
The Social Side of Software Platform Ecosystems
Cleidson R. B. de Souza

Vale Institute of Technology
and Federal University of Pará

cleidson.desouza@acm.org

Fernando Figueira Filho
Federal University of Rio

Grande do Norte
fernando@dimap.ufrn.br

Müller Miranda
Federal University of Pará

mulgsm@gmail.com

Renato Pina Ferreira
Federal University of Pará

renpina@gmail.com

Christoph Treude
University of São Paulo

ctreude@ime.usp.br

Leif Singer
University of Victoria

lsinger@uvic.ca

ABSTRACT
Software ecosystems as a paradigm for large-scale software
development encompass a complex mix of technical, business,
and social aspects. While significant research has been con-
ducted to understand both the technical and business aspects,
the social aspects of software ecosystems are less well under-
stood. To close this gap, this paper presents the results of an
empirical study aimed at understanding the influence of social
aspects on developers’ participation in software ecosystems.
We conducted 25 interviews with mobile software developers
and an online survey with 83 respondents from the mobile
software development community. Our results point out a
complex social system based on continued interaction and
mutual support between different actors, including develop-
ers, friends, end users, developers from large companies, and
online communities. These findings highlight the importance
of social aspects in the sustainability of software ecosystems
both during the initial adoption phase as well as for long-term
permanence of developers.

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation (e.g. HCI):
Group and Organization Interfaces—Computer-supported co-
operative work

Author Keywords
Software ecosystems; Social aspects

INTRODUCTION
Software ecosystems, as an approach for large-scale software
development, have widened the focus of previous efforts to
encompass the relationships among different actors that all
rely on services provided by a common software platform.
They involve a much broader set of actors, such as service
and infrastructure providers, end users and external develop-
ers. An example of a software ecosystem is the iOS operating
system. In this case, Apple provides iOS with a very large set
of application programming interfaces (APIs) on top of which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CHI’16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858431

extensions (apps) can be built. External software developers
use Apple’s APIs to develop their own apps that will run on
iOS, and consequently on iPhones and/or iPads. Other exam-
ples of successful ecosystems in different domains include
Android, Apache, Eclipse, Linux, GNOME, Facebook, SAP,
and Windows Kinect.

In a systematic mapping of the literature, Barbosa and col-
leagues [3] argue that software ecosystems include three di-
mensions: the technical, the business and the social dimension.
The technical dimension is related to the "common software"
or the software platform in which the ecosystem is embedded.
The business dimension is related to business models, licens-
ing and partnering strategies, benefits from getting involved in
an ecosystem, among other aspects. Finally, the social dimen-
sion focuses on how the different ecosystem actors relate to
each other in order to achieve their goals.

However, not all software ecosystems are alike. In a different
study, Manikas and Hansen [22] classify software ecosystems
in: (i) proprietary and (ii) free and open source software -
FOSS ecosystems. In a proprietary ecosystem, source code
and other artifacts are protected because they are products
that generate income. This often means that new developers
who want to join the ecosystem might need to go through a
verification process. Furthermore, an organization governs
the evolution of the ecosystem and defines the rules of access
to the platform and the availability of the generated product
(apps). In a FOSS ecosystem, source code is freely available
since actors do not necessarily participate in the ecosystem
to obtain financial returns, therefore, no formal verification is
necessary for new developers. One example of a proprietary
ecosystem that requires verification is the iOS, that demands
the payment of a fee to publish apps at the App Store, while
examples of FOSS ecosystems include Apache and Eclipse.
In practice, most ecosystems combine aspects of both types of
ecosystems [22], but this distinction is important as we will
discuss in the rest of the paper.

Manikas and Hansen [22] conclude that most publications
about FOSS ecosystems focus on their technical and social
aspects, whereas publications about proprietary ecosystems
focus mostly on their business aspects. In other words, there
is a gap in the literature about the social aspects of proprietary
software ecosystems. Previous work [14] on FOSS ecosystems
suggest that social aspects (e.g., previous ties among software
developers) have an impact on their attractiveness, i.e, “the

existence and the amount of prior collaborative relations ...
[among software developers] ... do increase the probability
that an OSS project will attract more developers”. This abil-
ity to attract new developers to an ecosystem is crucial for
its sustainability, i.e. to its survival. Therefore, studying the
social side of proprietary software ecosystems is important
because it can shed light on aspects that might influence their
sustainability. A sustainable software ecosystem is one “that
can increase or maintain its user/developer community over
longer periods of time and can survive inherent changes such
as new technologies or new products (e.g., from competitors)
that can change the population (the community of users, de-
velopers etc)” [10]. Sustainability then includes the adoption
and permanence of software developers in a particular ecosys-
tem [30]. By adoption, we mean a developer’s decision to start
developing for a particular ecosystem [20], while permanence
means “the continued participation of developers in a software
ecosystem”.

This paper fills a gap in the literature by focusing on how social
aspects contribute to the sustainability of proprietary software
ecosystems. We collected data using different research meth-
ods (semi-structured interviews and an online survey) with
different groups of informants. Interviews and survey an-
swers were coded using Grounded Theory techniques [5, 7].
Our results point at a complex social system based on contin-
ued interaction and mutual support between different actors,
thus highlighting the importance of social aspects in software
ecosystems both during the initial adoption phase and the long-
term permanence of developers, therefore contributing to the
sustainability of a software ecosystem.

The rest of this paper is organized as follows. In the next
section, we present an overview of software ecosystems. Then,
we describe the methodology we used for our data collection
and analysis. After that, our results are presented, followed by
a discussion in the context of the literature. Finally, we present
our final remarks.

BACKGROUND

Defining Software Ecosystems
In the software development literature one can find several
definitions of software ecosystems [22]. For instance, Bosch
and Bosch-Sijtsema [4] argue that: “a software ecosystem
consists of a software platform, a set of internal and external
developers and a community of domain experts in service to
a community of [end] users that compose relevant solution
elements to satisfy their needs”. This is the definition that we
will use in this paper as it clearly describes the actors involved
in the ecosystem. In the iOS ecosystem, the software platform
is the iOS operating system and its associated APIs, internal or
keystone developers are Apple employees who develop the iOS
platform [16], while external developers and domain experts
are responsible for developing apps to the platform which will
be purchased by end users.

A different definition is presented by Scacchi [29] who talks
about multi-project software ecosystems, whereby “ongoing
development and evolution of one free and open source soft-
ware system gives rise to propagated effects, architectural

dependencies, or vulnerabilities in one or more of the projects
linked to it”. Examples in this case include the Apache ecosys-
tem [17]. Other authors even use the term ecosystem for a
set of loosely interrelated projects that are hosted on the same
web-domain like the GNOME ecosystem [23].

Types of Software Ecosystems
The different definitions of software ecosystems can be better
understood when types of ecosystems are discussed. As men-
tioned previously, a very simple and effective classification
distinguishes between proprietary and FOSS ecosystems [22].
It should be noted that this distinction between proprietary
and FOSS ecosystems neglects a higher number of variations
since most real software ecosystems could be categorized as
hybrid ecosystems, i.e., ecosystems that combine elements
of both types [22]. In other words, to label an ecosystem as
FOSS or proprietary is rarely a binary decision, in fact it is
generally a matter of how much the platform is open (FOSS)
or closed (proprietary). Openness is the degree to which a
platform owner allows the platform users to interact with the
platform, as well as to view, extend or change its components.
Openness depends on different technical and business aspects
such as platform architecture, platform accessibility, platform
transparency, licensing, marketing policy, among other fac-
tors [2]. And, more importantly, as we will discuss, openness
directly influences the social aspects of software ecosystems.

Software Ecosystem Dimensions
In a systematic mapping of the literature Barbosa et al. [3]
argue that software ecosystems, despite being proprietary or
FOSS, need to be understood in three dimensions: the tech-
nical, the business and the social dimension. The technical
dimension is related to the software platform and the overall in-
frastructure in which the ecosystem is embedded. An example
of this approach is Bosch and Bosch-Sijtsema [4] who focus on
software architecture challenges for ecosystems and solutions
for these challenges. The business dimension is related to busi-
ness models, licensing and partnering strategies, among other
financial aspects. In this case, an example is Adner’s work
[1] who discusses tactical aspects and strategies that should
be taken into account when designing a software ecosystem.
Finally, the social dimension focuses on how the different
ecosystem actors relate to each other in order to achieve their
goals. For instance, Fricker [13] proposes a model based on
negotiation and network theory for analyzing and designing
requirements in a software ecosystem.

The Sustainability of Software Ecosystems
Another important aspect in the study of software ecosystems
is their sustainability or health [10, 22]. Attracting external
developers to an ecosystem can make a crucial difference, but
only if the participation of developers is sustained, that is,
if developers join an ecosystem and keep developing for it.
Dhungana et al. [10] define a sustainable software ecosys-
tem as one “that can increase or maintain its user/developer
community over longer periods of time and can survive in-
herent changes such as new technologies or new products
(e.g., from competitors) that can change the population (the
community of users, developers etc)”. Sustainability includes

both adoption and permanence of software developers in an
ecosystem. By adoption, we mean a developer’s decision to
start developing for a particular ecosystem, while permanence
means “the continued participation of developers in a software
ecosystem”[30].

Sustainability and Social Aspects of Software Ecosys-
tems
Sustainability is a major aspect of software ecosystems. Using
Barbosa et al.’s dimensions, we identified related work that
focuses on the business (e.g., [1]) and technical (e.g., [8])
aspects that are being studied in the context of sustainable
ecosystems. These previous works can be applied to both pro-
prietary and FOSS ecosystems. However, previous research
on the influence of social aspects in the sustainability of an
ecosystem has largely focused solely on FOSS ecosystems.
An example is Jergensen et al. [18] who studied progressive
developers’ participation in the FOSS ecosystem GNOME.
In addition, Shah [30] found that, for some developers, mo-
tivation to work in a FOSS project evolves over time and
participation becomes a hobby, but these developers who see
their participation as a hobby are critical to the long-term sus-
tainability of the software ecosystem as they take on tasks that
might otherwise go undone and work to improve the source
code. Similarly, Draxler and colleagues [11] studied soft-
ware developers from small software enterprises who were
searching, installing and configuring new Eclipse extensions
(plug-ins). They focused on the potential of collaboration for
learning about new plug-ins and tailoring software tools to de-
velopers’ needs in the context of the FOSS Eclipse ecosystem.
Finally, recently Steinmacher et al. [32] presented 13 social
barriers that make it difficult for newcomers to join free or
open software projects. In short, in FOSS ecosystems, there is
a clear relationship between the sustainability of an ecosystem
and its social aspects.

Research on social aspects of proprietary ecosystems is very
limited. One of the few examples is Yu’s and Deng’s [36]
study about the “strategic dependencies [relationships] be-
tween software vendor, third party developers, and end-users”
aiming to explore and reason about alternate ways for achiev-
ing strategic goals for each actor. However, this is done at the
conceptual level, i.e., without empirical data. More recently,
Karhu et al. [19] suggest that different mobile ecosystems
choose to establish different relationships with their stakehold-
ers: some of them are based more on competition, while others
are more collaborative. Note that this work is both about the
business and the social aspects of proprietary ecosystems, but,
the social is related to the relationships among companies,
not individual developers. Similarly, Koch and Kerschbaum
[20] focus on developers’ motivations for joining a particular
mobile ecosystem. They report that their major motivations
are the experience of fun, the intellectual stimulation and the
opportunity to learn new skills. The potential financial gain
from participating in a mobile ecosystem is not as relevant. In
other words, social (personal) aspects are implicitly addressed
in this work, since its major focus is on the business aspects.

The difference between the number of studies about the so-
cial aspects of FOSS vs proprietary ecosystems might be ex-

plained by the openness of the ecosystem. As mentioned
before, openness is the degree to which a platform owner al-
lows the platform users to interact with, view, extend or change
its components [2]. Openness influences the extent to which
an ecosystem is closer to an FOSS or a proprietary ecosystem.
In a closed (proprietary) ecosystem, developers are not able
to extend or change the components of the software platform,
while in an open (FOSS) ecosystem this is possible. This
has important implications: in a FOSS ecosystem, internal or
external developers are likely to interact because they need
to coordinate changes in the platform since their code is in-
terdependent, i.e., changes in one part of the platform might
impact other parts. Meanwhile, in a proprietary ecosystem,
no changes are allowed in the platform, therefore, developers’
code will only depend on the software platform but not on
each other’s, which means that they are unlikely to interact
among themselves.

Research Contribution
The previous paragraphs suggest that despite the importance
of social aspects for the sustainability of software ecosystems,
these aspects have been studied mostly in the context of FOSS
ecosystems. There is a lack of knowledge about social aspects
in proprietary ecosystems and, as a consequence, their impact
in the sustainability of these ecosystems. The goal of this
paper is exactly to address this gap by answering the following
research question: how do social aspects influence the sus-
tainability of proprietary ecosystems?. We will answer this
question through an empirical study that focuses on software
developers’ adoption and permanence in a particular software
ecosystem. The detailed approach used to answer this research
question is presented in the following section.

METHODOLOGY
In order to examine our research question, we conducted a
qualitative study. Initially, we investigated the many different
aspects that could influence developers’ decisions to join and
remain in a software ecosystem. These initial results suggested
the important role of the social aspects in the adoption and
permanence of a developer in a particular ecosystem, in addi-
tion to other business and technical aspects. Then, we focused
on the social aspects through additional data collection and
analysis. Our data is based on semi-structured interviews and
on responses from a survey we distributed to software develop-
ers. A summary of our data collection methods is presented in
Table 1. Each data collection step and the data analysis used
in this research are presented in details below.

Initial interviews
Initially, we conducted semi-structured interviews with nine
mobile developers (eight men and one woman) who were
active mobile developers. Our interviewees were between 19
and 29 years old, and they were all from Brazil. Two were
students (one undergraduate and one graduate) with less than
two years of experience developing mobile apps. The others
were professionals with over two years of experience in mobile
development. The interviews were conducted in the period
of August to December 2013, through a convenience sample
based on our personal contacts.

Study Geography Sample size Platform Format

Initial interviews Brazil 9
Android (8),
iOS (3),
both (1)

Semi-structured interviews

Survey

USA (24),
Canada (4),
Brazil, India,
Netherlands, UK (3)

83
Android (50),
Web (40),
iOS (39)

15 questions:
7 about work experience,
5 about specific app,
3 about the software
development process (open ended)

Additional interviews
with Brazilian developers Brazil 9 Android (9) Semi-structured interviews

focusing on social aspects

Additional interviews
with international developers

US, Brazil,
Venezuela 7

Android (4),
iOS (1), both (1),
Windowsphone (1)

Semi-structured interview
focusing on social aspects
(same guide as previous interviews)

Validation interview Confidential 1 Confidential Semi-structured interview by email

Table 1. Summary of our data collection methods.

We used Rogers’ diffusion of innovations theory [28] as a
starting point for our initial interviews. Rogers explains the
diffusion of innovations through four different aspects namely,
(i) the innovation itself, (ii) the communication channels used
to transmit information about the innovation, (iii) the social
system in which the innovation and the adopters are embed-
ded, and (iv) the time scale in which the innovation is adopted.
Based on these aspects, we created an interview guide. All
interviews were recorded and later transcribed. We used cod-
ing techniques from Grounded Theory for data analysis [7].
Open and axial coding resulted in the identification of 265
different categories that covered technical, business and social
aspects of software ecosystems. The results of this initial set
of interviews have been published previously in [24].

Survey
To address the limitations of our initial set of interviews we
conducted a survey with a larger sample of software develop-
ers from around the world. We selected mobile developers
using a parser that extracted information from GitHub 1. More
precisely, we analyzed the documentation of various mobile
platforms and projects from GitHub and observed that projects
for the Android, Windows Phone and FirefoxOS platforms
all contained files with the same unique name, while in iOS
projects the word LSRequiresIPhoneOS occurs in some files.
Based on this information, we wrote a parser that accessed
GitHub through its API and identified projects with these in-
dicators. This way, we were able to identify projects that
included mobile software development. We then fetched in-
formation about the contributors of these projects, randomly
selected 400 developers out of this larger pool and invited
them to take our survey.

We designed the survey with 15 questions divided into three
sections. The first section asked questions about the work ex-
perience of the respondent in developing mobile applications.
The second section collected information about the most im-
portant application developed by the respondent, whether the
application was available in the app store and what tools were

1http://github.com

used to develop it. Finally, the third section asked about devel-
opers’ perceptions regarding mobile application development
including what were the most positive and negative aspects
they had to deal with during the development of mobile apps
and the hardest problem they faced. All questions of this last
section were open-ended.

We received 83 answers for our survey (response rate 20.75%).
The most frequent locations from our survey respondents were:
1st - USA (24); 2nd - Canada (4); 3rd - Brazil, India, the
Netherlands and the United Kingdom (3); 4th - Belgium, Cam-
bodia, China, France, Spain and Taiwan (2). Other coun-
tries indicated by developers included: Bolivia, Denmark,
Finland, Georgia, Indonesia, Israel, Japan, Mexico, Sweden
and Switzerland. The location information is not required by
GitHub, which explains the amount of missing information
about the location of some informants (19). The three most
cited platforms were Android (50), Web (40), and iOS (39),
but informants could select multiple platforms. Developers’
experience ranged from less than one year to more than five
years. Survey respondents had published between one and
more than six apps in mobile app stores.

Similarly to our previous dataset, we analyzed the open ended
questions using coding techniques from Grounded Theory [7].
Furthermore, we integrated the data from both datasets (inter-
views and survey) adopting a unique set of codes. We present
our results in an integrated way, although there were some
differences between the survey results and the initial inter-
views. For instance, survey answers mentioned the possibility
of receiving feedback from users through comments in the
“app store” (E9’s quote later in the paper).

Additional interviews with Brazilian developers
We then designed a new interview guide that aimed to gather
information about the social aspects of software ecosystems
in more details. For instance, questions included the influence
of friends and co-workers in joining and participating in an
ecosystem, the perceived benefits or drawbacks of being a
member of an online community about a mobile platform,
how important it is to be part of that community, how that
community can help beginners to start developing for the plat-

form, and whether there is interaction with other community
members, for instance by blogging, answering questions on
message boards etc.

Using this new interview guide, we conducted nine additional
semi-structured interviews with mobile developers (8 men and
1 woman). Our interviewees were between 20 and 28 years
old with experience between seven months and six years, and
they were all from Brazil. The interviews were again based
on a convenience sample through our personal contacts. Inter-
views lasted between 14 and 28 minutes and were recorded.
The shortest interview was conducted with an undergraduate
student with limited experience.

Additional interviews with international developers
One of the questions of our survey asked whether the infor-
mant could be contacted for an interview and asked for the
informant’s email address. We received 25 positive answers
from the 83 survey respondents. We then sent an email invita-
tion to these 25 informants asking whether they would still be
willing to be interviewed. We interviewed 7 informants using
the same interview guide from our previous data collection
phase. Interviewees were from different countries including
United States, Brazil and Venezuela and had different levels
of experience developing for mobile ranging from one to four
years. Interviews ranged from 14 to 45 minutes and were
again recorded.

Data Analysis
In our data analysis we transcribed all interviews and inte-
grated all four datasets into one unique dataset. After that, the
data collected was jointly analyzed by using coding techniques
from Grounded Theory [7].

In our first step—open coding—-our data was micro-analyzed
(line-by-line) to identify categories. We identified two ma-
jor categories related to social aspects of mobile development:
adoption and permanence, i.e., the social aspects that influence
a software developer to adopt a particular mobile platform,
and the social aspects that influence a developer to keep devel-
oping for that platform. As discussed in the previous section,
adoption and permanence are essential to ecosystem sustain-
ability.

In the next step—axial coding—categories were broken into
subcategories and we identified properties and dimensions of
those categories. Initially, different authors coded different
datasets all focusing on the social aspects of ecosystem devel-
opment. As one would expect this resulted in similar ideas
being coded differently. Therefore, we held a 3-day workshop
with the authors in which the integrated dataset was analyzed
again and coded using one unique coding scheme. Our coding
scheme created 25 different categories including “adoption as
influenced by the social network”, “the relationship between a
developer and the keystone company”, etc., as well as subcate-
gories such as the community aspect and its size, scope (local
vs. global) and communication channels used.

Validation interview
In the last step of our research, we presented our results to
a business platform development leader from a major soft-

ware company. This was done through the presentation of a
executive summary over email. According to this leader:

The “social aspect” as you call it plays a big role IMO,
both for getting “infected” with an ecosystem preference
and for staying with it. From my perspective, this is part
of daily business for platform biz dev [business develop-
ment] teams, either on the marketing side for tackling
individual developers or on the key account side for tack-
ling large ISVs [independent service providers]. Also
on-site events are important and virtually every platform
[keystone] company has them.

In other words, this platform leader validated our results sug-
gesting that social aspects are indeed very important for the
sustainability of a software ecosystem.

FINDINGS
In this section we answer our research question—how do so-
cial aspects influence the sustainability of proprietary ecosys-
tems? We found that the sustainability of a software ecosystem
depends on two different processes, i.e. (i) adoption, which is
concerned with the process of joining a particular ecosystem
and (ii) permanence, in which developers decide to keep devel-
oping for that ecosystem. To illustrate the different aspects of
each theme, we provide a selection of quotes from the initial
interviews and survey (indicated by A#), as well as from the
additional interviews (B#).

Social influences on ecosystem adoption
In our study, we asked developers how they were introduced to
mobile development and whether someone influenced their de-
cision to adopt a particular platform ecosystem. We found that
developers are often influenced by others, including friends,
undergraduate colleagues and co-workers:

“Actually the idea came out of nowhere but had the in-
fluence of a friend of ours, who also worked with devel-
opment for people with disability. And then we decided:
let’s make an app for that.” [A2]

“Yes, I was influenced by a friend, which is even more
active in the Android community. After I bought my
Android device, I looked at my phone and thought about
creating an app. [...] But I was influenced by other
friends who also are developers.” [B3]

“Some friends of mine already coded for Android and
gave me tips .. it’s cool, it’s interesting, the ability to be
able to do several things, and for being a low-cost device
influenced a lot.” [A12]

Having friends or co-workers who are actively developing for
a particular platform brings many advantages to the developer,
including being exposed to new experiences and acquiring
new skills. In addition to technical skills, one can also learn
about business aspects through these interactions:

“I saw with the experience of X and Y [A3’s friends]
they released a very similar app, an app about Naruto [a
game character] and you could see that the App Store was
selling ten, twenty times more than the Android Market.”
[A3]

A similar advantage is the increasing perception a developer
acquires about the job market, especially the local one. Thus,
(s)he is able to identify new opportunities:

“I started [learning about this platform] after joining my
current job... my co-workers needed an iOS developer,
and I became interested in learning.” [B7]

Several of our informants reported the logic behind their de-
cisions about the adoption of mobile platforms: they were
ambitious to reach a larger number of users2.

The next quote presents another result from our dataset. It
illustrates how the broader social context in which a developer
is embedded influences his/her decision to adopt a platform:

“iOS was more complicated due to its [programming]
language. I did some things but did not really understand
how it worked. Android was simpler because it is Java,
which I studied in my undergraduate course.” [A4]

In this case, the context is related to the university the infor-
mant attended and, consequently, the prior knowledge (s)he
possessed before deciding to adopt an ecosystem. This can be
explained by Rogers’ diffusion of innovations theory, which
defines compatibility as the degree to which an innovation
is perceived as consistent with the existing values, past ex-
perience, and the needs of the potential adopters [28]. Thus,
participants who learned Java previously had greater compat-
ibility with the Android platform, which made it easier for
them to adopt that platform.

Our results suggest that social aspects are important factors
that contribute to attract developers to join a particular plat-
form ecosystem. In other words, developers are influenced by
other developers, but also by their own previous experiences,
and their expectations and perceptions of the local market.

Finally, it is important to mention that increasing the adoption
of a software ecosystem for developers is an important step in
building a successful software ecosystem. However, the social
aspects that influence the permanence of developers within a
software ecosystem after its initial adoption are also important.
This aspect, permanence, will be discussed in the next section.

Social influences on ecosystem permanence
We have previously defined software ecosystem permanence as

“the continued participation of developers in a software ecosys-
tem”. So, throughout our additional interviews we specifically
asked our informants how social aspects influenced them in
remaining in a specific platform ecosystem.

The role of developer communities
Permanence in an ecosystem is influenced by both local devel-
opers and online communities. Both help nourish the software
ecosystem by answering questions, providing updated infor-
mation, feedback, motivation, etc. According to one of our
informants:

2The Android operating system was present in 89% of all smart-
phones in Brazil until the end of the second quarter of 2014, according
to a study by Kantar Worldpanel ComTech.

“I think it’s really important to join an [online] group,
get your questions answered and have people you can
count on. The response time is fast, sometimes you post
and receive an answer in an hour!” [A7]

The quote above also illustrates the efficiency of these commu-
nities, where after posing a question, one might get answers in
a very short time-frame.

Despite the different advantages of online communities, some
informants prefer to participate in local communities or help
colleagues through face-to-face groups. This does not mean
they do not like or do not participate in online communities,
but only that they treat face-to-face relationships more care-
fully. The following is a quote in which the informant said his
contribution to the community is more related to his personal
time in face-to-face events.

“My contribution is higher for my company. To the out-
side community I do not have greater collaboration, only
a few tutorials. In general I am more contributory to my
colleagues at work... I also like teaching, doing DOJOs,...
[I prefer] something live more than participating in an
online community. ” [A9]

Participation in online communities is quite varied, i.e., a de-
veloper has a variety of channels that (s)he can use to get the
information (s)he needs. For instance, informant E1 reported
that he prefers to use Facebook groups to address his questions.
On the other hand, informant E16 participates in events to stay
updated regarding new features and versions of the platform
ecosystem. In this case, the event E16 was referring to is
Google I/O, an annual conference held by Google focusing
on software development. Differently, E9 refers to YouTube
channels as an important source of information for him. These
different channels provide useful information about program-
ming tips, update informations, among other topics. In short,
one can observe a variety of means used to keep in touch
with the online community of developers: social networks like
Facebook and Google Plus, events, YouTube channels, etc. In
addition, Q&A sites are also important:

“Of course I do several queries ... many of them I get the
answer from Stack Overflow, sometimes the GUJ [a Java
user group in Brazil] which also has Android questions
[...] Company’s3 channel also has people who answer
questions there or Google Plus which is a more technical
network to find new things that are emerging.” [A9]

The rapid evolution of techniques and development of tech-
nologies made teaching materials (e.g. books) become ob-
solete at a much faster rate and, as a consequence, software
development increasingly challenging [33]. By participating
in online communities, developers are able to keep up with
this fast-paced environment. In short, this is an important
advantage of these communities. This can be confirmed by
the quote below:

“It’s hard to find solutions to everyday problems. In gen-
eral, the community is the main source [of information].

3Famous company in Brazil that provides training in software devel-
opment.

The moment you buy a book, chances are it is already out
of date.” [B1]

While online communities provide advantages like efficiency
and access to updated information, our respondents also re-
ported at least one limitation of these online communities. E14
mentioned that the support provided by these communities at
times is not ideal, since most of the information available in
these communities is more suitable for advanced users, falling
short in supporting novice users. This quote also suggests that
information on those sites should be organized differently to
address this aspect.

“I rank as good the help [one finds in an online commu-
nity] but not outstanding. As it [the information one finds
in these communities] should be organized at all levels. I
see a lot of benefits for those who are advanced but not
for who’s starting.” [A14]

One important aspect that we have identified in our findings is
the role of what we call internal developers, i.e., developers
who are employees of keystone companies and are involved in
developing SDKs, APIs, libraries, emulators and other tools
for software development [16]. As developers working for
keystone companies, they have access to important informa-
tion about the ecosystem. To be more specific, in our study, we
found that respondents value the participation and engagement
of these internal developers on social networking sites and
other social media. This participation provides higher levels
of social transparency [34] about the identity of internal devel-
opers therefore allowing external developers to interact with
them. To illustrate this point, our data shows that Android de-
velopers (who work for Google) use specific communication
channels to disseminate information about the documentation
and official releases [35], so by taking advantage of their level
of social transparency in social media they can promote the
Android ecosystem to “external” developers.

“The Android community is in Google Groups or Google
Plus. [...] There is even the participation of members of
the Google team, what motivates us a lot.” [B3]

By displaying their identities and activities on social networks,
internal developers are also showing their interest and commit-
ment to the community of software developers. This attitude
towards the community increases developers’ confidence in
the platform and motivates them to continue participating in
the ecosystem.

In our study, no informant reported how Apple (developers)
communicates with external developers to release official in-
formation, to inform where to find documentation, or any other
aspect. This could be a limitation of our study, because only a
minority of informants developed for the iOS ecosystem.

In summary, developers’ social relationships (face to face or
online) are important for the persistence of a developer in a
given software platform. Online communities can be found in
several ways—online groups, social networking sites, events,
etc. In addition, keystone developers help even more in this
process by serving as a source of motivation for developers,

Figure 1. Different user experiences for the same application based on
the Android operating system.

as well as answering specific questions about the details of the
platform ecosystem.

The role of end users
In most of the major ecosystems, the distribution of apps is
usually done through app stores such as Play Store, App Store
and Windows Phone Store. These stores, however, are not only
used as channels for the distribution of mobile applications,
but they also serve as a communication channel between end
users and application developers. In other words, app users
provide feedback to developers by suggesting new features
to be implemented and/or by reporting bugs. Figure 1 illus-
trates different feedback for the same app: while some users
complain that the application does not work perfectly on their
smartphones, others comment that the application is “fun”.

The quote below illustrates how our informants reported this
communication between developers and end users. It also
illustrates how app stores provide useful information about app
usage, which therefore influences the continuous improvement
of apps. On one hand, getting negative feedback from end
users is something important to the improvement of the app.
On the other hand, it is also harmful, because the more negative
reviews it has, the lower its rating. And the lower its rating,
the less likely it is to be bought.

“I can see the number of users who are using my app,
how many people are uninstalling, how many people
have downloaded the same and which countries [they are
from]. If a user rates my application and reports an error,
I can answer it. This allows direct interaction with the
user.” [A9]

In addition to using app stores as the primary means of com-
munication with end-users, developers reported using their
personal relationships to distribute their applications for test-
ing. This flexibility in the distribution process was mentioned
several times in our interviews as a factor influencing the
continued participation of developers in the ecosystem. For
example, in the Android ecosystem, there is a way to distribute
an app for a user group selected by the developer. Given the
great importance of having positive feedback before making
their applications available in an app store for all end users,
many developers create test groups with a small number of
selected users. Furthermore, one can select user groups to test
different versions of the app and release updates as tests are
concluded. After this testing, the app can be made available
for all users who wish to download it. This is a potential way

to improve the quality of the app and reduce the amount of
negative scores. The quote below illustrates these aspects:

“The best way is to link an application with a group. So
you can bind them as testers. They receive e-mail and
they install the application. They accept that they want
to test and install the application.” [B3]

A different way to distribute applications, and thus receive
feedback from users, is through the direct distribution of the
apps directly to end users using an installation file. Again, this
is done before publishing the final version of the app in the
app store.

“We tested the application by giving [it] to some friends
and family, then we waited for feedback. We distributed
[the app] using e-mail and pen drives.” [A1]

In short, promoting the relationship between developers and
end users is an essential aspect of a software ecosystem be-
cause it allows developers to improve the quality of applica-
tions based on the feedback from their end users. This can
be done by making the app available on the app store (i) to
end users (in this case, communication between developers
and end users occurs through comments) (ii) to test groups,
and finally (iii) to end users (personal contacts and / or user
groups) using installation files. In the latter cases, communi-
cation takes place directly between the developer and the end
users.

DISCUSSION
In our results, we observed that social aspects influence the
adoption and the permanence of software developers in a
particular software ecosystem. Adoption is influenced by
a broader context in which developers are embedded which
includes personal friends and co-workers and, at the same
time, previous experiences by the developers. Permanence is
influenced in many ways. Friends and co-workers who are in
close physical proximity play an important role in answering
questions, providing feedback, etc. Meanwhile, online com-
munities provide support for distributed developers through
different channels including social networking sites, groups,
Q&A sites, and so on. Finally, informants reported that the
participation and engagement of keystone developers on so-
cial networking sites and other social media is an important
source of motivation and information for them. In this section,
we discuss our findings in the context of previous literature
and conclude it by providing implications from our study for
companies and developers interested in the sustainability of
software ecosystems.

Social Aspects of Proprietary vs. FOSS Ecosystems
As mentioned in Section 2, FOSS ecosystems allow external
developers to change their software platform, since they are
more open than proprietary ecosystems [2]. This means that
developers dealing with FOSS ecosystems need to interact
to coordinate their changes in the software platform since
their code is interdependent. In fact, several studies focus
on the social aspects of software developers in this context
pointing out to the importance of the social aspects for the
sustainability of these ecosystems. Meanwhile, proprietary

ecosystems are closed [2], i.e., developers can not change
the software platform, but only use its services through APIs.
Therefore, since their code is independent, developers rarely
need to interact among themselves.

The lack of interaction among developers in proprietary
ecosystems could lead one to believe that the social aspects of
these ecosystems are not important. However, our results sug-
gest the opposite, i.e., they illustrate how the interaction among
different social actors (friends, family, developers working for
the software platform company etc.) allows a developer to
make a decision about joining and remaining in a particular
software ecosystem, therefore creating a sustainable ecosys-
tem. Furthermore, our results also show how this interaction
among social actors takes place: in some cases, face to face
in informal conversations or events, while in others it is medi-
ated by different tools including social networking sites, Q&A
sites, forums, and others. Finally, our results illustrate the
important role of developers who are employees of keystone
companies: by displaying their identities and activities online,
these developers are also displaying their commitment to a
particular ecosystem, which motivates developers to continue
participating in this ecosystem. Permanence in an ecosystem
is then influenced by the degree to which keystone companies
allow their co-workers to be “transparent” [34] about their
work and engage with external community members.

In the context of previous work, this paper highlights the role
of keystone developers, an aspect overlooked in the FOSS
ecosystem research. Our findings also show that developers
are attracted to software ecosystems by their colleagues, but
in different ways of those reported by Hahn et al. [14]. Ac-
cording to Hahn et al., social factors influence developers
to adopt and remain developing for a particular project in a
FOSS ecosystem, while in proprietary ecosystems the influ-
ence is to adopt and remain in the same platform ecosystem,
not necessarily in the same project. This means that commu-
nity support, interactions among developers and other social
factors are means of socialization for building potentially dis-
tinct applications (projects) for that platform, i.e., developers
work independently. In short, in a FOSS ecosystem, interac-
tions are needed to coordinate artifact changes in a common
project and, consequently, developers’ work is interdependent.
It is possible that social factors in FOSS projects also influence
independent work, but to the best of our knowledge, this has
not been reported in the literature.

In general, the focus on the platform, instead of projects is a
major difference from our work compared to previous work
on FOSS ecosystems. For instance, Steinmacher et al. [32]
presented 13 social barriers that make difficult to newcomers
to join FOSS projects, and consequently, their sustainability.
Exceptions to this are the work by Draxler and colleagues
[11] and Jergensen et al. [18]. Draxler looked at the col-
laboration among software developers who participate in the
same software ecosystem, while Jergensen et al. [18] studied
progressive developers’ participation in the FOSS ecosystem
GNOME. In both cases, the focus was on FOSS ecosystems,
not on proprietary ones. Despite the differences between
our findings and previous work on FOSS, further research is

needed to understand social factors’ impact on the sustain-
ability of software ecosystems when “hybrid” development
models are adopted (e.g. Eclipse is a FOSS project with IBM
developers working on it), in which there might be both inde-
pendent and interdependent work involved.

Our results also illustrate how these social aspects directly
influence the sustainability of a proprietary software ecosys-
tem. As pointed out earlier, a sustainable software ecosystem
is “one that can increase or maintain its user/developer com-
munity over longer periods of time and can survive inherent
changes such as new technologies or new products” [10]. For
instance, we discussed how online communities and keystone
developers using social media helped software developers to
stay current regarding both the ecosystem in which they par-
ticipate and the technology landscape in general. Staying
current is important because it helps developers to prepare for
upcoming changes in a fast-paced environment.

Software ecosystems as online communities
Our results suggest that the permanence in a software ecosys-
tem is largely influenced by local and remote (online) commu-
nities of developers. Therefore, it is important to contrast our
results with previous work in online communities.

In 1995, Sproull and Faraj introduced a view of the Internet
as “a social technology that allows people with common in-
terests to find each other, gather, and sustain connections over
time” [31]. Following this interpretation, online communities—
defined as “people with shared interests or goals for whom
electronic communication is a primary form of interaction”
[9]—have developed for different topics. In these communi-
ties, information exchange is the main goal [26].

The centerpiece of most online communities is a single website
to which members are supposed to contribute. For example,
the online community powering Wikipedia has the clear goal
of improving and adding to the content of the online ency-
clopedia. Social aspects are often realized in such online
communities as a side-effect. For example, Forte et al. [12]
found that WikiProjects—groups of contributors who want to
work together as a team to improve Wikipedia—not only help
produce articles, but also provide a place to find collaborators
and facilitate socializing and networking. Since these online
communities need users to create content for their community
website, their success is determined through sociability and us-
ability [25]. In a study on the collaborative writing community
Everything2, Lampe et al. [21] found that social and cognitive
factors seemed to be more important in predicting contribu-
tions to the site than usability issues. Similarly, Ridings and
Gefen [26] found social aspects to be among the reasons why
individuals join online communities.

While software ecosystems are similar to online communities,
their main goal is not the creation of content for the community
website. Instead, their goal is multi-faceted, i.e. developers’
goal is the development of apps, keystone companies’ goals
are more business-oriented including market share, profits, etc.
As became evident in our interviews, software developers use
multiple means of communication and knowledge exchange
when they participate in an ecosystem, ranging from the Q&A

website Stack Overflow and other social media channels to
face to face interaction with friends and colleagues. In addi-
tion, they use various tools and development environments to
design, develop, and release their applications. They value
the social transparency and the information up-to-dateness
their communities provide and use these communities as an
essential tool for their daily work as professional developers.

Software ecosystems as a developer choice
It is important to keep in mind that software developers con-
stantly have to make decisions about the tools to be used
including what libraries or tools (e.g., IDE) to use and what
platforms to develop for. Depending on the decision to be
made, previous research was inconclusive or illustrated the
importance of social aspects. For instance, when choosing an
API, Robillard [27] suggested that social aspects do not play
a crucial role. In his research on obstacles encountered by
developers trying to learn an API, Robillard identified prob-
lems related to inadequate or absent resources, the structure or
design of the API, as well as other technical and process issues.
In addition, he noted obstacles caused by the respondents back-
ground and prior experience—a category that also emerged in
our study. Other researchers have theorized that social aspects
are important: Chen et al. [6] identified eleven themes that play
a role when developers choose an API, such as learnability
and interoperability. Among others, they identified an active
community as an important factor when choosing APIs, espe-
cially when official documentation was lacking. In those cases,
the community could answer specific questions and provide
up-to-date information on an API—a result which is mirrored
by our findings in the context of a software ecosystem instead
of APIs.

A different type of decision to be made is whether to become
an active contributor of an open source project or to adopt a
mobile ecosystem. When making these decisions, develop-
ers consider a mix of social, technical, and business factors.
Hertel et al. [15] compared joining an open source project
to participating in a social movement, such as the civil rights
movement or the labor movement. In their survey on motiva-
tion of software developers in open source projects, they found
that developers’ engagement was particularly determined by
their identification as a developer for a particular project as
well as by pragmatic motives to improve their own software
tools and career chances. Our study revealed similar findings:
developers’ preferences towards ecosystems are influenced by
their personal identification with the governance strategies of
the keystone companies.

To summarize, while previous research was somewhat incon-
clusive (especially in the context of APIs), our paper provides
additional evidence of the importance of social aspects in the
decision-making process of software developers.

Organizational Implications
In order to attract developers to their ecosystem and to sustain
them as active contributors of apps and other content, keystone
companies need to be aware of the importance of the social
aspects of the software ecosystems. Therefore, we argue that
these implications follow from our findings:

• When choosing a software ecosystem, local market share
(e.g., among friends and family), can be just as important
as overall market share. In addition, developers are biased
towards ecosystems for which they are somehow already
familiar. Therefore, it is important for keystone companies
to not only promote the ecosystem as a whole, but also the
programming languages and tools that are part of it.

• We found that developers value the active participation
and engagement of keystone developers in social network
sites and social media. This social transparency can be
achieved by explicitly recognizing the effort from keystone
developers who participate in these sites.

• Social network sites and social media resources are also an
important source for developers to learn about new releases
or development tools and techniques. For companies trying
to get information out to their developers, it is important
to make use of the channels available. It is also important
that keystone companies are careful with the different de-
grees of expertise, therefore providing information for both
beginners and advanced developers.

• Finally, encouragement for live events is also important
since some developers reported that they prefer this form
of participation instead of online events. As they reported,
they feel more active in face to face events. Thereby, the ex-
istence of these events gives these developers opportunities
to contribute to the ecosystem.

CONCLUSION
The simple model in which a single company develops a prod-
uct and then sells these products to its clients has been slowly
replaced by a complex ecosystem composed by different com-
panies, internal and external developers, online developer com-
munities, and end users. These software ecosystems can be
studied from a technical, business, or social point of view.
While the technical and business aspects of such ecosystems
have been investigated in past research, the social side of
software ecosystems is less well understood, especially in
the context of proprietary ecosystems (i.e., not free and open
source).

We reported on a qualitative empirical study based on 25 inter-
views with mobile software developers and an online survey
with 83 respondents from the mobile development community
to understand the social aspects of proprietary ecosystems and
their impact on the sustainability of such ecosystems. Our
data analysis reveals a complex social context that includes
the socialization of developers (and the associated learning),
a form of "social capital" (knowing who to ask for help [11])
that is enabled by the social transparency of keystone devel-
opers. These social aspects in general do not only play an
important role when software developers initially choose to
adopt a particular software ecosystem, but are also crucial in
sustaining a developer’s ties with that ecosystem.

In future work, we will continue to investigate the social as-
pects of software ecosystems from the perspective of the dif-
ferent actors involved. In particular, we plan to study which
communication and coordination channels are the most ef-
fective for different tasks in the ecosystem, and we plan to

investigate the consequences of different strategies of keystone
companies in an ecosystem in more detail. In addition, we
believe an important aspect to be studied is how social aspects
influence “hybrid” ecosystems, i.e., ecosystems which are both
FOSS and proprietary.

ACKNOWLEDGMENTS
The first author would like to thank the funding from CNPq
(process numbers 440880/2013-0 and 310468/2014-0).

REFERENCES
1. Ron Adner. 2012. The Wide Lens: A New Strategy for

Innovation. Portfolio Hardcover.

2. Mohsen Anvaari and Slinger Jansen. 2010. Evaluating
Architectural Openness in Mobile Software Platforms. In
Proc. of the Fourth European Conference on Software
Architecture: Companion Volume (ECSA ’10). ACM,
New York, NY, USA, 85–92.

3. Olavo Barbosa, Rodrigo Santos, Carina Alves, Claudia
Werner, and Slinger Jansen. 2013. Software Ecosystems:
Analyzing and Managing Business Networks in Software
Industry. Edward Elgar, Chapter A Systematic Mapping
Study on Software Ecosystems through a
Three-dimensional Perspective.

4. Jan Bosch and Petra Bosch-Sijtsema. 2010. From
integration to composition: On the impact of software
product lines, global development and ecosystems.
Journal of Systems and Software 83, 1 (2010), 67–76.

5. Kathy Charmaz. 2006. Constructing Grounded Theory: A
Practical Guide through Qualitative Analysis. SAGE
Publications.

6. Xiang ‘Anthony’ Chen, Matthew Dunlap, Richard Fung,
and Túlio Souza. 2011. How Do Developers Choose
APIs? (2011). University of Calgary, Canada.

7. Juliet Corbin and Anselm Strauss. 2008. Basics of
qualitative research: Techniques and procedures for
developing grounded theory (3rd ed.). Sage Publications.

8. Simone da Silva Amorim, John D. McGregor,
Eduardo Santana de Almeida, and Christina von Flach
G. Chavez. 2014. Flexibility in Ecosystem Architectures.
In Proc. of the European Conf. on Software Architecture
Workshops. Article 14, 6 pages.

9. Alan R. Dennis, Sridar K. Pootheri, and Vijaya L.
Natarajan. 1998. Lessons from the Early Adopters of Web
Groupware. J. Manage. Inf. Syst. 14, 4 (1998), 65–86.

10. Deepak Dhungana, Iris Groher, Elisabeth Schludermann,
and Stefan Biffl. 2010. Software Ecosystems vs. Natural
Ecosystems: Learning from the Ingenious Mind of
Nature. In Proc. of the 4th European Conf. on Software
Architecture: Companion Volume. 96–102.

11. Sebastian Draxler and Gunnar Stevens. 2011. Supporting
the Collaborative Appropriation of an Open Software
Ecosystem. Computer Supported Cooperative Work 20,
4-5 (2011), 403–448.

12. Andrea Forte, Niki Kittur, Vanessa Larco, Haiyi Zhu,
Amy Bruckman, and Robert E. Kraut. 2012.
Coordination and Beyond: Social Functions of Groups in
Open Content Production. In Proc. of the Conf. on
Computer Supported Cooperative Work. 417–426.

13. Samuel Fricker. 2009. Specification and Analysis of
Requirements Negotiation Strategy in Software
Ecosystems. In Proc. of the First Intl. Workshop on
Software Ecosystems. 19–33.

14. Jungpil Hahn, Jae Y. Moon, and Chen Zhang. 2008.
Emergence of New Project Teams from Open Source
Software Developer Networks: Impact of Prior
Collaboration Ties. Information Systems Research 19, 3
(2008), 369–391.

15. Guido Hertel, Sven Niedner, and Stefanie Herrmann.
2003. Motivation of software developers in Open Source
projects: an Internet-based survey of contributors to the
Linux kernel. Research Policy 32, 7 (2003), 1159 – 1177.

16. Marco Iansiti and Roy Levien. 2004. The keystone
advantage: what the new dynamics of business
ecosystems mean for strategy, innovation, and
sustainability. Harvard Business Press.

17. Chris Jensen and Walt Scacchi. 2007. Role Migration and
Advancement Processes in OSSD Projects: A
Comparative Case Study. In Proc. of the 29th Intl. Conf.
on Software Engineering. 364–374.

18. Corey Jergensen, Anita Sarma, and Patrick Wagstrom.
2011. The Onion Patch: Migration in Open Source
Ecosystems. In Proc. of the 19th SIGSOFT Symp. and the
13th European Conf. on Foundations of Software
Engineering. 70–80.

19. Kimmo Karhu, Tingan Tang, and Matti Hämäläinen.
2014. Analyzing Competitive and Collaborative
Differences Among Mobile Ecosystems Using Abstracted
Strategy Networks. Telemat. Inf. 31, 2 (2014), 319–333.

20. Stefan Koch and Markus Kerschbaum. 2014. Joining a
smartphone ecosystem: Application developers’
motivations and decision criteria. Information and
Software Technology 56, 11 (2014), 1423–1435.

21. Cliff Lampe, Rick Wash, Alcides Velasquez, and Elif
Ozkaya. 2010. Motivations to Participate in Online
Communities. In Proc. of the Conf. on Human Factors in
Computing Systems. 1927–1936.

22. Konstantinos Manikas and Klaus Marius Hansen. 2013.
Software ecosystems – A systematic literature review.
Journal of Systems and Software 86, 5 (2013),
1294–1306.

23. Tom Mens, Maëlick Claes, and Philippe Grosjean. 2014.
ECOS: Ecological studies of open source software
ecosystems. In Proc. of the Conf. on Software
Maintenance, Reengineering and Reverse Engineering.
403–406.

24. Müller Miranda, Renato Ferreira, Cleidson R. B. de
Souza, Fernando Figueira Filho, and Leif Singer. 2014.

An Exploratory Study of the Adoption of Mobile
Development Platforms by Software Engineers. In Proc.
of the 1st ACM Intl. Conf. on Mobile Software
Engineering and Systems. 50–53.

25. Jenny Preece. 2001. Sociability and usability in online
communities: determining and measuring success.
Behaviour & IT 20, 5 (2001), 347–356.

26. Catherine M. Ridings and David Gefen. 2004. Virtual
Community Attraction: Why People Hang Out Online. J.
Computer-Mediated Communication 10, 1 (2004).

27. Martin P. Robillard. 2009. What Makes APIs Hard to
Learn? Answers from Developers. IEEE Softw. 26, 6
(2009), 27–34.

28. Everett M. Rogers. 2003. Diffusion of innovations (5th
ed.). Free Press. 576 pages.

29. Walt Scacchi. 2007. Free/Open Source Software
Development: Recent Research Results and Methods. In
Architectural Issues, Marvin V. Zelkowitz (Ed.).
Advances in Computers, Vol. 69. Academic Press Inc.,
243–295.

30. Sonali K. Shah. 2006. Motivation, Governance, and the
Viability of Hybrid Forms in Open Source Software
Development. Manage. Sci. 52, 7 (2006), 1000–1014.

31. Lee Sproull and Samer Faraj. 1995. Atheism, Sex, and
Databases: The Net As a Social Technology. In Public
Access to the Internet, Brian Kahin and James Keller
(Eds.). MIT Press, 62–81.

32. Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa,
and David Redmiles. 2015. Social Barriers Faced by
Newcomers Placing Their First Contribution in Open
Source Software Projects. In Proc. of the 18th ACM
Conference on Computer Supported Cooperative Work &
Social Computing (CSCW ’15). ACM, New York, NY,
USA, 1379–1392.

33. Margaret-Anne Storey, Leif Singer, Brendan Cleary,
Fernando Figueira Filho, and Alexey Zagalsky. 2014. The
(R) Evolution of Social Media in Software Engineering.
In Proceedings of the on Future of Software Engineering
(FOSE 2014). ACM, New York, NY, USA, 100–116.

34. Colleen Stuart, Laura Dabbish, Sara Kiesler, Peter
Kinnaird, and Ruogu Kang. 2012. Social Transparency in
Networked Information Exchange: A Theoretical
Framework. In Proc. of the Conf. on Computer Supported
Cooperative Work. 451–460.

35. Christoph Treude and Margaret-Anne Storey. 2011.
Effective Communication of Software Development
Knowledge Through Community Portals. In Proc. of the
19th SIGSOFT Symp. and the 13th European Conf. on
Foundations of Software Engineering. 91–101.

36. Eric S. K. Yu and Stephanie Deng. 2011. Understanding
Software Ecosystems: A Strategic Modeling Approach.
In Proc. of the 3rd Intl. Workshop on Software
Ecosystems. 65–76.

	Introduction
	Background
	Defining Software Ecosystems
	Types of Software Ecosystems
	Software Ecosystem Dimensions
	The Sustainability of Software Ecosystems
	Sustainability and Social Aspects of Software Ecosystems
	Research Contribution

	Methodology
	Initial interviews
	Survey
	Additional interviews with Brazilian developers
	Additional interviews with international developers
	Data Analysis
	Validation interview

	Findings
	Social influences on ecosystem adoption
	Social influences on ecosystem permanence
	The role of developer communities
	The role of end users

	Discussion
	Social Aspects of Proprietary vs. FOSS Ecosystems
	Software ecosystems as online communities
	Software ecosystems as a developer choice
	Organizational Implications

	Conclusion
	Acknowledgments
	References

