and are usually completed without time pressure. In other scenarios,
only a couple of weeks are allocated for a particular project in order to provide
a fast response to a potentially harmful threat. In the latter case, the reverse
engineers have to prioritize what they are working on. In the example of malware:
“[We have] four goals when dealing with malware: detect, block, remove, [and]
understand everything. Usually [the process] stops after the third step.”P7 The
amount of documentation produced depends on the extent of the time pressure.
Long-term projects without time pressure yield more documentation, whereas
for short-term projects, there is often not enough time to document thoroughly:
“If you put too much documentation, you won’t have enough time to finish.”P2

Tool Constraints. A graph is often the best way to capture a certain aspect
of a reverse engineering problem, but it is difficult to deal with different types
of diagrams. One of our interviewees told us that he sometimes spends up to
100 hours creating a single diagram. Also, the graphs produced are usually not
linked to the disassembly, thus losing traceability. There is a shortage of tools
that span different aspects of reverse engineering, such as hardware specifications
and assembly code. The reverse engineering is also limited by memory since tools
rarely scale beyond executables larger than a few megabytes.

5 Application of Findings

To demonstrate how these insights into the work practices of security engineers
can be incorporated into tool design we, present Atlantis, a tool designed to
assist software security engineers performing program exploitability analysis [2].

Exploitability analysis is the process of determining if a given program may
be susceptible to exploitation. One way of determining if a program may have
a hidden vulnerability is to: attempt to make the program crash (through a
process called fuzzing [9]), trace the program (either by instrumention or an
external tracer), and then analyze the resulting execution traces. While this



Software Reverse Engineering in a Security Context 119

process can be somewhat automated, assessing the actual exploitability of a crash
and performing root cause analysis requires a great deal of human reasoning and
manual analysis of the very large trace files generated.

Atlantis is an integrated assembly trace analysis environment designed to as-
sist security engineers perform and manage this analysis. Atlantis was developed
in collaboration with software security engineers to meet their requirements, and
its design was informed by the work processes summarized in 3.1. Here we reuse
these processes to structure our discussion of the features Atlantis offers.

Fig. 1. Atlantis

5.1 Analyzing

With the advent of new tracing technologies (e.g. BitBlaze [7], Pin [5]) we believe
analyzing trace files will become the primary task performed by engineers when
conducting exploitability analysis of a program. Currently, engineers rely on off-
the-shelf text editors and file comparison tools to analyze traces. Atlantis (Figure
1) improves on these tools by providing three customized and linked views: a
dedicated Trace Text Viewer, a Trace Visualization View, and a Memory State
View which work in concert to allow the engineer to perform their analysis.

1. The Trace Text Viewer is a simple text viewer and comparison tool but
improves on off-the-shelf solutions with features like very large file support,



120 B. Cleary et al.

fast search, trace-specific syntax highlighting, and memory reference high-
lighting.

2. The Trace Visualization View provides engineers with a high-level rep-
resentation of the trace. It was designed to help navigate very large traces
and to provide a visual overview of the entire trace under study.

3. The Memory State View (using an innovative indexing approach) allows
an engineer to reconstruct the entire memory state of the program under
study at any point in the execution trace, in real time.

5.2 Documenting and Reporting

Documenting trace files (like documenting source code or disassembly) is a sim-
ilarly crucial part of exploitability analysis. Engineers document traces both to
support their analysis activities and to capture and share their findings with
other engineers. Atlantis supports this process by providing rich annotation fea-
tures, allowing engineers to attach comments and tags to locations within the
trace.

The Comments View and Tags View provide a way for users to quickly record
hypotheses as they traverse the trace. Building on previous work on tagging in
software development [8], tags allow a user to annotate a particular line and
column (or entire sections) in the trace. There can be multiple occurrences of a
tag and using the Tags View, the user can navigate between all occurrences of a
tag. Tags can also be grouped into different sets and labeled. Comments function
in a similar way but are unique and allow a user to express more complex ideas
about a particular location or section of the trace.

Unlike traditional source code editors, where comments and tags are expressed
in-line with the source, in Atlantis, comments and tags are displayed in a separate
UI layer floating above the Trace Text Viewer and are stored in separate files.
This allows the user to selectively display only particular groups of comments
and tags. For example, a user analyzing a trace might have different comment
groups for different features they are investigating in the trace. Comment and
tag layering allows a user to quickly show or hide all comments from one or both
of those features.

5.3 Transferring Knowledge

Exploitability analysis offers a lot of opportunity for engineers to collaborate
when analyzing traces. Atlantis supports collaboration between engineers by
storing annotations separate from traces, and by making it easier for them to
share and manage trace annotations. This has multiple benefits.

1. Engineers don’t have to share the trace files themselves, but rather just the
annotation files. This can be a significant benefit due to the large size of the
trace files.

2. As the annotation files are simple xml files, engineers can place them under
version control, allowing them to version and share annotations with other
engineers in an organized and traceable fashion.



Software Reverse Engineering in a Security Context 121

3. If multiple engineers are analyzing a trace collaboratively, they can easily
merge annotations from other engineers into their own annotations and then
re-export their annotations to be shared with the group.

5.4 Articulating Work

When performing exploitability analysis, engineers will typically not be working
with just a single trace, but rather a set of multiple types of traces. For exam-
ple, along with ‘failing’ traces that result from program crashes (and which may
demonstrate an exploit), engineers often want to analyze and compare ’passing’
traces (traces which demonstrated correct operation of the program). The At-
lantis Project Management View provides engineers a mechanism for organizing
their exploitability analysis of a program into a project structure (including trace
and annotation files) and to share that project structure with other engineers
through version control. This allows engineers to treat the exploitability anal-
ysis of a program as a coherent, standardized entity in itself, rather than as a
disparate collection of trace files and documentation.

6 Conclusion and Future Work

The work setting of reverse engineers tasked with security-related issues, such as
the dissection of malware or the decryption of encrypted file systems, is unique.
Web resources are often unavailable because work has to be performed offline,
files can rarely be shared to avoid infecting co-workers with malware or because
information is classified, time pressure is immense, and tool support is limited.

In this paper we presented an overview of an exploratory study we con-
ducted [11] to gain an understanding of the work done by security reverse engi-
neers and to understand their processes, tools, artifacts, challenges, and needs.
We also reported on Atlantis, a tool that attempts to incorporate the findings of
that study and is designed to assist software security engineers with identifying
potentially exploitable programs based on analysis of their execution traces. Re-
verse engineering in a security context is a fast-changing environment. New tools
and approaches have to be learned on the spot as hackers and organized cyber
groups constantly create new security threats with implications for national se-
curity. Future work lies in addressing the challenges that we have identified with
improved tools and processes, and in studying their usefulness in the unique
work environment of security reverse engineers.

Acknowledgments. We wish to thank the participants in this study, and Cas-
sandra Petrachenko for her feedback on this paper. This research is funded
through NSERC grant DNDPJ 380607-09 and DRDC Valcartier.



122 B. Cleary et al.

References

1. Choo, K.K.: Organised crime groups in cyberspace: a typology. Trends in Organized
Crime 11, 270–295 (2008)

2. Cleary, B., Painchaud, F., Chan, L., Storey, M.A., Salois, M.: Atlantis - assem-
bly trace analysis environment. In: IEEE 19th Working Conference on Reverse
Engineering, WCRE 2012 (2012)

3. Cohen, F.: Computer viruses: Theory and experiments. Computers & Security 6(1),
22–35 (1987)

4. Gerson, E.M., Star, S.L.: Analyzing due process in the workplace. ACM Transac-
tions on Information Systems 4, 257–270 (1986)

5. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200
(2005)

6. Peterson, T.F.: A History of Hacks and Pranks at MIT. The MIT Press (2011)
7. Song, D., Brumley, D., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome,

J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer security via
binary analysis. In: Proceedings of the 4th International Conference on Information
Systems Security (2008)

8. Storey, M.A., Ryall, J., Singer, J., Myers, D., Cheng, L.-T., Muller, M.: How soft-
ware developers use tagging to support reminding and refinding. IEEE Transactions
on Software Engineering 43 (2009)

9. Sutton, M., Greene, A., Amin, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley (2007)

10. Symantec: Internet security threat report, vol. 17 (April 2012),
http://bit.ly/15nJXO7 (last access: January 3, 2012)

11. Treude, C., Figueira Filho, F., Storey, M.A., Salois, M.: An exploratory study of
software reverse engineering in a security context. In: 18th Working Conference on
Reverse Engineering (WCRE 2011), pp. 184–188 (2011)

http://bit.ly/15nJXO7

	Improving Tool Support for Software Reverse
Engineering in a Security Context

	1 Introduction
	2 Field Study Overflow
	3 Summary of Findings
	3.1 Processes
	3.2 Tools
	3.3 Artifacts

	4 Discussion of Challenges
	5 Application of Findings
	5.1 Analyzing
	5.2 Documenting and Reporting
	5.3 Transferring Knowledge
	5.4 Articulating Work

	6 Conclusion and Future Work
	References




