
Work Item Tagging: Communicating Concerns
in Collaborative Software Development

Christoph Treude and Margaret-Anne Storey

Abstract—In collaborative software development projects, work items are used as a mechanism to coordinate tasks and track shared

development work. In this paper, we explore how “tagging,” a lightweight social computing mechanism, is used to communicate

matters of concern in the management of development tasks. We present the results from two empirical studies over 36 and 12

months, respectively, on how tagging has been adopted and what role it plays in the development processes of several professional

development projects with more than 1,000 developers in total. Our research shows that the tagging mechanism was eagerly adopted

by the teams, and that it has become a significant part of many informal processes. Different kinds of tags are used by various

stakeholders to categorize and organize work items. The tags are used to support finding of tasks, articulation work, and information

exchange. Implicit and explicit mechanisms have evolved to manage the tag vocabulary. Our findings indicate that lightweight informal

tool support, prevalent in the social computing domain, may play an important role in improving team-based software development

practices.

Index Terms—Tagging, collaboration, software development, task management, articulation work, work items.

Ç

1 INTRODUCTION AND MOTIVATION

SOFTWARE development is among the most complicated
tasks performed by humans [26]. In a typical software

development process, developers perform several different
activities: They use numerous tools to develop software
artifacts ranging from source code and models to docu-
mentation and test scenarios, they use other tools to manage
and coordinate their development work, and they spend a
lot of time communicating with other members on their
team. Most tools used by software developers in their daily
work are tailored toward individual developers and hardly
support team work. However, software is rarely developed
by individuals and the success of software projects largely
depends on the effectiveness of communication and
coordination within teams [26].

In recent years, academia and industry have started to

develop team-aware tools that support communication and

cooperation in one way or another. Among those tools,

there are comprehensive development environments, such

as IBM’s Jazz [12], and tools that only focus on certain

aspects, such as groupware (e.g., INCOME/STAR [29]). As

these tools are brought into the mainstream, the tension of

balancing support for formal engineering practices with the

informal social aspects of a team becomes obvious. Indeed,

a key finding from the Computer Supported Cooperative

Work (CSCW) research community is that tools that ignore

emergent work practices and social aspects of a tool’s use

frequently fail (for example, see [17]). Thus, a challenge for

the software engineering tool community is to develop tools
that support both aspects.

Balancing formal and informal user needs is particularly
important for task management in a sociotechnical system.
Tasks are important cogs in the development process
machine that need to be carefully aligned with one another,
both in what they achieve and in their timing. Since tasks
crosscut both technical and social aspects of the develop-
ment process, how they are managed will have a significant
impact on the success of a project.

Software development environments typically have ex-
plicit tool support for managing tasks. For example, Jazz has
tool support for managing “work items,” where a work item
is a generalized notion of a development task (see Fig. 1).
Work items are assigned to developers, are classified using
predefined categories, and may be associated with other
work items. Jazz work items also have informal tool support
to address social aspects. Specifically, Jazz supports a
discussion thread and a lightweight “tagging” mechanism.
Using this latter feature, developers can freely associate
user-defined keywords with work items.

We report the results from two empirical studies on the
practice of tagging work items within Jazz. In our case
studies, we examine how industrial software development
teams use tags for work items, both for individual use and
for collaboration. We gathered data through the inspection
of the project repositories and by conducting interviews
with developers on different teams. Our main contribution
is the identification of different ways in which tags support
informal processes in software development by filling the
gap between social and technical aspects of artifacts. We
explore how tagging supports collaboration in various
ways. Furthermore, we examine how tagging was adapted
by software developers to suit their needs and we identify
potential tool enhancements.

The remainder of this paper is structured as follows: In
Section 2, we discuss related work on informal processes in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012 19

. The authors are with the Department of Computer Science, University of
Victoria, PO Box 3055, STN CSC, Victoria, BC V8W 3P6, Canada.
E-mail: {ctreude, mstorey}@uvic.ca.

Manuscript received 2 Mar. 2010; revised 2 July 2010; accepted 1 Oct. 2010;
published online 18 Oct. 2010.
Recommended for acceptance by J.M. Atlee and P. Inverardi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2010-03-0058.
Digital Object Identifier no. 10.1109/TSE.2010.91.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

software development and provide background on tagging.
The tagging feature in IBM’s Jazz is introduced in detail in
Section 3. Our research questions are presented in Section 4
and Section 5 discusses our methodology. Sections 6 to 9
comprise the main part of this research and describe how
tagging of work items has been adopted, what role it plays
in software development processes, how it supports
collaboration, and how tool support for tagging can be
improved. The limitations of our studies are presented in
Section 10. Our work is concluded in Section 11.

2 BACKGROUND AND RELATED WORK

Work related to our research can be divided into two main
areas: research on the social aspects of software develop-
ment and research on tagging and its adoption in software
engineering. Our work can be interpreted as the intersection
of these two areas: using tags to support social aspects in
software development.

2.1 Social Aspects in Software Development

As mentioned previously, software development is recog-
nized to be one of the most challenging management tasks
performed by humans [26]. The larger systems become and
the more complicated the compositions of the developing
teams are, the more obstacles there are in the way to the
release of a software system. Since most software systems
are developed by teams, effective coordination and com-
munication are crucial to the success of software projects.

There are at least three strands of research that have
considered the impact of social aspects in software devel-
opment: global software development, open source devel-
opment, and knowledge management. Researchers of these
topics recognize that software development processes are
more than writing source code, and that “articulation work”
[28] must be supported in a software engineering project.
According to Gerson and Star [14]: “Articulation consists of
all tasks needed to coordinate a particular task, including
scheduling subtasks, recovering from errors, and assembling
resources.” Other examples of articulation work include

discussions about design decisions, assigning bug fixing
tasks to developers, and deciding on interfaces.

Various challenges related to social aspects in software
development have been identified. These include dealing
with strategic and cultural issues [22], longer development
times when coordinating with remote colleagues [21],
dealing with communication breakdowns such as unclear
dependencies, circular dependencies, and schedule changes
[5], and managing plan failures [34]. In distributed projects,
managing implicit knowledge [27], maintaining awareness
[18], and leveraging expertise [11] can also impact the
success of a project. These many challenges that arise in
team-based software development can be addressed by
better awareness tools and processes, improved commu-
nication practices, implicit and explicit knowledge manage-
ment, as well as support for articulation work.

A key result that has an implication when designing
improved tools or processes is that technical artifacts are
often intertwined and overloaded with social artifacts
during a development project. For example, de Souza et al.
[8] claim that source code is both a social and a technical
artifact and that dependencies not only exist between
artifacts but also between developers. In a previous study
on source code annotations, Storey et al. [40] report on how
annotations are used to document both technical and
articulation activities. Grinter [16] also describes how
configuration management tools are sometimes co-opted
for articulation work, despite the fact that they have
significant shortcomings in supporting articulation work.
She notes insufficient support for individual developers and
teams, and reports challenges from a lack of representation
of the work itself leading to inappropriate assumptions
about the work flow.

Several researchers have studied how teams use issue
tracking systems1 to support their processes and for
managing articulation work. Many of these studies focus
on mining and analyzing quantitative data to reveal
information about the evolution of the system [24] or to
predict future behaviors [2], [30]. Ellis et al. [10] report
results from an interview of how developers use Bugzilla, a
popular bug tracking system. The motivation for their study
was the design of a visualization tool for tasks. One of their
main findings was that Bugzilla played a key role in
managing the project. Sandusky and Gasser conducted a
qualitative analysis of an open source bug repository to
describe how negotiation plays a role in coordination
activities [35]. Bettenburg et al. also report a study to
evaluate the effectiveness of bug reports [3]. By focusing on
summaries of bug reports, Ko et al. [25] found that
summaries generally describe a software entity or behavior,
its inadequacy, and an execution context. They suggest new
designs for more structured tasks.

Although researchers have considered how bug reposi-
tories and issue tracking systems are used for coordinating
work, researchers have not thus far considered how tagging
can be used to support informal activities by a team
coordinating tasks. De Souza et al. [9] conducted an
ethnography with a software development team and found
that tools often create a distinction between private and

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 1. Work item interface in IBM’s Jazz.

1. Such systems are also referred to as defect or bug tracking systems.

public aspects of development. To close this gap, several
informal practices are adopted in order to manage inter-
dependencies between both perspectives. Similarly through
this paper, we wish to consider how tagging is used to
bridge the gap between the technical and social aspects of
work item management. But first we review related
research on tagging and discuss how tagging is currently
used in software development.

2.2 Tagging and Software Development

The concept of tagging, as it is currently used, comes from
the social computing domain. Social computing technolo-
gies, sometimes referred to as Web 2.0, are seeing rapid
adoption by emergent communities on the web. Key
examples include Facebook,2 YouTube,3 as well as commu-
nity-based recommender systems such as CiteULike,4

TripAdvisor,5 and Flickr.6 Tagging is used by many of
these systems and is often referred to as social book-
marking. The success of tags is closely related to their
bottom-up nature: Tags do not have to be predefined, every
user can choose their own tags, and the number of tags per
item is arbitrary. Based on these characteristics, tags are
used to classify items in an informal way, and they stand in
contrast to formal top-down classification mechanisms.

A tagging system consists of three main components
[23], [33]: tag users, the tags themselves, and the objects
being tagged. In most social tagging systems that have been
studied thus far, the items being tagged are often hetero-
geneous and may come from a very large pool of
uncontrolled resources. The typically large number of
creators and users of the tags also tend to be from a very
large uncontrolled population, with varying levels of
expertise. Most systems keep track of who tagged which
object, useful metadata which can be used to infer the
interests of a particular user as well as count how many
times a given tag is assigned to an object (thus providing a
way to reinforce the relevance of tags assigned).

Golder and Huberman [15] and Hammond et al. [19]
provide overviews of tagging systems and classify the main
reasons for user tagging. A common finding across these
studies is that users tag to provide information on an
artifact (e.g., what an artifact is or to refine a category) and
for organizing artifacts. A more detailed study was done
with the photo sharing website Flickr [1]. Robu et al. [33]
examine data from Delicious,7 a social bookmarking site, to
describe the dynamics of collaborative tagging systems.
Their findings indicate that despite the unsupervised
tagging by individual users, coherent and rich categoriza-
tion schemes emerge especially for specialized domains
such as complexity science. Heymann et al. analyzed the
social tagging of books and found that the tagging system
was fairly well consistent, of high quality, and complete
[23]. Sen et al. [36] explore how tagging is used by a
community using the MovieLens recommender system. Sen
et al.’s research questions focus on how personal tendencies

and community influence the creation of tags. Part of the
success of tagging comes from allowing users to define their
own vocabulary [13]. Information retrieval is also enhanced
by community tagging [33].

The introduction of tags into software development
raises the question of how the informality of tagging affects
the process of developing software and how a typical
software development process can take advantage of the
characteristics of tags. Tagging is not a new concept to
software engineering; however, earlier forms of tagging are
not consistent with the social computing notion of tagging
today. Many early uses of the word tagging in software
engineering systems relied on a preexisting controlled
vocabulary. Tags have been used for decades for annotating
check-in and branching events in software version control
systems, as well as for documenting bugs in bug tracking
systems. Also, Brothers’ ICICLE was an early exploration of
tag-like structures with a limited, controlled vocabulary
during code inspection [4].

Due to these inconsistencies on the term tagging, we
define a tag as follows: A tag is a freely chosen keyword or term
that is associated with or assigned to a piece of information. In the
context of software development, tags are used to annotate
resources such as source files or test cases in order to support the
process of finding these resources. Multiple tags can be assigned
to one resource. We use the term tag keyword to indicate the
term that is used (e.g., usability), and the term tag
instance to indicate instances of the tag keyword being
applied to one or more resources.

Tagging, as defined here, has not been extensively
researched in a software engineering context. Some systems
support social bookmarking, for example, Code Snippets8

and ByteMyCode.9 They support social tagging of source
code, but require the user to post code fragments on public
servers before tags can be applied. To aid program
comprehension, Hassan and Holt [20] propose annotating
static dependencies in source code using sticky notes that
contain content recovered from source control systems. A
recent tool that intersects social tagging with software
development is described by Storey et al. [39]. Their tool
Tags for Software Engineering Activities (TagSEA) [38] is a
collaborative tool to support software development and
uses the ideas of social tagging to support coordination and
communication. A case study [37] showed that TagSEA
provides the user-defined navigation structures that are
lacking in traditional task annotations. In contrast to this
bottom-up approach, the tools Concern Graphs [31] and
ConcernMapper [32] enable developers to associate parts of
source code with high level concerns.

Apart from these studies, there is little research on how
the lightweight mechanism of tagging can play a role in
supporting informal activities in software development.
The research described in this paper examines the current
use of tags for task management in software development
projects with the aim to identify potential tool enhance-
ments. For a more general discussion of lightweight tool
support for work activities, we refer to work by Churchill
and Bly [6].

TREUDE AND STOREY: WORK ITEM TAGGING: COMMUNICATING CONCERNS IN COLLABORATIVE SOFTWARE DEVELOPMENT 21

2. http://www.facebook.com/.
3. http://www.youtube.com/.
4. http://www.citeulike.org/.
5. http://www.tripadvisor.com/.
6. http://www.flickr.com/.
7. http://delicious.com/.

8. http://snippets.dzone.com/.
9. http://www.bytemycode.com/.

3 TAGGING IN JAZZ

Jazz is an extensible technology platform that helps teams
integrate tasks across the software life cycle. The software
development team collaboration tool built on top of Jazz is
called Rational Team Concert (RTC). Developers using Jazz
organize their work around so-called work items which can
be interpreted as development tasks. A typical work item as
shown in Fig. 1 consists of a unique number, summary,
description, state, work item type, severity, and priority; the
component it was filed against, the version it was found in,
the creator, and several other details that are optional. The
primary way to organize work items in Jazz is to use the
category hierarchy. The category for each work item is
identified by filling out the Filed Against field. A work item
can only be in one category and the available categories are
defined per project by the development manager. As can be
seen in Fig. 1, there is an optional tag field in which
developers can insert an arbitrary number of tag instances
per work item. The Jazz content assistant suggests tag
keywords with a common prefix that have been used before.
If a developer adds a tag keyword that has not been used
before, a pop-up window appears and asks if this keyword
should be added to the vocabulary. Tag instances are public
to all members of a project team across all components.

Compared to online media tagging and social book-
marking, tagging of work items in Jazz is different in some
important ways. In Jazz, the items being tagged are strictly
homogeneous work items that are created by members of
the Jazz community. Typically, creators of Jazz work items
and tags have some expertise on the underlying software
project and would not be classed as casual users. Jazz also
has the group concepts of team and project within the
community; many tagging systems operate at the level of
individual and community only. Another potentially im-
portant difference is in terms of the metadata associated
with the tag instances and keywords. As mentioned above,
most tagging systems record the user(s) that attached a
particular tag instance to a resource. In Jazz, the tag
instances are added directly to a work item and information
on when the tag instance was added and by whom is not
easily accessible (only through the work item’s history). Tag
instances can also be removed from work items. A tag
instance can only be attached “once” to a given work item
and the creator of the tag instance is not visible in the
default view.

Thus, we may expect our findings to be somewhat
different from the existing results in this area. Our research
questions that explore how the Jazz work item tagging
feature supports collaborative software development are
listed in the next section.

4 RESEARCH QUESTIONS

1. How is the social tagging mechanism adopted by
developers for annotating work items?

a. How does the frequency of new tag instances
vary over the lifetime of a project?

b. How many work items are tagged?

c. How many users tag and how does this number
vary over time?

2. What characteristics of tags are prevalent in the
tagging of work items?

a. Which tag keywords are applied more fre-
quently?

b. What are the different categories of tag key-
words that emerge during a project?

3. What role does the tagging feature play in the work
practices of individual and team developers?

a. Are work item tags used for individual and/or
collaborative use?

b. Why do developers tag work items?
c. How do developers use tags?
d. How are tags managed?
e. How does a team reach consensus on the tag

vocabulary?

5 METHODOLOGY

In the following paragraphs, we outline the setting of our
research as well as the three data collection methods we
used: inspection of archival data available in repositories,
semistructured interviews with software developers, and
ethnographic-style observations.

5.1 Research Setting

Our study took place with several professional develop-
ment teams from IBM.

5.1.1 Case Study 1: Jazz

Our first case study was conducted with the Jazz
development team. The team consists of approximately
175 contributors and about 30 functional teams, with some
teams acting as subteams of larger teams and some
contributors assigned to multiple teams. The team mem-
bers are located at 15 locations worldwide, primarily in
North America and Europe. The developers of the team
have been self-hosting their development since early 2006,
and they follow the “Eclipse Way” development process
[12]. This process, developed by the Eclipse Development
Team, is an agile, iteration-based process with a focus on
consistent, on-time delivery of quality software through
continuous integration, testing, milestones, and incremen-
tal planning. At the time of our data collection, the
developers were working on the 2.0 release of Rational
Team Concert, and they were using the latest milestone
builds of RTC for their development.

5.1.2 Case Study 2: Enterprise Infrastructure (EI)

We replicated our study with a large project team10 of more
than 1,000 members working on four interrelated projects.
They had been using Jazz for about one year and develop
systems mostly for enterprises. They are part of IBM, but
not connected to the Jazz development team. The develop-
ment processes used by these teams range from Scrum to
conventional methods. At the time of our study, the teams
were using RTC 1.0.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

10. The project name is obfuscated for confidentiality reasons.

5.2 Data Collection

Our methodology follows a mixed method approach,
collecting both quantitative and qualitative data. In order
to gather quantitative data on the use of tags in the project,
we accessed the repositories of the development teams and
extracted all relevant information. The amounts of data
extracted for both case studies are shown in Table 1.

Qualitative data were collected through a series of
interviews with developers and through ethnographic-style
observations. All interviews were semistructured, allowing
for follow-up questions and clarifications. Most of the
questions were aimed at understanding the details of why
and how developers use tags.11 In total, 12 interviews were
conducted: six for each case study. For the Jazz case study,
we interviewed the development manager J-M, the project
administrator J-A, one component lead J-C, and three
developers on one team J-D1, J-D2, and J-D3. For the EI
case study, we interviewed one product design lead EI-L, a
development manager EI-M, a release engineer EI-R, and
three developers who also occasionally take the role of
scrum master EI-D1, EI-D2, and EI-D3. All interviews
were conducted in-person at an IBM location and lasted
about 30 minutes each.

In addition, the first author spent seven months at the
Jazz site and two weeks at the EI site as part of an
ethnographic study. He frequently had informal discus-
sions with developers regarding their use of tags and the
answers in the interviews were mirrored in his observa-
tions. The observations were recorded using ethnographic
field notes. The quantitative nature of our repository
analysis and the qualitative nature of the interviews and
observations provided insights for all of our previously
posed research questions.

5.3 Data Analysis

We developed a Jazz plug-in to extract the data related to
tags from the repositories of all development teams in our
studies. The pertinent data we extracted contain all work
items, along with their IDs, creators, creation times,
owners, summaries, descriptions, priorities, severities,
and several other fields. In addition, we extracted the
following data for each instance of a developer applying a
tag to a work item: the time that the tag instance was
created, the tag keyword that was used, the time of
creation, and the creator. Instances of tag keywords being
removed from a work item were also extracted. We created

our ConcernLines tool [41] to help us understand the use
of tag keywords over time. ConcernLines supports the
cognitive process of understanding how the concerns
expressed through tags interrelate by visualizing co-
occurring tag keywords over time.

We coded tag keywords to identify the categories of
keywords that emerged over the duration of the projects.
We coded the tag keywords individually first, and then
confirmed our codes in several collaborative coding
sessions between the two authors of this paper in which
we considered everything we know about each tag key-
word before assigning codes to it. The coding was done
using the bottom-up inductive technique of Corbin and
Strauss [7]. Although there are some findings on the
categories of tags for social bookmarking systems (as
mentioned earlier), we expected to see very different
categories emerge in our study of tagging; thus, we did
not start our coding process with an initial set of codes.
During the tag coding process, we considered all 12 inter-
views we conducted, and we also followed up on key-
words that we were not able to categorize through e-mail
discussions with three of our participants (J-A, EI-R, and
EI-D2). In addition, we read summaries and descriptions of
the work items that were tagged with particular keywords
to confirm our classification. For the Jazz project, we also
accessed the project internal mailing lists as well as the
documentation available on the project website.12 Based on
these codes, we identified more abstract categories in which
we grouped tag keywords using similar codes. Compared
to our earlier work on tag usage in the Jazz project [42], we
were able to identify additional categories and also to refine
the classification.

We also coded the interviews in collaborative sessions.
For some of the research questions such as “Why do
developers tag work items?” the answers we considered
were mainly the answers to that particular question in our
interviews. For other research questions, in particular the
ones regarding the collaborative aspects of work item
tagging, themes emerged through the assignment of codes
to quotes and grouping of codes.

For each interview snippet, sometimes multiple codes
would apply (e.g., consensus, externalization). We then
grouped the quote segments and extracted the most
prominent themes that appeared repeatedly in our inter-
view data. When exploring the interview data, we made use
of the tagging data to help us in the interpretation of the
quotes. For quotes that were unclear, we would check with
Jazz and EI team members on our understanding of their
tagging processes. In our analysis of both the tagging
keywords and the interviews, our field notes from the
ethnographic observations were crucial in helping us make
sense of the data.

6 ADOPTION OF TAGGING

To answer our first research question on the adoption of
tags, we performed an analysis of new tag instances over
time, looking at both the number of tag instances that are

TREUDE AND STOREY: WORK ITEM TAGGING: COMMUNICATING CONCERNS IN COLLABORATIVE SOFTWARE DEVELOPMENT 23

TABLE 1
Data Extracted from Repositories

11. A list of sample questions we asked in the interviews is available at
http://tinyurl.com/WITagging. 12. https://jazz.net/.

applied to work items and the number of individuals
tagging work items.

6.1 Frequency of New Tag Instances

Fig. 2a shows how the number of tag instances added per
day evolves over time in both case studies. The gray line
depicts the actual numbers per day; the black line gives
the value averaged over the last 30 days at any point of
time. The moving average line was added to allow for
easier visual interpretation. The graphs are not signifi-
cantly different when calculating the average for longer or
shorter time intervals. For the Jazz project, the number

increases until mid-2008, then drops, and increases again
toward mid-2009. Both mid-2008 and mid-2009 marked the
two major releases of Jazz. Apart from high tagging
activity in the beginning, the rolling average of tag
instances in the EI case study is stable at around
40 instances per day. Spikes are mostly related to planning
activities such as coordinating which work items should
be included in a particular release.

To see the extent to which the number of new tag instances

depends on the number of new work items, we calculated the

ratio of new tag instances to new work items per day as

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 2. Graphs showing the rate of new tag instances and distinct taggers over time for Jazz and EI. (a) New tag instances per day. (b) New tag
instances versus new work items. (c) Distinct taggers per day.

shown in Fig. 2b.13 For both case studies, the rate does not
change substantially over time, apart from a few spikes.

6.2 Distribution of Tag Instances to Work Items

About 28.5 percent of all work items in Jazz and about
18.8 percent of all work items in EI have been tagged at
least once. The distribution of tag instances to work items
is shown in Fig. 3 for Jazz. The distribution of tag
instances to work items for EI follows the same pattern.

6.3 Number of Tag Users

The number of individuals applying tag instances to work
items over time follows a similar pattern as the number of
tag instances. As shown in Fig. 2c, there are peaks of up to
40 different individuals applying tag instances on the same
day in Jazz, and the only major discontinuities in distinct
users per day occur around the Christmas holidays and
after the release in mid-2008. For EI, the number of distinct
users per day is between 5 and 10 on average, with peaks of
up to 25 users.

In Jazz, 360 contributors have applied at least one tag
instance to a work item. Out of 299 contributors who owned
work items in the last three years, 176 (59 percent) applied
at least one tag instance to a work item. In addition, the
project has a web portal that allows clients to submit new
work items. There were 184 individuals from outside the
company applying tag instances through this web portal.
However, the main tag users were team members from
inside IBM. The top 50 most prolific taggers applied
between 125 and up to more than 3,000 tag instances, using
about 100 different keywords. In EI, 314 (29 percent)
contributors have applied at least one tag instance to a
work item. In total, the EI project has 1,082 members. The
top 25 most prolific taggers applied between 150 and 800 tag
instances, using about 50 different keywords.

These statistics indicate that tags were used continuously
after their initial introduction and that software developers
found them helpful enough to keep using them over a
period of three years. More details on tag usage in support
of informal processes and collaboration are given below.

7 CHARACTERISTICS OF TAG KEYWORDS

This section describes the characteristics of the tag key-
words that our studies revealed. To address this topic, we

looked at our analysis of the tag keywords and instances as
our primary data source, but also used interviews (and
follow-up discussions) to explain and confirm our findings.

7.1 Most Frequently Applied Tag Keywords

In Jazz, 1,184 different keywords have been applied in the
time frame of our case study (May 2006-April 2009). Table 2
shows the 10 most frequently applied tag keywords in Jazz.
Details on the use of tag keywords over time are given
below (see also Fig. 5).

In EI, 673 different keywords have been applied in the
time frame of our case study (November 2008-October
2009). Table 3 shows the 10 most frequently applied tag
keywords. Italicized keywords are obfuscated for confiden-
tiality reasons.

In both case studies, the distribution of instances to tag
keywords has the shape of a “long tail.” The long tail
distribution has been frequently observed in tagging
systems [33], [36].

7.2 Different Kinds of Tag Keywords

Our classification of the tag keywords from both case
studies reveals that different kinds of tag keywords exist in
the projects. Unlike tagging in other applications such as
tagging of photos on Flickr, tags for work items do not
necessarily describe the content of the tagged item. EI-R
describes: “If you look at dev and teamb, they’re not that
descriptive. And conformance

14 wasn’t really used for
that—it doesn’t really describe what the team itself is working
on as opposed to the nature of that specific work item.” EI-D2
adds: “They don’t necessarily describe the content of the work
item, they might link a bunch of [work items] together in a way
that wouldn’t be obvious just from looking at one work item, but

TREUDE AND STOREY: WORK ITEM TAGGING: COMMUNICATING CONCERNS IN COLLABORATIVE SOFTWARE DEVELOPMENT 25

Fig. 3. Distribution of tag instances to work items (log scale) in Jazz.

TABLE 2
Tag Keywords with the Most Instances in Jazz

13. Undefined values resulting from a division by 0 on days with no new
work items are represented as 0 for simplicity reasons.

14. The keyword conformance was used to indicate work items related to
supporting third party systems such as browsers.

TABLE 3
Tag Keywords with the Most Instances in EI

because I know that they kind of all belong to the same initiative
or the same project, they make sense that way. [. . .] Sometimes,
it’s more metainformation than the actual item itself.”

Fig. 4 shows the results of our classification. We
classified the keywords accounting for the “heads” of the
“long tails,” i.e., all keywords that accounted for 80 percent
of all tagging instances in the data. Thus, we classified the
197 most used keywords from the Jazz data and the 77 most
used keywords from the EI data. The keywords we
classified had at least 28 instances each for the Jazz data
and at least 34 instances for the EI data.

We identified 10 categories that apply to both case
studies as shown in Fig. 4. We assigned one category to each
tag keyword. An interesting finding is that despite the
ethnographic-style observations, reading the work items,
interviews with 12 participants, and follow-up e-mail
discussions, there were tag keywords that we were unable
to classify. Those keywords are shown in the rightmost
column—only 26 for the Jazz project and 8 for the EI project.
We describe each category of the classified tag keywords in
the following sections.

7.2.1 Architecture

In both data sets, tags are used to mark work items related to
architecture. These work items are either about the overall
architecture of the product or about integrating the product

with other products. The EI teams depend on external
libraries more than the Jazz team. The tag keyword most
used in the EI project is the acronym for an external library as
explained by EI-L: “That is a company that we were contracting
to [. . .]. So, we’re using their libraries and their library is called
[acronym].”15 Other keywords that fall into the architecture
category are third_party, vs.net, and arch.

7.2.2 Collaboration

All tagging done in Jazz is inherently collaborative as each
developer can see all tag instances applied by other
developers and all resources are shared among the entire
team. Most tag keywords relate to some kind of technical
concern—a component, a requirement, or documentation.
However, some of the tag keywords are about collabora-
tion, i.e., they are used to coordinate collaborative
processes within the development team or to communicate
with other developers.

We found evidence for this in the Jazz data: The keyword
no_code (and the synonym non_code) is used to flag work
items that only include changes to messages, images, or
JavaDoc, but not source code. Shortly before releases, this
keyword is used to communicate to other developers that
working on that particular work item will not affect the

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 4. Number of tag keywords and instances per category (note: different scales for #keywords and #instances).

15. We do not identify the acronym for confidentiality reasons.

functionality of the system as it does not touch the source
code. Another example is fixready. This keyword was
used by one developer to indicate that the fix for a particular
work item was ready, but had not yet been committed due to
a missing approval for a related work item.

In the Jazz project, tags are frequently used to coordinate
changes between different component teams. J-A explains:
“Adoption means that there’s a work item that’s in our bucket
or another bucket for which there’s a change set attached that
someone in another team has to adopt.”

7.2.3 Component

The tag field is also used to refine the work item categories
that Jazz already provides. Compared to the categories,
component-specific keywords can be introduced without
any effort or official conventions: “He could’ve made another
heading for each of [the subcategories]. But, for some reason I
guess, the tagging was probably more open. I guess when you go
and modify something like the spec, something like that; it feels
very administrative, [whereas] this tagging is supposed to be more
fluid” (J-D3). Component-specific keywords are usually
used to categorize work items and their use depends
largely on the presence of other categorization mechanisms.
In both data sets, component-related keywords account for
the highest number of tag instances.

7.2.4 Crosscutting Requirements

Unlike component-specific tag keywords, crosscutting key-
words capture aspects of work items that crosscut the
hierarchy of categories for work items, as J-A explains:
“[Crosscutting tags] are orthogonal to categories. They are—
that’s the beauty of tags—that they are crosscutting. It’s not
about grouping, when we have grouping, things can only be in
one.” Crosscutting tag keywords can be distinguished into
functional requirements and nonfunctional requirements.
Examples for nonfunctional requirements include key-
words such as performance, accessibility, scal-
ability, or responsiveness. On the other hand,
functional requirements that crosscut several components
include internationalization and errorhandling.
The use of tags for crosscutting concerns was more frequent
in the Jazz data.

7.2.5 Documentation

In both projects, tags are used to identify work items that
are documentation related. In the Jazz data, there are
keywords for doc and documentation (synonyms) and
keywords that help with the compilation of the “new and
noteworthy” for each release. The keywords relating to
documentation in the EI data include id (information
delivery), docs, and samples. An example that shows
how powerful the tagging mechanism is for tasks that
require some metadata but that do not require a formal
process is given by J-D1: “I went through a bunch of things that
were tagged with faqable or faq or something like that, so
then when I was done in order to see what I’ve done, I tagged it
with included_in_faq.”

7.2.6 Environment

Software products have to be adjusted to work on particular
browsers or particular operating systems. In both data sets,

a small number of tag keywords has been used to indicate
work items that are related to compatibility. In the Jazz
data, these keywords include linux and ziseries.
Developers in EI use the keyword conformance as EI-L
explains: “So, conformance would be tasks related to
supporting particular things like say, a particular browser, or a
particular database vendor, or a particular app. So, product
managers would come up with a required conformance.”

7.2.7 Idiosyncratic

Among the tag keywords that we classified, two keywords
in the Jazz data set stood out as being idiosyncratic. They are
neither related to a milestone nor are they used to organize
work items according to components or crosscutting con-
cerns. They are used for various reasons and are usually only
used by very few developers. The two idiosyncratic key-
words in the Jazz data are selfhosting and rfe. Self-
hostingwas used in the beginning of the project when Jazz
started to be self-hosted. When the entire project became
self-hosted, the keyword became unnecessary, but at the
time, it was the easiest way of marking work items that
related to the self-hosting aspect in particular. The other
keyword is rfe, which is used to flag work items that were
created by the support team for official customer require-
ments. Again, this is not something that could be expressed
through other work item features, such as priority and
severity, but nevertheless was important to record.

7.2.8 Planning

Tags are used heavily for planning purposes in both case

studies. Keywords such as beta2candidate and com-

mitted-sprint-8 show whether a certain work item is a

candidate to be included in an upcoming release or whether

it has been committed toward that release already. It is

interesting to note that the number of instances per tag

keyword for planning tags is much higher in the Jazz data.

Since the EI teams mostly use Scrum, their “releases” are a

lot more frequent—and include fewer work items.
In both case studies, one particular keyword was used to

flag work items that definitely had to be included in a
particular release. In Jazz, the keyword used for these work
items is mustfix; in the EI data, it is called mandatory.
J-M explains: “I have to say easily, the most used and the most
useful tag has been the mustfix tag, right. Especially when
we’ll sort of—we’re working on some effort and there’s limited
resources, limited time, and it’s like OK, do we really need to fix
this thing or not, right. Irregardless of all the other fields in the
work item that tell you information about that defect, right.
Bottom line is, do we need to fix it or not. And to be honest, this
mustfix tag is usually set by the development manager, right,
based on discussion with other people. And interestingly,
sometimes you see in the work item, they’ll sort of argue, well
not argue, but they’ll ask, they’ll say does this really have to be
mustfix, right.”

Work items are annotated with planning tag keywords
extensively only during a specific period of time as they are
related to a milestone in the development process and
usually have the name of this release in their name, e.g.,
beta2candidate. In Fig. 5, a screenshot of our Con-
cernLines tool [41] shows the time lines of the most used tag
keywords in the Jazz project. Color is used to show the

TREUDE AND STOREY: WORK ITEM TAGGING: COMMUNICATING CONCERNS IN COLLABORATIVE SOFTWARE DEVELOPMENT 27

intensity of tag use on a particular day.16 Planning tag
keywords such as beta2candidate have a relatively
short time line, whereas other keywords such as polish

and ux (user experience) have been used throughout the
entire project. Compared to the other kinds of keywords,
planning related tags are transient.

7.2.9 Testing/Debugging

Tags are also used to coordinate the testing process. In the
Jazz data, keywords such as System Verification Test (svt),
Translation Verification Test (tvt), and Function Verifica-
tion Test (fvt) are prominent, and other keywords such as
buildstatus are used to indicate how a certain bug was
found; as described by J-D1: “Buildstatus is flagging work
items that I’ve created while I [was a release engineer] that have
something to do with the current status of the build. So, if it’s
broken and I’m complaining, I flag it with buildstatus.”
Keywords such as include_in_testplan help coordi-
nate the testing process, and review is used for work items
that contain reviewing work rather than development work.

Testing and debugging plays a less prominent role in the
EI tag data. The only two keywords that fit into this category
from the EI project are quality control (qc) and testing.

7.2.10 Tooling

The developers in our EI case study switched to using Jazz in
the middle of their projects and they did not start using all
features of Jazz right away. Work item tags were helpful in
that situation as they allow the developers to create processes
based on ad hoc artifacts. The keywords that we classified as
tooling are almost exclusively annotations that could have
been made to the work items in Jazz through different tool
features. For example, there were at least 42 instances for
each of the keywords defect, enhancement, and bug. Tag
keywords were also used instead of team areas, as explained
by EI-L: “[Our project] has four teams: team a, team b, team c, and

team d. And each of those, I think we’ve started off the practice of
adding those items and tagging them. And I think that might have
dropped off for some of the other teams, but the team b, it looks like
they stuck with it.” Teamb is the fourth most used keyword in
the EI data. In contrast, tooling-related tag keywords have
not been used by the Jazz team.

8 THE ROLE OF TAGGING

In this section, we discuss the findings for our third
research question on the role of the tagging feature in the
work practices of individuals and teams. To answer this
question, we look primarily at our data from the interviews
and from the ethnography-style observations. We use the
analysis of the archival data to further explain and confirm
our findings from the interviews.

8.1 Tagging Audience: Self, Team, and Community

Although tagging in Jazz is by design a collaborative
feature, as is the case in most tagging systems, it is difficult
to verify if tagging is done to service collaborative or
individual needs. In web-based tagging systems, collabora-
tion is supported [1], [36]. In the previous section, we saw
that at least one category of tag keywords attached to work
items is explicitly about collaboration, e.g., non_code

(communication) and fixready (coordination). For other
categories of tag keywords, our interviews reveal that these
support social as well as individual activities. This category
of tag keywords is not as evident in systems such as Flickr
because the focus in these systems is on navigation and
categorization, rather than on supporting articulation work
which is a crucial aspect of collaborative development.

Some developers predominantly tag to service pressing
individual needs, but also will use them to support
collaboration within the team. As J-D1 says: “I primarily
create them for myself. But with the candidates, for example,
that’s obviously for someone else’s consumption.” However,
other developers see tagging as more of a team activity than

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 5. Screenshot of the ConcernLines tool: Time line lengths of most used tag keywords in Jazz.

16. Colors are shown as shades of gray in this paper.

an individual one, as J-D3 says: “I don’t personally tag work
items for myself that much. But I know when I was doing the
testing for the [component] that [J-D1] wrote and [he] had
basically a tag for each command, so I would follow—I would add
his tags, like his conventions, cause I figured it would be easier for
him, right. And I’m already on the work item when I’m creating
it, so—I would add those as I was creating them.” We also saw
another instance of where a new team creates a list of the
tags already used in a project. Furthermore, J-A discusses
how tagging is not just for the team: “It’s a bit for everybody,
for the team as a whole and for people on the outside.”

From the interviews, we were able to glean that tag
instances are added by feature owners, team managers, and
also other stakeholders such as release managers. For
example, this quote from EI-R demonstrates how an
agreed-upon keyword called mandatory was used to
coordinate work across various team roles: “We had a lot of
features—and we had to determine which ones are mandatory for
the release. And they went through an exercise through all the
features, and for the ones that are mandatory, they actually use the
tag mandatory. So product management, development mostly,
and as well the execution team.” This same developer further
goes on to discuss how tags may be used to support the
articulation work of breaking a task into subtasks and to
support communication from management about high level
features: “It’s mostly the management, but as well, there is
nothing that says development won’t do it. They are the ones mostly
who break some of the stories or work items into smaller items, and
they will tag it appropriately if needed. But mostly the tags are at
the high level, like features and so on, which is mostly feature
owner, the scrum master, or the manager of the component.”

From our analysis of the archival data, we can see that in
addition to team members, 184 community members also
tag work items in the case of Jazz. However, the smaller
participation by the general community members sets apart
the kind of tagging done here from the tagging performed
in Flickr and Delicious.

8.2 Tagging Motivation: Categorization and
Organization

The predominant reason for the use of work item tags is
categorization. As J-C put it: “Mainly as a kind of categoriza-
tion. [. . .] Tags are useful for identifying crosscutting concerns
like performance or accessibility or scalability or responsiveness,
things like that, or testing.” While the Jazz interface already
provides an opportunity to categorize work items (see the
Filed Against field in Fig. 1), tags are more flexible.
The category tree can be altered, but this would change the
available categories for the entire team and does not work for
crosscutting concerns, as EI-D2 notes: “If we’re organizing a
team and we have a bunch of work items that will span different
projects or different logical organizations, tag them all together, so
that I can make one query for all those types of things. [. . .] I find it
works well for things that don’t quite fit into a nice tree hierarchy.”
J-D3 also identified this disadvantage of the top-down
classification: “The problem is its very administrative-side
feeling, which is fine, except it’s not as flexible to just ad hoc
make things.”

The developers we interviewed also recognize the
benefits of tagging over a strict categorization scheme
(which is available for Jazz work items but is strictly

controlled). This one quote from EI-D2 captures how tags
are useful for capturing varying viewpoints: “No, the
category tree you couldn’t make it perfect, because my definition
of perfect would be different from your definition of perfect and
even then, I don’t think in a tree. So, I have a hard time when
browsing a large piece of information where I have to know how
somebody else would categorize it in order to find it. [. . .]
Different companies and different users and even people within
this company are going to use it—and different teams—are going
to use it differently. So, I don’t think you can build sort of a one
size fits all type model for it.”

Tags are also seen as a way to organize work items. J-D1
responded: “[I use tags] because I feel like [work items] should be
organized. I feel like they’re there and so I should use them. [. . .] I
don’t know if they do organize work items, but it makes me feel
like I’m doing something when I associate a tag with it. In theory,
I’d like to believe that tags draw work items that have a similar
area together. That’s my hope.” The organization achieved
through tags is different from other categorization mechan-
isms as described by EI-D2: “It allows me to kind of organize
the work items in a way that is very free form and flexible and so I
can write queries that fit what I’m looking for, rather than the
1,700 different fields that there are and trying to figure that out.
[. . .] The tag stuff is nice and free form, and allows me to think
the way I want to think.”

On the other hand, developers are not forced to use the
tagging feature of work items. For example, EI-D3 explains: “I
didn’t find it useful. It didn’t give me any additional information.”

8.3 Tags in Use: Finding Work Items, Articulation
Work, and Information Exchange

The main use case for tags is finding work items later as
described by J-A: “I use [tags] to categorize things basically, so I
can have queries and find things. I’m afraid of losing work items if
they aren’t [tagged].”

In particular, the developers in charge of assigning work
items to other developers use the tagging feature. In the
agile processes followed by the EI team, this kind of
articulation work is the job of the scrum master. This role
rotates between developers. EI-D1 describes the process: “I
have [. . .] to organize their stories, their tasks, etc. Trying to find
things that fall into their work category. I need to do searches on
them to pull that stuff out of the backlog to propose it to the team.
And [in] doing so, this is the type of queries that I would use the
tags for. [. . .] A lot of times you can get that information through
queries of just the title or the description, but I also like to do the
tags, cause if somebody actually did use them, then it’d be good.
[. . .] So I don’t go searching for those things. I don’t go out trying
to specifically enter these things I should say. But when I’m
creating queries and such like that, I do look to see what’s
available and I will use that.” In this case, tags help for
exploring the work items: “They have led me on paths to
find—or think about other things to search for. So, for example, if
I do a [. . .] search on it, and a [certain tag appears, then I] read up
on that particular item, figure out what it’s involved in, and then
from that, I can do other queries that find items in my component
that will base on that.” Similarly, the release engineer EI-R
uses tags as well: “I rely completely on using these [accessi-
bility] tags [. . .] to pick up on these requests. [..] And we know
when the request comes, through the queries.”

TREUDE AND STOREY: WORK ITEM TAGGING: COMMUNICATING CONCERNS IN COLLABORATIVE SOFTWARE DEVELOPMENT 29

In the Jazz project, the administrator J-A searches for tag

keywords: “For nonfunctional things, like usability—Okay, we

got two weeks to do some things, what are the usability related

enhancements that we have, for example. So, we have a set of work

items, that are enhancements, and some are usability related. So, I

look at those, I go ‘Oh, these are easy. Let’s try and fix these four.’

For example, during the polish phase of the 1.0 release, we had two

weeks to polish. [. . .] So, we had tags like polish and

usability and I use that to kind of guide what work items

we could work on.”
But tags are also used for queries by developers who are

not in charge of assigning bugs. For example, J-C describes:

“I used them the other day, trying to search for [. . .] a list of bugs

against [a related product]. Thinking that, you know, I was

probably a good boy and had tagged any [product] related issues

with the [product] tag and did a search for [product] tags and that

actually found very few. [Laughs] Cause I hadn’t been a very good

boy and tagging my Jazz work items with the [product] tag.”
A specific case of tag use in queries are the dashboards in

Jazz that are displayed and configured using the web

interface. Dashboards are intended to provide information

at a glance and to allow easy navigation to more complete

information. By default, each project and each team within a

Jazz project have their own dashboard, and an individual

dashboard is created for each developer when they first

open their web interface. A dashboard consists of several

viewlets. Viewlets are rectangular widgets displaying

information about some aspect of a project. Developers

can add viewlets to their dashboards and configure the

viewlets using different parameters.17 J-A reports: “We have

a lot of dashboards that are tag-based, like the test teams, favorite

bugs, and so on. Having a tag lets us have those [dashboard]

viewlets that otherwise—it would be really hard to describe a

query that says, ‘show me all the work items that were added by

the test team’.” J-M introduced a particular keyword to

ensure visibility in the project’s dashboard: “There’s things

that we specifically track. I introduced this tracking tag, so

there’s a tracking tag that we put on certain kinds of work

items which actually then show up in a dashboard. [. . .] There’s

something where we just want to raise the visibility.” As J-A

describes, tags increase awareness: “On my team anyway, if I

think it’s related to one of those characteristics like performance, I

tag it because I want to be aware of it and I want to have a query

that shows me what they are.”
Many of the tag categories discussed previously (such as

component and crosscutting requirements) are to add

information to work items. From the interviews, we were

able to discern that these tag keywords also played an

awareness role in informing others and being informed

about work items: “My use for tags mostly is just to get an idea

of what other work items are about. [. . .] I think the PMC [Project

Management Committee] likes to put like 1.1candidate or

0.6candidate, so like that—that rarely impacts me, but I see

it and then I’m just a little bit more aware, so that okay, sure,

someone finds that important in that respect” (J-D3).

8.4 Tag Management: Keeping Track of Tags,
Removing Tags, and Tag Structures

In our interviews, we learned how teams of developers
developed mechanisms or informal processes to help
manage the tags they use on a project.

For example, EI-D2 discussed how he externalized lists
of tag keywords to help in maintaining some consistency
around tags used: “I have been keeping a list of tags so that I
don’t, you know, create duplicates, things that are spelled alike or
that sound alike, or two different ways of referring to the same
thing.” Externalizing lists of tag keywords was also used as
a mechanism by a new team to learn which tags were used
in a project: “There was a new team that joined and they were
like, what tags should we use? We don’t actually have them
written down anywhere. So, they went and they did compile a
list—I don’t know where they put it, they put it somewhere on the
wiki—right, of the tags. Well, they asked me and I said, here’s
[. . .] off the top of my head [. . .] about 5 or 6 that we use a lot,
right” (J-M).

We discussed how tag instances are removed based on
our analysis of the archival data. Here, we see that
developers consider team members and may be reluctant
to do so when faced with possibilities for removing tags: “I
don’t believe I ever have [removed tags] and I’d probably be
reluctant to. And it would—if I were to—it would probably have
to be something that I own or am deeply involved with, right.
Because, again, if my presumption is, if they’re more like a
supplementary thing, if a tag is wrong, I’m not going to actively
go out and say, no that’s wrong and fix it, I’m going to let
whoever owns it make that call” (J-D3). We see that the
developers consider owners of work items should manage
and remove tag instances on those work items: “I would only
[remove tags] if I attached the tag to the work item or if I owned
the work item. I wouldn’t want to mess with—I don’t
know—someone else’s categorization” (J-D1).

Tag instances are not removed often however, since
work items do not show up in queries anymore by default
once they have been closed. As EI-R describes: “We use [the
tags], then we just forget about them.” EI-D2 explains: “Once I
tag something, usually what happens is I close the work item and
it’ll remain tagged because it’s still part of whatever that is. [. . .] I
mean unless I made a mistake or mistyped something, I can’t
think of a time where I actually went in and said, ‘Oh this a
stupid tag’ and removed a pile.”

There are only two scenarios that were mentioned by our
interviewees where tag instances would get removed from
work items. The first one is about the status of the work
item as described by J-A: “I’m tagging these things for
candidates, [and then I find out] they’re not [candidates] and I
untag them all.” The other example is given by J-C: “If I don’t
like the way somebody tagged it or there’s a better tag for one that
they used, I’d remove it and add another one. But that doesn’t
actually happen terribly often.” This issue of removing tag
instances is not something that occurs in Flickr or Delicious
because the tag instances are not directly attached to the
resources as they are in Jazz.

J-M discussed the need to manage the complexity of tag

structures that were emerging in the tagging vocabulary.
Indeed, from the archival data, we could see that some
component tag keywords as well as some testing keywords

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

17. For more details on the use of dashboards in Jazz, see [43].

had refinement keywords associated with them (e.g.,
testing.performance). J-M discussed both of these
structures and specified a need to keep on top of how that
structure was being decided about in e-mail discussions: “I
wasn’t involved in the discussion, I was watching the e-mail
about it and then they decided that, no they were just going to use
the tags instead, and then listed all the 10 different tags and so in
fact I was thinking about that this morning, OK, I need to get in
on that discussion, saying, no, I don’t really like it that way.”

8.5 Vocabulary Consensus: Explicit, Implicit, and
Tolerance

An important aspect in understanding the advantages and
disadvantages of tagging systems, especially in terms of
representing knowledge and task coordination, is if the
community using the system will converge on a common
vocabulary that is useful.

We found that sometimes consensus is reached in an
explicit way, e.g., through e-mails, meetings, and wikis, and
that an explicit consensus is particularly important for the
planning tag keywords. We saw an example of this above in
terms of the mandatory tag keyword. Several more cases
on how planning tag keywords were agreed on emerged in
the interviews. Two examples include: “I usually tag with a
tag whose name I’ve been told. [. . .] Or an e-mail that’s sent out.
So, m1candidate, for example” (J-D1). “I already know
this—he had set a convention, so I was following the convention.
Other than that, the other tags, I kinda see or pay attention to, is
during milestone releases or candidate releases” (J-D3). In
addition to planning tag keywords, we observed that
component keywords were explicitly agreed on as well,
for example, as explained by J-C: “Either myself or the team
lead would establish a tag for the area, so—in the [component]
team I established one called workspaceeditor and, you
know, I would use that consistently and other people would start
using it as well once they saw it.”

When consensus is reached in an explicit means, we also
heard how the list of available tag keywords is externalized
either in a wiki or list to encourage their use, but at the same
time not insist that they are used as described by EI-D2:
“Well, I guess that I keep the central list of—and that list is in a
publicly available area. So, I assume other people do look at it and
I’ve had a few questions on it so I think other people look at it but I
can’t tell you whether everyone does and everyone follows it—and
frankly I wouldn’t want it to be that hard and fast a rule. It’s
supposed to be kind of a loose system, so I keep that for my own
convenience.”

Although some keywords are agreed on in an explicit
way, we also observed that tag keywords are frequently
agreed on through an implicit means. This interview quote
from EI-R demonstrates how both explicit and implicit
mechanisms for consensus occur: “Maybe the only one that at
least I know of has a convention is the one that I put because I
make it tight to the integration build that we are in, so we know
where the approvals went. But other than that, if it’s legal or other
than that, there’s not really conventions—just a word that means
something, and whoever is basically working on these work items,
knows what it means.”

Implicit awareness of tag options can occur through
watching work item feeds: “You just sort of see it happening in
the work item’s feeds” (J-C), or through content assist: “There’s

always the concern about when you’re creating tags, are people
going to create more tags. I mean at least the good thing right now
is that when you create a tag it tells you that you’re creating a
new tag” (J-M). Consensus can also be achieved through the
context and existing knowledge underlying the use of the
tag keywords: “If you’re part of the organization—it would be
odd that somebody would use a tag within the organization that
means nothing to somebody in the organization. [. . .] All of the
tags that I have seen that are there, I’m aware of what the acronym
means, what the word means, in my context” (EI-D1).

To further facilitate implicit understanding, the devel-
opers will take steps to make sure that the tag keywords
they create will be comprehensible to other team members:
“I make sure I don’t use too many acronyms, so that people can
understand what the tag means. Apart from that, I try to make it
somewhat descriptive, so [. . .] I wouldn’t use perf, instead use
performance” (J-A). There is also trust that this process
will work: “Anything that makes sense, intuitively to me, I just
go ahead and tag it. Hopefully what makes sense intuitively to me
will make sense to other people as well” (EI-D2).

This last quote also captures that there is not a large
concern if tag keywords are misunderstood, and that there
is tolerance for some variation in keywords. This is
important because there may be some concern that
ambiguity of tag keywords and the use of synonyms may
lead to problems in using tagging systems [33] but our
interviews do not reveal such issues: “And then, after having
seen something for so many times—not that I would necessarily
know if there’s a difference between, you know, slight variations
in tag naming, but if I’ve got an idea, I’ll do it. And then again, I
wouldn’t be too afraid if I got it wrong, cause someone will just
change it, right” (J-D3).

Tables 4 and 5 show the most shared tag keywords for
both projects.

9 DISCUSSION: IMPLICATIONS ON TOOL DESIGN

One of the goals of our research is to contribute to the
development of tool support for collaborative software
development, especially with regard to tagging. In this
section, we discuss how tool support for tagging could be
broadened for other social and technical artifacts, and how
such tool support can be improved.

While tags have already been adopted by the software
developers in our study, we propose there are still areas

TREUDE AND STOREY: WORK ITEM TAGGING: COMMUNICATING CONCERNS IN COLLABORATIVE SOFTWARE DEVELOPMENT 31

TABLE 4
Most Frequently Shared Tag Keywords in Jazz

where tool support for tagging can be improved. However,

the eagerness with which tags have been adopted and the

experiences of our interviewees suggest that the lightweight

nature of tags has to remain intact. EI-D2 explains: “Part of

the beauty of it, I think, is that you only have to enter, you know, a

word or two, and that’s it. [. . .] I think keeping it light is good.

It’s actually probably the best about it, frankly. [. . .] The minute

you start making me tag stuff, I’m going to resent it. [. . .] I find

that the tags are a good way to reduce the amount of time that I’m

looking for particular things—then it’s worth the investment, but

the minute I have to do something, then it just becomes a drag.”
Therefore, enhancements of tool support should recog-

nize the current benefits of tags and the main theme of any

changes to tool support should be to help developers use

tags. We suggest the following tool enhancements:

. Using the same lightweight approach as with tags
for work items, a tag property could be added to
other kinds of artifacts, especially source files, test
cases, and requirement documents. Tags can also be
implemented on a fine-grained level, e.g., for
methods and fields. This would enable tagging
across different types of content and thus would
further support collaborative organization of arti-
facts. Similar ideas have been successfully tried and
tested in TagSEA [39]. Tagging for builds has
recently been added to Jazz, but the tagging systems
are treated entirely separately. It is not possible to
get all work items and builds tagged with the same
keyword through a single query.

. Display tag authors along with the tag instances.
During our interviews, we showed our interviewees
a list of tag keywords that were used on their work
items but that they did not apply themselves. We
discovered that our participants used the tag authors
to understand the keywords. Adding the author
information of tag instances is not obtrusive as the
information is collected anyway and could just be
displayed on mouse over.

. Apart from author information, the only metadata
property that should be added to tags is an optional
description. For tag keywords that do not have an
obvious meaning such as adoption or buildsta-
tus, a short description would increase the useful-
ness as there are tag keywords in the vocabulary that
may be unfamiliar to some developers. When a new

keyword is introduced to the vocabulary, a dialog
could ask for an optional description instead of just
notifying developers that they are about to introduce
a new keyword.

. Current tools do not offer any management for tags
on work items. Useful functions would be changing
all tag instances with a particular keyword, e.g., to
fix spelling mistakes. For synonymous keywords
such as doc and documentation, folding would be
beneficial. Similar refactoring mechanisms have
been implemented in TagSEA [39].

. To increase understanding of how tags are used and
which tags are suitable for work item search, a way
of externalizing tags should be added. Information
about tag keywords and instances, their authors, the
corresponding work items, and the time of the tag
instance creation is available in the system, but this
information is not used yet by the work item tooling.
The explicit mechanisms and externalization activity
for reaching tag consensus among all users are not
activities that are likely to occur with users of Flickr
or Delicious. Ames and Naaman report that two of
their participants coordinated tags for photos on
Flickr with others in order to facilitate later search
and retrieval [1]. However, the consensus described
here in the context of Jazz goes beyond that and
includes all members of a project.

. Once the tag vocabulary is analyzed, tags for
incoming work items could be suggested. Strong
candidates for suggestions are tag keywords that
have extensively been used in the near past such as
planning related keywords and keywords that have
been applied to work items in the same category.

When tags were initially introduced in Jazz, several
additional features were suggested by developers. How-
ever, over the time of more than three years of tagging
activity, developers adapted to the tagging tool support as it
was initially implemented, J-A says: “In the beginning, I
thought that we should do a lot, have private tags, have more
metadata with them. In the hindsight, their simplicity is kind of
interesting.” Therefore, it is important to not introduce
barriers and focus tool enhancements on metadata that can
be automatically collected such as author names.

However, for a very small subset of five to 10 keywords,
namely, the ones indicating the operating system and the
ones indicating how a bug was found, more formal tool
support has recently been added to the Jazz project. We
investigate how tag keywords that are frequently used over
a long period of time reveal the need for additional
predefined categories of keywords in task management
tool support in a recent short paper [44].

10 LIMITATIONS

As with any chosen research methodology, there are
limitations with our choice of research methods. When the
Jazz team started on their project, the tagging feature for
work items had not been introduced yet. This might have
influenced the specific tagging behavior. Also, the Jazz
developers might be biased toward their own tool and their
usage pattern might be different from other developers.

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

TABLE 5
Most Frequently Shared Tag Keywords in EI

However, we were able to confirm our findings with other
development teams that are much larger than the Jazz team.
There might still be bias, as all development teams in our
study were part of IBM. However, the team members of the
EI case study are not related to the Jazz project and work in
a completely different domain.

In our analysis, we only analyzed the “head” of the “long
tail” of the tag distribution that accounts for 80 percent of all
tag instances. Although the remaining tag keywords may
not have been used frequently, there may have been very
important categories in there that should be examined.
However, a fine-grained analysis of all keywords is beyond
the scope of this paper. An alternative could have been to
code a random sample of the tag keywords. We decided to
focus on the most frequently used ones, but considered all
tag keywords mentioned during our interviews.

Our interpretation of the tag categories could have
potential errors. We addressed this issue by asking about
specific tag keywords and instances in our interviews, by
reading the summaries and descriptions of the correspond-
ing work items, through follow-up e-mails to our partici-
pants, and by searching the project websites and pertinent
mailing lists. Potential errors are also offset by the first
author’s ethnographic-style observations that were con-
ducted on the Jazz site for seven months and at the EI site
for two weeks. Compared to our earlier work on how work
item tags are used in the Jazz project [42], we were able to
identify additional categories and also to refine the
classification. These enhancements are based on additional
data from the Jazz project, entirely new data from the EI
project, and an additional eight interviews.

IBM’s Jazz is still new and it is one of the first software
development environments supporting tags for develop-
ment tasks. Thus, we were only able to get data from Jazz
users. As more projects adopt Jazz or other development
environments adopt tagging, additional studies should be
conducted to gain further insights into the use of tags in
software development.

11 CONCLUSIONS AND FUTURE WORK

The main contributions of this paper are the identification
of the various ways in which tagging supports informal
processes in software development as well as concrete
suggestions for tool improvements.

While there are many formal processes in place for
technical artifacts, managing social artifacts and articulation
work is only supported by informal processes if there is any
process at all. Informal processes are usually carried out via
communication mechanisms. In order to understand soft-
ware development as a whole and in order to provide
appropriate tool support, we have to understand both the
technical and the social aspects of software development.
Tags are one way to look at the informal side of software
development in a team setting. Through understanding how
developers use tags in their daily work, we can extend our
knowledge on informal aspects of software development and
furthermore understand how a social computing technology,
such as tagging, is adapted by software developers.

Our research has shown how the social computing
mechanism of tagging has been adopted and adapted by
two large software development teams. Not only is tagging

used to support informal processes within the teams, it has
also been adapted to the specific needs of software devel-
opers. Different kinds of tags have emerged over the duration
of a software project for processes that require metadata but
are not formalized, ranging from architecture and planning
to collaboration and testing. The main advantages of using
tags in software development are their flexibility and their
lightweight, bottom-up nature. While fields such as Operat-
ing System, Milestone, or Crosscutting Concern could be part of
fixed schemata, this would add overhead for work item
creators and owners. Tags add the same functionality
without implying administrative changes.

With the shift to team-based software development and
the corresponding increasing importance of articulation
work, informal processes, and communication mechanisms,
social computing mechanisms such as tagging may play an
important role beyond work items. They may be used to
organize, manage, and categorize software artifacts in
general in an informal and collaborative way. Future work
lies in the examination of the benefits of social computing
mechanisms in other areas of software development.

Collaborative tagging implies an underlying social
structure. We are currently exploring which social networks
emerge in software development between authors of work
items, owners of work items, and tag authors. This will
increase our understanding of team dynamics in software
development and may ultimately result in better collabora-
tive software development tool support.

ACKNOWLEDGMENTS

The authors would like to thank the teams that granted
them access to their repositories and conducted interviews
with them. This research is supported by a fellowship from
IBM and funding from NSERC. The authors also appreciate
the comments from Lars Grammel, Nancy Songtaweesin,
Jamie Starke, and the anonymous reviewers that helped
improve the paper.

REFERENCES

[1] M. Ames and M. Naaman, “Why We Tag: Motivations for
Annotation in Mobile and Online Media,” Proc. SIGCHI Conf.
Human Factors in Computing Systems, pp. 971-980, 2007.

[2] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This Bug?”
Proc. 28th Int’l Conf. Software Eng., pp. 361-370, 2006.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.
Zimmermann, “What Makes a Good Bug Report?” Proc. 16th ACM
SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 308-318,
2008.

[4] L. Brothers, V. Sembugamoorthy, and M. Muller, “ICICLE:
Groupware for Code Inspection,” Proc. ACM Conf. Computer-
Supported Cooperative Work, pp. 169-181, 1990.

[5] M. Cataldo, M. Bass, J.D. Herbsleb, and L. Bass, “On Coordination
Mechanisms in Global Software Development,” Proc. Int’l Conf.
Global Software Eng., pp. 71-80, 2007.

[6] E.F. Churchill and S. Bly, “It’s All in the Words: Supporting Work
Activities with Lightweight Tools,” Proc. Int’l ACM SIGGROUP
Conf. Supporting Group Work, pp. 40-49, 1999.

[7] J.M. Corbin and A. Strauss, “Grounded Theory Research:
Procedures, Canons, and Evaluative Criteria,” Qualitative Sociol-
ogy, vol. 13, no. 1, pp. 3-21, 1990.

[8] C. de Souza, J. Froehlich, and P. Dourish, “Seeking the Source:
Software Source Code as a Social and Technical Artifact,” Proc.
Int’l ACM SIGGROUP Conf. Supporting Group Work, pp. 197-206,
2005.

TREUDE AND STOREY: WORK ITEM TAGGING: COMMUNICATING CONCERNS IN COLLABORATIVE SOFTWARE DEVELOPMENT 33

[9] C.R.B. de Souza, D. Redmiles, and P. Dourish, “‘Breaking the
Code’, Moving between Private and Public Work in Collaborative
Software Development,” Proc. Int’l ACM SIGGROUP Conf.
Supporting Group Work, pp. 105-114, 2003.

[10] J.B. Ellis, S. Wahid, C. Danis, and W.A. Kellogg, “Task and Social
Visualization in Software Development: Evaluation of a Proto-
type,” Proc. SIGCHI Conf. Human Factors in Computing Systems,
pp. 577-586, 2007.

[11] S. Faraj and L. Sproull, “Coordinating Expertise in Software
Development Teams,” Management Science, vol. 46, no. 12, pp. 1554-
1568, 2000.

[12] R. Frost, “Jazz and the Eclipse Way of Collaboration,” IEEE
Software, vol. 24, no. 6, pp. 114-117, Nov./Dec. 2007.

[13] G.W. Furnas, T.K. Landauer, L.M. Gomez, and S.T. Dumais, “The
Vocabulary Problem in Human-System Communication,” Comm.
ACM, vol. 30, no. 11, pp. 964-971, 1987.

[14] E.M. Gerson and S.L. Star, “Analyzing Due Process in the
Workplace,” ACM Trans. Information Systems, vol. 4, no. 3,
pp. 257-270, 1986.

[15] S. Golder and B.A. Huberman, “Usage Patterns of Collaborative
Tagging Systems,” J. Information Science, vol. 32, no. 2, pp. 198-208,
2006.

[16] R.E. Grinter, “Supporting Articulation Work Using Software
Configuration Management Systems,” Computer Supported Coop-
erative Work, vol. 5, no. 4, pp. 447-465, 1996.

[17] J. Grudin, “Groupware and Social Dynamics: Eight Challenges for
Developers,” Comm. ACM, vol. 37, no. 1, pp. 92-105, 1994.

[18] C. Gutwin, R. Penner, and K. Schneider, “Group Awareness in
Distributed Software Development,” Proc. ACM Conf. Computer
Supported Cooperative Work, pp. 72-81, 2004.

[19] T. Hammond, T. Hannay, B. Lund, and J. Scott, “Social
Bookmarking Tools (I): A General Review,” DLib Magazine,
vol. 11, no. 4, pp. 1-23, http://www.dlib.org/dlib/april05/
hammond/04hammond.html, 2005.

[20] A.E. Hassan and R.C. Holt, “Using Development History Sticky
Notes to Understand Software Architecture,” Proc. 12th Int’l
Workshop Program Comprehension, pp. 183-192, 2004.

[21] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E. Grinter, “An
Empirical Study of Global Software Development: Distance and
Speed,” Proc. 23rd Int’l Conf. Software Eng., pp. 81-90, 2001.

[22] J.D. Herbsleb and D. Moitra, “Guest Editors’ Introduction: Global
Software Development,” IEEE Software, vol. 18, no. 2, pp. 16-20,
Mar./Apr. 2001.

[23] P. Heymann, A. Paepcke, and H. Garcia-Molina, “Tagging Human
Knowledge,” Proc. Third Int’l Conf. Web Search and Data Mining,
pp. 51-60, 2010.

[24] H. Kagdi, J.I. Maletic, and B. Sharif, “Mining Software Reposi-
tories for Traceability Links,” Proc. 15th IEEE Int’l Conf. Program
Comprehension, pp. 145-154, 2007.

[25] A.J. Ko, B.A. Myers, and D.H. Chau, “A Linguistic Analysis of
How People Describe Software Problems,” Proc. Visual Languages
and Human-Centric Computing, pp. 127-134, 2006.

[26] R.E. Kraut and L.A. Streeter, “Coordination in Software Develop-
ment,” Comm. ACM, vol. 38, no. 3, pp. 69-81, 1995.

[27] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental
Models: A Study of Developer Work Habits,” Proc. 28th Int’l Conf.
Software Eng., pp. 492-501, 2006.

[28] P. Mi and W. Scacchi, “Modeling Articulation Work in Software
Engineering Processes,” Proc. First Int’l Conf. Software Process,
pp. 188-201, 1991.

[29] A. Oberweis, T. Wendel, and W. Stucky, “Teamwork Co-
ordination in a Distributed Software Development Environ-
ment,” Proc. GI Jahrestagung, pp. 423-429, citeseer.ist.psu.edu/
oberweis94teamwork.html, 1994.

[30] T. Ostrand and E. Weyuker, “A Tool for Mining Defect-
Tracking Systems to Predict Fault-Prone Files,” IEE Seminar
Digests, vol. 2004, no. 917, pp. 85-89, 2004.

[31] M.P. Robillard and G.C. Murphy, “Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies,”
Proc. 24th Int’l Conf. Software Eng., pp. 406-416, 2002.

[32] M.P. Robillard and F. Weigand-Warr, “Concernmapper: Simple
View-Based Separation of Scattered Concerns,” Proc. OOPSLA
Workshop Eclipse Technology eXchange, pp. 65-69, 2005.

[33] V. Robu, H. Halpin, and H. Shepherd, “Emergence of Consensus
and Shared Vocabularies in Collaborative Tagging Systems,”
ACM Trans. Web, vol. 3, no. 4, pp. 1-34, 2009.

[34] K. Rönkkö, Y. Dittrich, and D. Randall, “When Plans Do Not Work
Out: How Plans Are Used in Software Development Projects,”
Computer Supported Cooperative Work, vol. 14, no. 5, pp. 433-468,
2005.

[35] R.J. Sandusky and L. Gasser, “Negotiation and the Coordination
of Information and Activity in Distributed Software Problem
Management,” Proc. Int’l ACM SIGGROUP Conf. Supporting Group
Work, pp. 187-196, 2005.

[36] S. Sen, S.K. Lam, A.M. Rashid, D. Cosley, D. Frankowski, J.
Osterhouse, F.M. Harper, and J. Riedl, “Tagging, Communities,
Vocabulary, Evolution,” Proc. 20th Anniversary Conf. Computer
Supported Cooperative Work, pp. 181-190, 2006.

[37] M.-A. Storey, L.-T. Cheng, J. Singer, M. Muller, D. Myers, and J.
Ryall, “How Programmers Can Turn Comments into Waypoints
for Code Navigation,” Proc. IEEE Int’l Conf. Software Maintenance,
pp. 265-274, 2007.

[38] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and M.
Muller, “How Software Developers Use Tagging to Support
Reminding and Refinding,” IEEE Trans. Software Eng., vol. 35,
no. 4, pp. 470-483, July/Aug. 2009.

[39] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared
Waypoints and Social Tagging to Support Collaboration in
Software Development,” Proc. 20th Anniversary Conf. Computer
Supported Cooperative Work, pp. 195-198, 2006.

[40] M.-A. Storey, J. Ryall, R.I. Bull, D. Myers, and J. Singer, “Todo or
to Bug: Exploring How Task Annotations Play a Role in the Work
Practices of Software Developers,” Proc. 30th Int’l Conf. Software
Eng., pp. 251-260, 2008.

[41] C. Treude and M.-A. Storey, “ConcernLines: A Timeline View of
Co-Occurring Concerns,” Proc. 31st Int’l Conf. Software Eng.,
pp. 575-578, 2009.

[42] C. Treude and M.-A. Storey, “How Tagging Helps Bridge the Gap
between Social and Technical Aspects in Software Development,”
Proc. 31st Int’l Conf. Software Eng., pp. 12-22, 2009.

[43] C. Treude and M.-A. Storey, “Awareness 2.0: Staying Aware of
Projects, Developers and Tasks Using Dashboards and Feeds,”
Proc. 32nd Int’l Conf. Software Eng., pp. 365-374, 2010.

[44] C. Treude and M.-A. Storey, “Bridging Lightweight and Heavy-
weight Task Organization: The Role of Tags in Adopting New
Task Categories,” Proc. 32nd Int’l Conf. Software Eng., pp. 231-234,
2010.

Christoph Treude is working toward the PhD
degree in computer science at the University of
Victoria and is an organizer of the workshop on
Web 2.0 for Software Engineering (Web2SE). In
his PhD research, he is exploring the role of
emergent knowledge structures in collaborative
software development. He has already studied
the use of tags, dashboards, feeds, and a
community portal by professional software
developers using IBM’s Jazz.

Margaret-Anne Storey is a professor of com-
puter science at the University of Victoria, a
Canada research chair in human computer
interaction for software engineering, and a
principal investigator for the US National Center
for Biomedical Ontology. Her research goal is to
understand how technology can help people
explore, understand, and share complex infor-
mation and knowledge. She applies and evalu-
ates techniques from knowledge engineering,

social software, and visual interface design to applications such as
collaborative software development, program comprehension, biomedi-
cal ontology development, and learning in web-based environments.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

