
An Exploratory Study of Software Reverse
Engineering in a Security Context

Christoph Treude, Fernando Figueira Filho, Margaret-Anne Storey

Dept. of Computer Science, University of Victoria

Victoria, BC, Canada

ctreude@uvic.ca, ffilho@uvic.ca, mstorey@uvic.ca

Martin Salois

Defence Research and Development Canada – Valcartier

Quebec, QC, Canada

martin.salois@drdc-rddc.gc.ca

Abstract—Illegal cyberspace activities are increasing rapidly
and many software engineers are using reverse engineering
methods to respond to attacks. The security-sensitive nature
of these tasks, such as the understanding of malware or the
decryption of encrypted content, brings unique challenges to
reverse engineering: work has to be done offline, files can rarely
be shared, time pressure is immense, and there is a lack of tool
and process support for capturing and sharing the knowledge
obtained while trying to understand plain assembly code. To help
us gain an understanding of this reverse engineering work, we
report on an exploratory study done in a security context at a
research and development government organization to explore
their work processes, tools, and artifacts. In this paper, we
identify challenges, such as the management and navigation of a
myriad of artifacts, and we conclude by offering suggestions for
tool and process improvements.

I. INTRODUCTION

In his 1987 article [1], Cohen coined the term “computer

virus” to describe self-reproducing programs designed to infect

other computer programs. At that time, computer viruses

were created for experimentation purposes or merely for fun,

therefore causing little to no damage to real world systems [2].

Today’s landscape shows us a different scenario. Computers

are widely used in criminal activities such as bank fraud,

identity theft, and corporate theft. According to a recent

Symantec report [3], 2010 saw an average of 260,000 identities

exposed in data breaches caused by hacking, and 42% more

vulnerabilities related to mobile platforms—up to 163 in 2010

from 115 in 2009.

Illegal activities in cyberspace affect national security and

threaten citizen’s rights and privacy, thus having significant

political, economic, and social implications [4]. Sponsored

by organized crime or entrepreneurial goals, hackers have

been developing malicious software, or “malware”. Forms

of malware are not limited to viruses, but can also include

worms, trojan horses, and spyware, all of which can install

themselves on a computer without the computer owner’s

informed consent.

Organized cyber groups typically communicate using cryp-

tographic protocols and store information using encrypted

files or systems. As a countermeasure against cybercrime,

government institutions and business organizations have been

using reverse engineering methods to analyze malicious code

and break into password protected file systems.

This paper reports the findings of a field study conducted

with security engineers working in a research and development

government organization. We consider their setting and work

context to be unique for the following reasons. First, time

sensitivity is an issue when dealing with malware. Software

reverse engineers may have to quickly analyze and understand

malicious code to provide a fast response on how to block and

remove a particular piece of malware. Second, co-workers may

have to be off the network as a way to mitigate the risk of

infecting other computers and to protect sensitive information

regarding system vulnerabilities. As such, coordinating work

among team members is a challenging issue, even when co-

located, since air gaps are required when exchanging infor-

mation, which limits the use of modern collaborative tools.

Third, documenting the reverse engineering process is a great

challenge as engineers use different tools and typically create

artifacts for their own use (e.g., data flow and sequence

diagrams). As a result, transferring knowledge is a hard task,

which may require a great deal of face-to-face communication.

Overall, security reverse engineers have special needs in

terms of time sensitivity, coordination, communication, and

documentation.

To the best of our knowledge, there are no studies which

have investigated the work practices of security reverse en-

gineers. Nonetheless, previous work has proposed reverse

engineering tools for computer security analysis. Cifuentes et
al. [5] introduced a high-level debugging tool which aims to

reduce the amount of time needed to solve security-related

problems. However, malware runtime analysis using a typical

debugger is often not possible right away, mainly because

modern malware usually has plenty of anti-debugging tricks

that must be removed first. Quist and Liebrock [6] presented

a visualization tool for malware analysis but further work

is needed to investigate how such tools would meet our

participants’ needs. Powerful tools for program comprehension

are important, but visualization is just part of the security

engineer’s needs, as we will present in this paper.

II. RESEARCH QUESTIONS

To gain a comprehensive understanding of software reverse

engineering in a government security context, our research

questions focus on processes, tools, and artifacts:

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.30

184

1) What processes are part of reverse engineering in a

security context?

2) What tools are being used?

3) What artifacts are being created and shared?

III. METHODOLOGY

The research was conducted as an exploratory qualitative

study. We conducted seven semi-structured interviews with

engineers at a research and development government orga-

nization. For the remainder of this paper, we use P1 to P7

to refer to the participants of our study. Their main task for

this study was the understanding of targeted malware. This

often goes beyond the work done by anti-virus companies,

such as Symantec1, as it involves identifying the perpetrators

as much as possible in order to identify the type of attack

as well as its political and social implications. We found two

roles related to software reverse engineering: reverse engineers

(P1, P2, P3, P6 and P7), and developers building specialized

tools to support reverse engineers (P4 and P5). The latter was

mainly tasked with creating plugins, particularly to automate

discoveries of vulnerabilities such as buffer overflows. Each

interview lasted approximately half an hour and was conducted

in the participants’ workplace. In the beginning of each

session, we asked participants about their roles and main

responsibilities. We then used a list of questions to explore

our research problem2. Those questions were interleaved with

emergent questions based on our interviewees’ answers. Two

researchers took notes in parallel during the interviews and

notes were verified between the note takers. We then used

an inductive approach to analyze the collected data. Two of

the authors followed an open coding strategy for labeling and

categorizing data. The later stages of analysis consisted of

deriving emergent themes by drawing connections between

codes. There was no predefined theory prior to the analysis.

A draft version of this document was given to two members

of the organization under study to verify our findings.

IV. FINDINGS

In this section, we present our findings, subdivided for each

research question posed in Section II.

A. Processes

Based on the interview data, we identified five processes

that are part of reverse engineering in a security context.

1) Analyzing: Analyzing assembly code is at the heart of

most reverse engineering projects. Typical projects include the

detection of malware, such as trojan horses, or the decryption

of encrypted file systems. Assembly code is more difficult

to understand than source code written in high-level program-

ming languages because the code is less structured, often lacks

meaningful symbols or data definitions, and allows for tricks

that can mislead reverse engineers in their analysis efforts.

Following the flow of data is challenging: “Understanding the
data flow is a big part of understanding a program.”P4

1http://www.symantec.com/index.jsp
2For our initial questions, see http://tinyurl.com/WCREInterviewQuestions.

2) Documenting: Documenting reverse engineering has

several purposes. Some documentation is done to provide

cognitive support for the reverse engineers at the time of the

analysis, some documentation is meant to capture the reverse

engineers’ own understanding of the code, and other docu-

mentation is meant to be shared either with team members or

outside stakeholders. While it is already difficult to document

source code written in high-level programming languages, it is

even more difficult when dealing with assembly code. During

the exploration of the assembly code, most reverse engineers

document just enough information to be able to resume a task

and do not document the paths that were explored without

success.

3) Transferring Knowledge: Transferring knowledge is a

challenge in reverse engineering. Documentation alone is often

not enough to understand the work that has been completed by

somebody else: “[I would] look at a version with comments,
but I’d still need to jump through to understand.”P7 In the

current setting, information is usually passed on verbally or via

email and chat. These mechanisms do not scale beyond groups

of about five reverse engineers. To solve some of these issues,

the idea of a workflow would be useful: “Right now it’s being
done like a craft, and we’d like to have some kind of assembly
line”P4. However, workflows are not consistent for all cases,

and most workflow support tools are too constraining. In addi-

tion, conventions around documentation and standards on how

to share information could improve the reverse engineering

process: “Respecting conventions [would make it] easier to
pass from one project to another.”P2

4) Articulating Work: Articulating work consists of all

the items needed to coordinate a particular task, including

scheduling sub-tasks, recovering from errors, and assembling

resources [7]. In reverse engineering, where tangible results are

only produced when a path of exploration was successful, con-

stantly re-doing work is a problem. Work was usually divided

based on different pieces of hardware, different vulnerabilities,

different functions, or different files. Relating information

from the analysis of difference pieces of the problem was very

difficult.

5) Reporting: When external stakeholders are involved, the

final step in a project is reporting the results of the reverse

engineering activities. In some cases, reporting includes a great

deal of articulation work, especially when artifacts can be co-

opted as reports: “Instead of writing a report we shared a
Word document.”P6

B. Tools

Tools used by the participants in our study can be classified

as disassemblers, Office and visualization tools, and commu-

nication and coordination tools.

1) Disassemblers: Most of the reverse engineering work

is performed using IDA Pro3. The Interactive Disassembler

Pro is a commercial product that performs automatic code

analysis and offers interactive functionality to support the

3http://www.hex-rays.com/idapro

185

understanding of disassembly. Reverse engineers typically start

with an automatically generated disassembly listing, then re-

name and annotate sections in the listing until they understand

the code. Debuggers are rarely used for malware in the early

stages of analysis since portions of the code are often missing

for execution or because of anti-debugging tricks used by

the malware that need to be removed first. As one of our

interviewees described it, the main analysis tool used by

reverse engineers in the security context is “brain power”P6.

2) Office and Visualization Tools: Most of the documenta-

tion is written using Microsoft Word, Excel, or OneNote. UML

sequence diagrams are usually drawn to represent control flow

understanding. However, the reverse engineers had “trouble
finding good tools that draw graphs and make it easy to
navigate and export graphs”P1. Paper was also used, primarily

for workflow support, small graphs, and articulation work.

3) Communication and Coordination Tools: For communi-

cation, only basic tools, such as e-mail and chat, were used.

Our interviewees work in a co-located setting that allows face-

to-face communication, but data sharing is complicated by the

nature of the classified work. Interviewees coordinated work

using tools such as wikis, bug trackers, and shared documents.

C. Artifacts

Artifacts created during the reverse engineering process

in our setting consist of annotations, artifacts created for

cognitive support, and reports.

1) Annotations: IDA Pro supports two notions of annota-

tions: repeatable and non-repeatable. A repeatable annotation

will appear attached to the current item as well as other

items referencing it. Non-repeatable annotations only appear

attached to the current item4. In addition, pre-comments and

post-comments can be attached to lines and functions. All

annotations also show up in the IDA Pro dependency graph.

The reverse engineers used annotations for several reasons:

to keep track of variables, to rename functions, to document

jumps, and to record where a particular piece of code was

reading from or writing to. However, one of the challenges is

that annotations are always incomplete: “When you document
stuff you tend to skip stuff that’s obvious at the time.”P6

2) Cognitive Support Artifacts: Depending on the use case,

different documents are created by the reverse engineers to aid

their cognition. These include: memory maps, Excel or Word

tables showing register usage and boot processes, data flow

diagrams, sequence diagrams, and scripts. A common scenario

is when an engineer needs to keep track of different paths that

are being explored in order to understand a particular piece of

code. One of our interviewees used Microsoft OneNote to do

that: “I also used OneNote in other projects to keep track of
paths that way. The last line in the OneNote document was
the last path [that I had] explored.”P6

3) Reports: Companies focused on malware, such as

Symantec, frequently create reports that give an overview of

how a particular piece of malware works. Such reports rarely

4http://www.hex-rays.com/idapro/idadoc/480.shtml

include enough detail to understand the inner workings of the

malicious program, mostly because security companies do not

want to reveal their insights to malware writers. In contrast,

reports produced in our study setting had more technical

content, and often included assembly code for functions as

well as detailed descriptions of all input and output parameters.

V. DISCUSSION OF CHALLENGES

Table I summarizes our findings by showing the tools,

artifacts, challenges, and needs for each of the processes we

identified. Each work process described in the last section

involved a different set of tools. These tools, in turn, were

used to produce artifacts in distinct, non-interoperable formats.

Therefore, moving from one process to another required a

lot of manual work. For instance, reverse engineers typically

used IDA Pro which provided them with a hyper-linked visual

structure through which they could jump from one point of the

assembly code to another. However, re-using this cognitive

support across applications appeared to be a problem: “IDA
Pro views are not bad, but they are difficult to export... I would
export them to something where we can play with level of
details, merge bugs together, higher level view of things –
have to do this manually right now.”P1

By moving from the analysis to the documentation, en-

gineers produce artifacts that would help them resume their

own tasks, but also transfer their knowledge to other team

members. For example, reverse engineers have tried using

wiki-based systems for sharing mixed content (e.g., details

on how particular hardware works, including pieces of code).

However, wikis have shortcomings when navigating code and

related artifacts: “Wikis are very document like, not ideal for
documenting code – some kind of graph tool would have
been better.”P1. Overall, even when knowledge sharing was

encouraged, reverse engineers faced a lack of proper tools to

pass information along to others: “There’s also stuff that we
don’t know how to document.”P1. Navigation is particularly

a challenge when dealing with different documents such as

the cognitive support artifacts mentioned above. A map of all

documents and their connections usually only exists in the

reverse engineer’s head.

To articulate their work and break problems into pieces,

engineers often followed a divide-and-conquer strategy: “We
go after different pieces. The problem is how to share informa-
tion then... different people have different processes.”P2. This

poses an interesting phenomenon: there is no general process

in the work of security reverse engineers. The following factors

would influence this phenomenon:

1) Task Complexity: Tasks, such as blocking malware and

breaking into secure devices, often include unsolved problems,

thus requiring the use of different approaches, tools, and skills.

2) Security: The security context further obstructs the

reverse engineers’ work. Classified information cannot be

shared, and for classified tasks, the reverse engineers are only

allowed to work on classified, often un-networked, equipment.

Often, information can not be transported since it could be-

long to different projects, different classifications, or different

186

TABLE I
SUMMARY OF FINDINGS

Processes Tools Artifacts Challenges Needs
Analyzing IDA Pro annotations for code hard to export, different levels of detail,

understanding complexity track interrupts and registers

Documenting paper, memory maps, tables, done manually, tagging of addresses,

Microsoft Office, scripts, data flow addresses and automatic updates

graphing tools & sequence diagrams offsets change for new versions

Transferring Knowledge face-to-face multiple files and knowledge standards for

communication, resources management, documentation,

chat, e-mail, wiki security, traceability

incomplete doc across artifacts

Articulating Work bug trackers, shared documents bringing pieces workflow and task

Microsoft Office, back together, management tool,

paper, wiki re-doing work log of all actions

Reporting Microsoft Office technical reports time pressure, integration with analysis

lack of integration

machines. Even for unclassified contexts, such as malware,

the nature of the code prohibits sharing to prevent further

infection. This also means that a lot of the work has to

be completed offline and access to web resources is very

limited. Most of the reverse engineers in our study worked

by themselves, often for security reasons: “I’m the only
one allowed to look at it [...] You don’t want others to be
infected [with malware]”P2. The need to work individually

also contributes to the increase in the effort needed to articulate

work (e.g., summarizing work into a single report).
3) Time Constraints: The amount of time pressure depends

on the scenario. Some projects have the goal of understanding

everything about a particular piece of software and are usually

completed without time pressure. In other scenarios, only a

couple of weeks are allocated for a particular project in order

to provide a fast response to a potentially harmful threat. In

the latter case, the reverse engineers have to prioritize what

they are working on. In the example of malware: “[We have]
four goals when dealing with malware: detect, block, remove,
[and] understand everything. Usually [the process] stops after
the third step.”P7 The amount of documentation produced

depends on the extent of the time pressure. Long-term projects

without time pressure yield more documentation, whereas for

short-term projects, there is often not enough time to document

thoroughly: “If you put too much documentation, you won’t
have enough time to finish.”P2

4) Tool Constraints: A graph is often the best way to

capture a certain aspect of a reverse engineering problem,

but it is difficult to deal with different types of diagrams.

One of our interviewees told us that he sometimes spends

up to 100 hours creating a single diagram. Also, the graphs

produced are usually not linked to the disassembly, thus losing

traceability. There is a shortage of tools that span different

aspects of reverse engineering such as hardware specifications

and assembly code. The reverse engineering is also limited

by memory since tools rarely scale beyond executables larger

than a few megabytes.

While some of the analysis can be performed automatically,

this is hindered by the fact that the disassembly produced by

IDA Pro is not always perfect: “Everything has to be perfect
if you want to do automated analysis.”P4 Creating plugins

for IDA Pro is challenging when user interface functionality

is required. The nature of assembly code yields additional

requirements for tool support: addresses and offsets may

change with every new version; malware code is often self-

changing; and following one trace through the code means

jumping to many different locations, both in the code and in

external modules (e.g., DLLs). Annotations in the disassembly

do not capture the order in which certain calls are being made,

hence the use of sequence diagrams.

VI. IMPLICATIONS

In this section, we discuss tool and process implications

based on our findings.

A. Process Implications

Software reverse engineers have to put a lot of effort into

moving from one work process to another. For example, IDA

Pro annotations are useful during the analysis, but using these

annotations over time requires manually updating or tagging

addresses to accommodate newer versions of malicious code.

There is also a gap between annotations and high-level doc-

umentation such as memory maps and sequence diagrams.

Transposing the barrier which separates each work process and

dealing with a myriad of artifacts requires workflow support,

both in processes and tools. However, since the nature of

the tasks is already constrained, process or workflow tools

should not add any additional constraints. In other words,

process support for reverse engineers in a security context

needs to be lightweight and flexible. First, it needs to support

coordination by enabling the definition of sub-tasks while pro-

viding awareness on the progress of those tasks, and second,

it should provide guidelines for high-level tasks that can be

instantiated to meet the particular needs of a given context. To

187

bridge the gap between distinct work processes, some level of

standardization across different types of documentation could

make it easier to capture and share knowledge in consistent

ways.

B. Tool Implications

To support software reverse engineering in a security con-

text, a suite of tools will likely always be needed to deal

with different devices and rapidly changing malware. How-

ever, there is a need for tooling to support traceability of

artifacts created by different tools. Supporting more powerful

navigation interfaces and the visualization of different levels

of abstraction is essential. Different levels of detail should

be supported in different parts of the tooling to distinguish

between low-level documentation for cognitive support at the

time of analysis and high-level documentation for reporting

purposes, and to distinguish between different levels in the

structure of a piece of code. One of our interviewees used

OneNote for the latter: “[I] used OneNote [...] and used
tabbing to keep track of different levels in the structure.”P6

In our study setting, no formal version control mechanisms

were used but most interviewees made frequent backups. To

deal with conflicts, one of our interviewees had implemented

tool support for merging two IDA Pro files. Version control

across different tools and file formats could help integrate these

efforts. A log of everything that has been done to a particular

piece of code would be helpful to make sure that work is

not duplicated. As described in the previous section, workflow

support is also needed. However, such tooling must be flexible

enough to support different tasks with different requirements

(e.g., different time constraints and individual vs. collaborative

work practices). Newcomers and experienced software reverse

engineers should be supported in their efforts to learn new

tasks as software, malware, devices, and tools change rapidly.

Documentation should not just communicate results, but also

describe how these results were derived.

VII. LIMITATIONS

As with any chosen methodology, there are limitations with

our research method. The first limitation lies in the small

number of interviewees and the fact that all of them have gone

through the same training process. However, gaining access to

the unique setting of security reverse engineers is difficult due

to time constraints and the security restrictions of their setting.

As this is one of the first studies of reverse engineering in a

security context, we believe that our findings provide initial

insights on the impact of factors such as security limitations,

time constraints, and insufficient tool support.

We were not allowed to use recording devices and some

information was not available to us because of the security

context of our study. For all of our interviewees, English is

not their native language. The risk of not adequately capturing

all answers by our participants was mitigated by the fact that

two of the authors took notes independently and the notes were

verified for accuracy by two of the participants. Both sets of

notes were used in the analysis of the data.

VIII. CONCLUSION AND FUTURE WORK

The work setting of reverse engineers tasked with security-

related issues, such as the detection of malware or the decryp-

tion of encrypted file systems, is unique. Web resources are

often unavailable because work has to be performed offline,

files can rarely be shared to avoid infecting co-workers with

malware or because information is classified, time pressure is

immense, and tool support is limited.

To gain an understanding of the work done by security

reverse engineers, and to inform industry and academia of

their unique work practices, we conducted an exploratory

study aimed at understanding their processes, tools, artifacts,

challenges, and needs. We identified five processes: analyzing

assembly code, documenting findings through different kinds

of artifacts, transferring knowledge to other reverse engineers,

articulating work, and reporting of findings to stakeholders.

We found a lack of adequate tools to support their tasks that

might also be prevalent in other reverse engineering settings.

There is no general process that can capture all of the work

done by security reverse engineers. Task complexity, security

context, time pressure, and tool constraints make it impossible

to follow a structured heavyweight process. Therefore, process

and tool support has to be lightweight and flexible.

Reverse engineering in a security context is a fast-changing

environment. New tools and approaches have to be learned

on the spot as hackers and organized cyber groups create

new security threats with implications for national security.

Future work lies in addressing the challenges that we have

identified with improved tools and processes, and in studying

their usefulness in the unique work environment of security

reverse engineers.

ACKNOWLEDGEMENTS

We wish to thank the participants in this study for conduct-

ing interviews with us, and we appreciate the feedback from

Cassandra Petrachenko that helped improve this paper. This

research is funded through NSERC grant DNDPJ 380607-09

and DRDC Valcartier.

REFERENCES

[1] F. Cohen, “Computer viruses: Theory and experiments,” Computers &
Security, vol. 6, no. 1, pp. 22–35, 1987.

[2] T. F. Peterson, A History of Hacks and Pranks at MIT. The MIT Press,
2011.

[3] Symantec, “Internet security threat report (2010),” Available
online: http://www.symantec.com/business/threatreport/topic.jsp?id=
threatreport&aid=notable statistics. Last access: 6/23/2011.

[4] K.-K. Choo, “Organised crime groups in cyberspace: a typology,” Trends
in Organized Crime, vol. 11, pp. 270–295, 2008.

[5] C. Cifuentes, T. Waddington, and M. Van Emmerik, “Computer security
analysis through decompilation and high-level debugging,” in Proceedings
of the 8th Working Conference on Reverse Engineering, 2001, pp. 375–
380.

[6] D. Quist and L. Liebrock, “Visualizing compiled executables for malware
analysis,” in VizSec 2009: 6th International Workshop on Visualization for
Cyber Security. IEEE, 2009, pp. 27–32.

[7] E. M. Gerson and S. L. Star, “Analyzing due process in the workplace,”
ACM Transactions on Information Systems, vol. 4, pp. 257–270, 1986.

188

