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Abstract—Code smells are symptoms of poor design and
implementation choices that may hinder code comprehension,
and possibly increase change- and defect-proneness. A vast
catalogue of smells has been defined in the literature, and it
includes smells that can be found in any kind of system (e.g.,
God Classes), regardless of their architecture. On the other
hand, software systems adopting specific architectures (e.g., the
Model-View-Controller pattern) can be also affected by other
types of poor practices. We surveyed and interviewed 53 MVC
developers to collect bad practices to avoid while working on Web
MVC applications. Then, we followed an open coding procedure
on the collected answers to define a catalogue of six Web
MVC smells, namely SMART REPOSITORY, FAT REPOSITORY,
PROMISCUOUS CONTROLLER, SMART CONTROLLER, LABORI-
OUS REPOSITORY METHOD, and MEDDLING SERVICE. Then,
we ran a study on 100 MVC projects to assess the impact of
these smells on code change- and defect-proneness. In addition,
we surveyed 21 developers to verify their perception of the defined
smells. The achieved results show that the Web MVC smells (i)
more often than not, increase change- and defect-proneness of
classes, and (ii) are perceived by developers as severe problems.

I. INTRODUCTION

God Classes, Feature Envy, Blob Classes, and Spaghetti
Code are examples of well-known code smells, i.e., symptoms
of poor design and implementation choices [1], [2]. Evidence
in the literature suggests that code smells can hinder code
maintainability [3], [4], [5], and increase change- and defect-
proneness [6], [7].

While these smells fit well in any object-oriented system,
they do not take into account the underlying architecture of the
application or the role played by a given class. For example, in
web systems relying on the MVC pattern [8], CONTROLLERS
are classes responsible to control the flow between the view
and the model layers. Commonly, these classes represent an
endpoint for other classes, do not contain state, and manage the
control flow. Besides being possibly affected by “traditional
smells” (e.g., God Classes), good programming practices sug-
gest that CONTROLLERS should not contain complex business
logic and should focus on a limited number of services offered
to the other classes. Similarly, DATA ACCESS OBJECT (DAO)
classes [9] in MVC applications are responsible for dealing
with the communication towards the databases. These classes,
besides not containing complex and long methods (traditional
smells) should also limit the complexity of SQL queries
residing in them.

Indeed, traditional code smells capture very general princi-
ples of good design. However, we suggest that specific types
of code smells, such as the aforementioned ones, are needed
to capture “bad practices” on software systems adopting a
specific architecture. Hence, the non-existence of a rigorous
smells catalogue specific to an architecture (e.g., Web MVC)
implies (i) a lack of explicit knowledge to be shared with
practitioners about good and bad practices in that architecture,
(ii) no available detection tools to alarm developers about the
existence of the smell, and (iii) no empirical studies about
the impact of these bad practices on code maintainability
properties. For these reasons, good and bad practices that are
specific to a platform, architecture or technology have been
recently emerging as a research topic in software maintenance.
In particular, researchers have studied smells specific to the
usage of object-relational mapping frameworks [10], Android
apps [11], [12], and Cascading Style Sheets (CSS) [13].

In this paper, we provide a catalogue of six smells that are
specific to web systems that rely on the MVC pattern. The use
of MVC for web development is widely spread and applied
by many of the most popular frameworks in the market, such
as Ruby on Rails, Spring MVC, and ASP.NET MVC. To pro-
duce the catalogue, we surveyed and interviewed 53 different
software developers about good and bad practices they follow
while developing MVC web applications. Then, we applied an
open coding procedure to derive the smell catalogue from their
answers. The defined smells are: SMART REPOSITORY, FAT
REPOSITORY, PROMISCUOUS CONTROLLER, SMART CON-
TROLLER, LABORIOUS REPOSITORY METHOD, and MED-
DLING SERVICE. We evaluated the impact of the proposed
smells on change- and defect-proneness of classes in 100
Spring MVC projects. In addition, we performed a survey
with 21 developers to verify whether they perceived classes
affected by the defined smells as problematic.

Our findings show that all the proposed smells have a
negative impact on class change-proneness. Also, MEDDLING
SERVICES increase class defect-proneness. Finally, developers
perceive classes affected by these smells as problematic, at
least as much as classes affected by traditional smells.

Specifically, the main contributions of this paper are:
1) A validated catalogue of smells affecting Web applica-

tions relying on the MVC pattern. This catalogue has
been defined by means of an open coding process after
surveying and interviewing 53 software developers.



2) Detection strategies for each of the catalogued smells.
We followed Lanza and Marinescu’s approach [14] to
propose detection strategies. These strategies have been
implemented in an open source detection tool [15].

3) An empirical study on the impact of the catalogued smells
on change- and defect-proneness of classes. We evaluated
the impact of each smell in 100 Spring MVC projects.

4) A survey on developers’ perception of the smells. We
performed a survey with 21 software developers and
captured their perceptions on the catalogued smells.

5) A publicly available replication package [16], reporting
all data collected in our studies.

II. THE CATALOGUE OF WEB MVC SMELLS

This section presents the catalogue of Web MVC smells and
the details of the method adopted in its definition.

A. Background in MVC Web Development

The MVC pattern [8] has been widely adopted by the
web development industry. Frameworks such as Spring MVC
(Java), ASP.NET MVC (.NET), Ruby on Rails (Ruby), and
Django (Python) have MVC in their core. Thus, developers
need to write code for each one of the three layers of the MVC.
In this paper, we focus on the server-side code developers are
required to write in both CONTROLLER and MODEL layers.

CONTROLLERS, as the MVC pattern states, take care of
the flow between the model and the view layers. The MODEL
layer represents the business model. In this layer, developers
commonly make use of other patterns [9], [17], such as
Entities, Repositories, and Services. ENTITIES represent a
domain object (e.g., an Item or a Product). REPOSITORIES are
responsible to encapsulate persistence logic, similar to Data
Access Objects [9]. Finally, SERVICES are implemented when
there is a need to offer an operation that stands alone in the
model, with no encapsulated state. It is also common to write
utility classes, which are commonly called COMPONENTS;
practical examples of them can be UI formatting or data
conversion.

As discussed in detail in Section III-B, we evaluated the
impact of the catalogued smells in Spring MVC projects, a
popular Java framework for web development. Indeed, these
different architectural roles can be seen in all the aforemen-
tioned frameworks.

B. Smell Discovery Approach

We collected good and bad practices followed by developers
while working on Web MVC applications. The data collection
included three different steps detailed in the following.

Step 1: Layer-focused survey (S1). We designed a simple
survey comprising three sections: Model, View, and Controller.
In each section, we asked two questions to the participants:

1) Do you have any good practices to deal with X?
2) Do you have anything you consider a bad practice when

dealing with X?
where X was one of the three investigated layers (i.e., Model,
View, or Controller).

The goal of this first survey was to shed some light on good
and bad practices followed by developers when dealing with
code belonging to the three different MVC layers.

We shared the survey in software development discussion
lists as well as in personal and industry partners’ Twitter
accounts. We collected 22 complete answers.

Step 2: Role-focused survey (S2). We designed a survey
aimed at investigating good and bad practices related to code
components playing a specific role in the MVC architecture
in web applications.

The questionnaire contained five open questions, one for
each of the roles mentioned in Section II-A: CONTROLLER,
ENTITY, SERVICE, COMPONENT, and REPOSITORY. We
asked participants about good and bad practices they perceive
for classes playing each of these roles. In order to recruit
participants, we sent invitations to 711 developers who did at
least one commit in the previous six months (July-December,
2014) in one of the 120 Spring MVC projects hosted on
GitHub. Such a list of projects has been collected using
BOA [18], a dataset with structured information about projects
in GitHub. We received 14 answers to this survey.

Step 3: Unstructured interviews with industrial develop-
ers (S3). We interviewed 17 professional developers from one
of our industry partners. All participants worked at the time of
the interview on a Java-based Spring MVC web application
that has been developed for 11 years, and has more than 1
million lines of code in its main module. The focus of the
interview was to make participants discuss about their good
and bad practices in each of the five main architectural roles
in MVC Web applications. All interviewees were developers
or technical leaders. Interviews were conducted by two of
the authors, and took 4:30 hours in total. They were fully
transcribed.

Overall, we collected information about good and bad
practices followed in MVC Web applications from 53 partic-
ipants. To report some demographic data, our surveys as well
as our interviews asked participants about their experience
in software and web development. Complete data is shown
in Figure 1. Participants were mostly experienced in both
software and web development. 46 (83%) had more than 3
years of experience in software development, and 18 (33%)
had more than 10 years.

We used the answers provided by participants to our surveys
and interviews as the starting point to define our smells
catalogue. In particular, two of the authors performed an open
coding process on the reported good and bad practices in order
to group them into categories. They focused on identifying
smells that can be considered as specific of the Web MVC
architecture. For example, answers like “large classes should
be avoided” were not taken into consideration, since large
classes should be avoided in any type of system [1], indepen-
dently from its architecture. Instead, answers like “a repository
method should not have multiple queries” were considered
indicative of MVC-specific smells, and thus categorized into
a high-level concept, which afterwards became a smell (e.g.,
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Figure 1: Participants’ experience in software and web
development in S1 (bottom), S2, S3 (top).

LABORIOUS REPOSITORY METHOD). Note that the two au-
thors independently created classifications for the participants’
good and bad practices. Then, they met to discuss, refine, and
merge the identified categories, reaching an agreement when
needed. They ended up with a list of nine possible smells.

To further validate the defined list of smells and reduce
the subjectivity bias, we presented the nine smells to Arjen
Poutsma, one of the core Spring MVC developers since its
creation, and currently Spring Technical Advisor at Pivotal, the
company that maintains the framework. After listening to his
opinions, we removed three of the defined smells (two related
to SERVICE classes and one to REPOSITORY classes). The
main reason for the removal was that these three smells were
not really generalizable to arbitrary MVC web applications.
The complete list of the nine smells we defined as result
of the open coding procedure is reported as part of our
replication package [16], while in the following (Section II-C),
we detail the six smells present in our catalogue as well as
tool-supported detection strategies to identify each of them.
These latter have been also defined in collaboration with the
expert.

C. Resulting Catalogue of Web MVC Smells

In the following paragraphs, we discuss each of smells,
explaining why it has been considered part of our catalogue
(i.e., which answers provided by participants indicated the
existence of this smell) and which detection strategy we
adopted to spot its instances1. We use the notation SX-PY to
refer to answers provided by participant Y in the context of
the X data collection step (S1, S2, or S3 presented in Section
II-B).

Promiscuous Controller. CONTROLLERS should be lean
and provide cohesive operations and endpoints to clients. As
CONTROLLERS are the start point of any request in Web MVC
applications, participants (n = 6) argued that the ones that of-
fer many different services to the outside are harder to maintain
as they deal with many different functionalities of the system.
As S3-P13 stated: “With many services you end up having a
Controller with a thousand lines, a thousand methods, and I
think this is bad.”. According to S1-P1, “Something happens in

1Thresholds used in the detection strategies have been tuned as described
in Section III-D.

a Controller with more than 5 methods (routes)”. S1-P3 even
had a name for that: “Jack-of-all-trades controllers, controllers
that do a lot of things in the application.”.

We define the smell as “Controllers offering too many
actions”. To detect them, we rely on the number of routes im-
plemented in the CONTROLLER and the number of SERVICES
the CONTROLLER depends on. The reasoning is that a CON-
TROLLER offers many actions when it provides many different
endpoints and/or deals with many different SERVICE classes.
Therefore, to detect the smell, we propose the metrics NOR
(Number of Routes), which counts the number of different
routes a CONTROLLER offers, and NSD (Number of Services
as Dependencies), which counts the number of dependencies
that are SERVICES. In Formula 1, we present the detection
strategy, where α and β are thresholds.

(NOR > α) ∨ (NSD > β) (1)

Smart Controller. The most mentioned smell by our par-
ticipants (n = 25) is the existence of complex flow control
in CONTROLLERS. In Web MVC applications, ENTITIES and
SERVICES should contain all business rules of the system
and manage complex control flow. Even if a CONTROLLER
contains just a few routes (i.e., is not a PROMISCUOUS
CONTROLLER), it can be overly smart. According to S1-P19,
this is a common mistake among beginners: “Many beginners
in the fever to meet demands quickly, begin to do everything
in the controller and virtually kill the Model and the Domain,
leaving the system just like VC.” S3-P7 also states that his
team does not unit test CONTROLLERS, and thus, complex
logic and control flow in them should be avoided.

When discussing the smell with the expert, he agreed that
the flow control in CONTROLLERS should be very simple.
Thus, we come up with the following definition for the smell:
“Controllers with too much flow control”.

As a proxy to measure the amount of flow control in
a CONTROLLER, we derived the NFRFC (Non-Framework
RFC) from the RFC (Response for a Class) metric that is
part of the CK metric suite [19], an ofted used suite of
object-oriented metrics. The common RFC metric counts the
number of all method invocations that happen in a class.
However, it also counts invocations to the underlying frame-
work. As confirmed by our expert, CONTROLLERS perform
several operations on the underlying framework, and these
should happen there. Thus, NFRFC ignores invocations to the
framework API, which makes the metric value represent the
number of invocations that happen to other classes that belong
to the system. In Formula 2, we present the detection strategy,
where α represents the threshold:

(NFRFC > α) (2)

Meddling Service. Services are meant to contain business
rules and/or to control complicated business logic among
different domain classes. However, they should not contain
SQL queries. While 2 participants mentioned that this is a



bad practice, all participants in the interview were clear about
where the SQLs should be (good practice): in REPOSITORIES.
In addition, two of the participants affirmed that queries in
SERVICES may be problematic. S3-P15 stated: “Never get
data [from the database] directly in the Service; Services
should always make use of a Repository.”. Our expert also
confirmed the smell with no further thoughts.

We define this smell as “Services that directly query the
database”. If a SERVICE contains a dependency to any per-
sistence API provided (e.g., JDBC, Hibernate, JPA, iBatis) and
makes use (one or more times) of this dependency, then we
consider this class to be smelly. In Formula 3, we present its
detection strategy for a class C:

∃persistenceDependency(C) (3)

Smart Repository. Repositories are meant to deal with the
persistence mechanism, such as databases. To that, they com-
monly make use of querying languages, such as SQL or JPQL
(Java’s JPA Query Language). However, when REPOSITORIES
contain complicated (business) logic or even complex queries,
participants (n = 24) consider that class smelly. S3-P10 states
that “When it is too big [the query], ..., if we break it a little,
it will be easier to understand.”. S3-P14 strongly states: “No
business rules in Repositories. It can search and filter data.
But no rules.” Therefore, we define this smell as “Complex
logic in the repository”.

When discussing the smell with the expert, he mentioned
that two situations are common in real world REPOSITORIES,
and sometimes can happen in the same class: (1) very complex
SQL queries, i.e., a single query that joins different tables,
contains complex filters, etc, and (2) complex logic to build
dynamic queries or assembly objects that result from the
execution of the query. According to him, if both these two
types of complexity are in a class, then the class has a
symptom of bad code. Thus, we detect a SMART REPOSITORY
by identifying the ones in which the McCabe’s Complexity
Number [20] and the SQL complexity are higher than a
threshold. McCabe’s Number counts the number of different
branch instructions, e.g., if, for, inside of a class. Similarly,
to define the SQL complexity, we counted the occurrence of
the following SQL commands in a query: WHERE, AND, OR,
JOIN, EXISTS, NOT, FROM, XOR, IF, ELSE, CASE, IN. In
Formula 4, we present the detection strategy, where α and β
are thresholds:

(McCabe > α ∧ SQLComplexity > β) (4)

Laborious Repository Method. As a good practice, a
method should have only one responsibility and do one thing
[21]. Analogously, if a single method contains more than one
query (or does more than one action with the database), it may
be considered too complex or non-cohesive. Although just one
participant (S1-P1) raised this point, both authors selected the
smell during the analysis, and our expert confirmed that it is
indeed a bad practice, as it reduces the understandability of
that method.

Thus, we define the smell as “a Repository method having
multiple database actions”. The detection strategy relies on
the number of methods that “execute” a command in the
underlying persistence mechanism. We argue this is a good
proxy for the number of actions or executed queries. In
practice, developers need to invoke many different methods
of the API to build the query, pass the parameters, execute,
and deal with its return. Using Java as example, we present
a list of methods (actions) for many different persistence
APIs which should happen only once in each method: For
Spring Data, query(), for Hibernate, createQuery(), createSql-
Query(), createFilter(), createNamedQuery(), createCriteria(),
for JPA, createNamedQuery(), createNativeQuery(), create-
Query(), createStoredProcedure(), getCriteriaBuilder(), and
for JDBC, prepareStatement(), createStatemente(), prepare-
Call(). If a method contains two invocations to any of the
methods above, we consider the class as smelly. In Formula
5, we present the smell’s detection strategy for class C:

∀m ∈ C ∃ qtyPersistenceActions(m) > 1 (5)

Fat Repository. Commonly, there is a one-to-one relation
between an ENTITY and a REPOSITORY, e.g., the entity Item
is persisted by ITEMREPOSITORY. If a REPOSITORY deals
with many entities at once, this may imply low cohesion and
make maintenance harder. Participants (n = 6) mentioned
that repositories should deal with only a single entity. S3-
P12 stated: “[A problem is to] use more than one Entity in a
Repository. The repository starts to loose its cohesion.”.

Our expert agreed with this smell with no further com-
ments. Therefore, we define it as “a Repository managing
too many entities”. We count the number of dependencies a
REPOSITORY has directly to classes that are Entities. We call
this metric CTE. If this number is higher than the threshold,
the class is considered smelly. In Formula 6, we present the
detection strategy, where α is the threshold:

(CTE > α) (6)

In the following sections, we evaluate the impact of our
catalogue of smells from a quantitative (change- and defect-
proneness of classes) and a qualitative (developers’ perception)
point-of-view.

III. SMELL EVALUATION STUDY DESIGN

The goal of the study is to investigate whether the defined
catalogue of MVC smells has impact on different maintainabil-
ity aspects of a class, such as its change- and defect-proneness,
and whether developers perceive classes affected by our six
smells as problematic. The quality focus is on source code
quality and maintainability that might be negatively affected
by the presence of the defined smells.

A. Research Questions

Our study aims at addressing the following three research
questions:



RQ1. What is the impact of the proposed code smells
on change-proneness of classes? Previous studies have
shown that the “traditional smells” (e.g., Blob Classes) [1]
can increase class change-proneness [6], [7]. This re-
search question aims at investigating the impact of the
six Web MVC smells on change-proneness of classes.

RQ2. What is the impact of the proposed code smells on
defect-proneness of classes? This research question mir-
rors RQ1. Traditional smells are also known by their
impact on the defect-proneness of classes [6], [7]. Thus,
we compare the impact of the six defined smells on
defect-proneness of classes.

RQ3. Do developers perceive classes affected by the proposed
code smells as problematic? Our last research question
qualitatively complements the quantitative analysis per-
formed in the context of RQ1 and RQ2. Here we inves-
tigate whether classes affected by the defined Web MVC
code smells are perceived as problematic by developers.

B. Context Selection

To answer our research questions, we need to identify
instances of the defined code smells in MVC software projects.
We select Spring MVC projects from Github as subject
systems. We focus our attention on the Spring MVC frame-
work since: (i) it uses stereotypes to explicitly mark classes
playing the different roles introduced in Section II-A (e.g.,
CONTROLLERS), thus making simple identifying the role of
each class, and (ii) as shown in a survey conducted with
over 2,000 developers [22], it is widely adopted by developers
(> 40% of the respondents claimed to use it).

We use BOA [18] to select our sample. BOA allows users
to query its data using its own domain specific language. We
define a query2 to select Spring MVC projects: (i) having
more than 500 commits in their history, and (ii) containing
at least 10 CONTROLLERS. Although the constants 500 and
10 are chosen by convenience, we conjecture that they filter
out pet projects and small experiments developers host on
GitHub. We also manually inspect the sample to make sure
they were stand-alone systems. We end up with 120 Spring
MVC projects. The complete list is available in our online
appendix [16], while Table I reports size attributes of the
subject systems.

From the 120 subject projects, 20 are randomly selected3,
to tune the thresholds of our detection strategies, as described
in Section III-D. The remaining 100 are used, as detailed in
Section III-C, to answer our research questions.

To answer RQ3, we recruit 21 Spring MVC developers
among our industry contacts, asking them to take part in an
online survey aimed at assessing their perception of the defined
smells. Figure 2 depicts participants’ experience in software
development as well as in the development of Spring MVC
applications. Participants are generally quite experienced in
software development. In particular, 13 of them have more

2Job ID in BOA: 11947.
3For the random selection, we performed a single execution of R’s sample()

function with seed set to 123.

Table I: Size attributes of the 120 subject systems.

Role Total
classes

Median
per proj

Total
SLOC

Median
class size

Controller 3,126 20 365,274 79
Repository 1,325 14 105,842 46
Service 2,845 16 326,778 59
Entity 1,666 20 169,838 78
Component 2,167 12 158,975 43
Others 52,397 269 3,654,035 39

than 8 years of experience. Their level of experience with
the Spring MVC framework is spread, varying from 1 to 2
years of experience (10 participants) to more than 8 years (3
participants). None of the developers surveyed in RQ3 had
been contacted or involved in the steps performed for the
definition of the code smells catalogue.

C. Data Collection and Analysis

To answer RQ1 and RQ2, we need to assess the impact on
change- and defect-proneness, respectively, of the defined Web
MVC smells. Firstly, it is important to clarify that, while we
answer RQ1 by analyzing the complete change history of all
100 subject systems, we only consider a subset of 16 manually
selected projects to assess the impact of the MVC smells on
defect-proneness (RQ2). These systems are the ones having
enough information to compute the classes’ defect-proneness.

Indeed, while to measure the change-proneness of a class
C in a time period T it is sufficient to count the number of
commits in which C has been modified during T , to assess
C’s defect-proneness we need to count the number of bugs
found in C during T . This information is typically stored in
the issue tracker that, however, was not available for most of
the subject systems. Thus, to measure the defect-proneness
of C over T , we rely on Fischer et al.’s approach [23]. The
approach uses regular expressions to identify fixing-commits
as the ones having commit messages containing keywords
indicating bug fixing activities, such as bug or fix (i.e., the
defect-proneness of C over T is the number of fixing-commits
in which C was involved during T ). However, to succeed
in this measurement, we need software projects having (i)
commit messages written in English, and (ii) using words such
as “bug” or “fix” in commit messages. We manually analyze
the commits of the 100 projects ending up with 16 of them
meeting our requirements. These 16 projects are thus exploited
in the context of RQ2 and listed in our online appendix [16].

To assess the impact on change- and defect-proneness of
the Web MVC smells, we follow an approach similar to what
is done in a previous study [6] investigating traditional smells.
Firstly, as performed by Kim et al. [24], we split the change
history of the subject systems (100 for RQ1 and 16 for RQ2)
in chunks of 500 commits, excluding the first chunk likely
representing the project’s startup. We indicate the two commits
delimiting each chunk as Cstart (i.e., the 1st commit) and
Cend (i.e., the 500th commit). We only analyze commits that
were merged into the main development branch, i.e., in Git,
the master branch.
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Figure 2: Participants’ experience

We obtain 291 chunks for systems used in RQ1 and 77 for
those used in RQ2. We run our detection strategies on the
Cstart of each chunk, obtaining a list of smelly and of clean
classes. Then, we compute the change proneness of each class
(both smelly and clean classes) as the number of commits
impacting it in the 500 commits between Cstart and Cend. As
done by Khohm et al. [6], we mark a class as change-prone
if it has been changed at least once in the considered time
period. Finally, to have a term of comparison, we also detect
six traditional smells in the Cstart commit of each chunk.
We identify traditional smells by executing PMD 5.4.2 [25],
a popular smell detector. We use it to detect instances of
six smells, namely GOD CLASS, COMPLEX CLASS, LONG
METHOD, LONG PARAMETER LIST, COUPLING BETWEEN
OBJECTS, and LONG CLASS. Our choice of the traditional
smells to consider is not random, but based on the will to
consider smells capturing poor practices in different aspects
of object-oriented programming, such as complexity and cou-
pling, and previously studied by other researchers [26], [27],
[28].

To compare the change-proneness of MVC-smelly,
traditional-smelly, and clean classes we compute the
following six groups:

• NCClean, the number of clean classes (not affected by any
MVC or traditional smell) that are not change-prone;

• CClean, the number of clean classes that are change-prone;
• NCMVC−smelly, the number of MVC-smelly classes that

are not change-prone;
• CMVC−smelly, the number of MVC-smelly classes that are

change-prone;
• NCT−smelly, the number of traditional-smelly classes that

are not change-prone;
• CT−smelly, the number of traditional-smelly classes that are

change-prone.

Then, we use Fisher’s exact test [29] to test whether
the proportions of CMVC−smelly/NCMVC−smelly and
CClean/NCClean significantly differ. As a baseline, we also
compare the differences between CT−smelly/NCT−smelly and
CClean/NCClean. In addition, we use the Odds Ratio (OR)
[29] of the three proportions as effect size measure. An OR
of 1 indicates that the condition or event under study (i.e.,
the chances of inducing change-proneness) is equally likely
in two compared groups (e.g., clean vs MVC-smelly). An

OR greater than 1 indicates that the condition or event is
more likely in the first group. Vice versa, an OR lower than
1 indicates that the condition or event is more likely in the
second group.

We mirror the same analysis for defect-proneness (RQ2).
Again, a class is considered to be defect-prone in a chunk
if it is involved in at least one fixing-commit during the 500
commits composing the chunk. In this case, the six groups of
classes considered to compute the Fisher’s exact test and the
OR are NDClean, DClean, NDMVC−smelly, DMVC−smelly,
NDT−smelly, DT−smelly, where D and ND indicate classes in
the different sets being (D) and not being (ND) defect-prone.

Note that, to reduce bias in our analysis, we only consider
CONTROLLERS, SERVICES, and REPOSITORIES in the sets
of clean, MVC-smelly, and T-smelly, since our smells focus
on these classes. We also made sure to remove classes that
were affected by both smells (MVC- and T-smell). In addi-
tion, since classes affected by traditional smells or by our
defined MVC-smells are expected to be large classes (e.g.,
a PROMISCUOUS CONTROLLER is likely to be a large class),
and it is well known that large classes have a higher change-
and defect- proneness, we control for the size confounding
factor. To this aim, we report the results of our analysis
when considering all classes (no control for size) as well
as when grouping classes into four groups, on the basis of
their LOC: Small=[1, 1Q[, Medium-Small=[1Q, 2Q[, Medium-
Large=[2Q, 3Q[, and Large=[3Q,∞], where 1Q, 2Q, and 3Q
represent the first, the second (median), and third quartile,
respectively, of the size distribution of all classes considered
in our study. In this way, we compare the change- and defect-
proneness of clean and smelly classes having comparable size.

Finally, concerning RQ3, all 21 participants took part in an
online survey composed of two main sections. The first one
aimed at collecting basic information on the participants’ back-
ground, and in particular on their experience (data previously
presented in Figure 2). In the second section, participants were
asked to look into the source code of six classes and, for each
of them, answer the following questions:
Q1 In your opinion, does this class exhibit any design and/or

implementation problem? Possible answers: YES/NO.
Q2 If YES, please explain what are, in your opinion, the

problems affecting the class. Open answer.
Q3 If YES, please rate the severity of the design and/or

implementation problem by assigning a score. Possible
answers on a 5-point Likert scale going from 1 (very low)
to 5 (very high).

Q4 In your opinion, does this class need to be refactored?
Possible answers: YES/NO.

Q5 If YES, how would you refactor this class? Open answer.
The selected classes are randomly selected for each partic-

ipant from a set of 90 classes randomly sampled from the
100 subject systems. This set contains 30 classes affected
by one of the proposed MVC-smells (five classes per smell
type), 30 classes affected by the six traditional smells (five
classes per smell type), and 30 non-smelly classes. Note that
also in this case we reduce possible bias by only considering



in all three sets classes being CONTROLLERS, SERVICES,
or REPOSITORIES, since these are the specific architectural
roles on which our smells focus. Each participant evaluated
six randomly selected classes, two from each of these three
groups, i.e., two MVC-smelly, two T-smelly, two clean classes.

To reduce learning and tiring effects, each participant re-
ceived the six randomly selected classes in a random order.
Also, participants were not aware of which classes belong to
which group (i.e., MVC-smelly, traditional-smelly, and clean).
They were simply told that the survey studied code quality in
MVC web applications. No time limit was imposed for them
to complete the task.

To compare the distributions of the severity indicated by
participants for the three groups of classes, we use the un-
paired Mann-Whitney test [30]. The latter is used to analyse
statistical significance of the differences between the severity
assigned by participants to problems they spot in MVC-
smelly, traditional-smelly, and clean classes. The results are
considered statistically significant at α = 0.05. We also
estimated the magnitude of the measured differences by using
Cliff’s Delta (or d), a non-parametric effect size measure [31]
for ordinal data. We followed well-established guidelines to
interpret the effect size values: negligible for |d| < 0.14, small
for 0.14 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474,
and large for |d| ≥ 0.474 [31]. Finally, we report qualitative
findings derived from the participants’ open answers.

D. Thresholds Tuning

The detection strategies are based on the combination of
different measurements (e.g., code metrics) and use a set of
thresholds to spot smelly classes.

In Formula 7, we present the formula used to define the
thresholds (TS) for each metric. Basically, the formula aims at
defining thresholds spotting classes that, for a specific metric,
represent outliers. It makes use of the third quartile (3Q) and
the interquartile range (3Q − 1Q) that was extracted from
projects that were selected for this tuning. As each smell
corresponds to a single specific role, and some metrics are
specific to them, i.e., number of routes can only be calculated
in CONTROLLERS, only classes of that role were taken into
account during the analysis of the distribution. The use of
quantile analysis is similar to what has been proposed by
Lanza and Marinescu [14] in order to define thresholds for
their detection strategies.

TS = 3Q+ 1.5× IQR (7)

In Table II, we present the thresholds derived for each metric
(α and β in the Formulas presented in Section II-C).

IV. RESULTS

Table III reports the number of smells identified in the last
snapshot of the 100 subject systems. In particular, we report for
each of the three architectural roles taken into account by our
smells (i.e., REPOSITORIES, CONTROLLERS, and SERVICES)
(i) the total number of classes playing this role in the 100
systems (e.g., 1,185 REPOSITORIES), (ii) the number and

Table II: Thresholds used in the detection strategies

Metric Threshold

Promiscuous Controller
Number of Routes (NOR) 10
Number of Services as Dependencies (NSD) 3

Smart Controller
Non-Framework RFC (NFRFC) 55

Smart Repository
McCabe’s Complexity 24
SQL Complexity 29

Fat Repository
Coupling to Entities (CTE) 1

Table III: Quantity of smelly classes in our sample (n = 100)

Role/Smells # of Classes %

Controllers 2,742 100%
Promiscuous Controller 336 12.2%
Smart Controller 205 7.4%

Repositories 1,185 100%
Smart Repository 85 7.1%
Fat Repository 243 20.5%
Laborious Repository Method 79 6.6%

Services 2,509 100%
Meddling Service 99 3.9%

percentage of these classes affected by each smell (e.g., 85
REPOSITORIES are SMART REPOSITORY — 7.1%).

Overall, we identified 1,047 smells in 851 classes out of the
6,436 classes playing one of the three roles described above
(16%). The most common smell in terms of percentage of
affected classes is the FAT REPOSITORY (20.5%) followed by
the PROMISCUOUS CONTROLLER (12.2%) and the SMART
CONTROLLER (7.4%). The least diffused smell is instead the
MEDDLING SERVICE with only 3.9% of affected SERVICES.

We also detected 4,619 traditional smells in 1,580 classes
of the same sample (24%). The intersection between the 851
MVC-smelly classes and the 1,580 traditional-smelly classes
contains only 388 classes. Also, all the proposed smells
identified classes that were not identified by the traditional
ones. This indicates that the proposed smells select classes
which are not currently identified by any of the traditional
smells used in this study.

Table IV: Odds ratio in change- and defect-proneness
between MVC-smelly, traditional-smelly and clean classes.

(CP) Change-proneness, (DP) Defect-proneness,
(*) Fisher’s exact test < 0.05.

All classes Medium/Large Large

MVC-smelly vs clean CP 2.97* 1.42* 1.60*
DP 2.05* 0.72 1.06

Traditional-smelly vs clean CP 3.87* 1.18 1.75*
DP 5.69* 1.16 2.31

MVC-smelly vs Traditional-smelly CP 0.77* 1.19 0.81*
DP 0.36* 0.55 0.42*



A. Impact on Change- and Defect-Proneness

Table IV reports the results of Fisher’s exact test (signif-
icant p-value represented by the star symbol) and the OR
obtained when comparing the change- and defect-proneness
of (i) MVC-smelly classes vs clean classes, (ii) traditional-
smelly classes vs clean classes, and (iii) MVC-smelly classes
vs traditional-smelly classes. We also report the confidence
intervals (at 95% confidence level) in our online appendix [16].
As explained in Section III-C, we report both results when
considering in the comparison all classes (no control for size)
as well as when grouping classes into groups, on the basis of
their size. Note that we do not report the results for small and
medium/small classes due to lack of data: classes affected by
MVC and traditional smells are for the vast majority at least
medium/large classes.

When comparing the change- and defect-proneness of
MVC-smelly classes and of clean classes not controlling for
size, Fisher’s exact test reports a significant difference, with an
OR of 2.97 for change- and 2.05 for defect-proneness. When
controlling for size, differences are also significant, but less
marked. For change-proneness, we observe an OR of 1.42 in
medium/large classes (i.e., 42% higher chance of changing
with respect to clean classes), and 1.60 in large classes. In
terms of defect-proneness, we do not observe any significant
difference when controlling for size.

As a term of comparison, it is interesting to have a look to
the results obtained when comparing the change- and defect-
proneness of classes affected by traditional smells with clean
classes and with classes affected by MVC-smells. Results in
Table IV show that:

1) Traditional smells have a strong negative impact on
change-proneness. However, as also observed for MVC-
smells, they have no impact on defect-proneness when
controlling for size. Thus, this only partially confirms
previous findings about traditional smells in the literature
[6], [7].

2) Traditional smells have a stronger negative impact on
change- and defect-proneness as compared to MVC-
smells. This also holds for large classes when controlling
for size.

To have a closer look into the data, Table V reports the
impact on change- and defect-proneness of each of the six
MVC-smells presented in this paper. It is important to note that
in some cases (e.g., SMART CONTROLLER for medium/large
classes), it was not possible to perform the statistical test due
to lack of data (i.e., very few SMART CONTROLLERS are
medium/large classes). These cases are indicated with “-” in
Table V. The main findings drawn from the observation of
Table V are:

1) When obtaining statistically significant difference (* cells
in Table V), classes affected by smells have always a
higher chance (OR > 1.00) of changing as well as of
being subject to bug-fixing activities. This holds both
when controlling for size as well as when considering

Table V: Odds ratio in change- and defect-proneness
between MVC-smelly and clean classes, per smell.

(CP) Change-proneness, (DP) Defect-proneness,
(*) Fisher’s exact test < 0.05, (−) lack of data.

All classes Medium/Large Large

Promiscuous Controller CP 2.66* 1.48* 1.51*
DP 2.43 0.41 0.68

Smart Controller CP 3.72* - 1.81*
DP 3.42* - 1.34

Fat Repository CP 2.04* 0.80 1.75*
DP 1.79* 0.90 0.99

Laborious Repository Method CP 2.03* 2.38 1.06
DP 2.36 - 0.48

Smart Repository CP 5.08* - 2.79*
DP 5.02* - 2.03

Meddling Service CP 3.74* 2.41* 2.89*
DP 3.39* 1.15 2.53*

all classes. We cannot claim anything for non-statistically
significant results.

2) SMART REPOSITORY and MEDDLING SERVICE are the
smells having the strongest impact on change-proneness
with an OR close to 3 in large classes (i.e., classes
affected by these smells have almost three times more
chances to change as compared to clean classes).

3) The MEDDLING SERVICE smell is the only one having a
significant impact on defect-proneness when controlling
for size (OR=2.53 in large classes, i.e., classes affected by
this smell have over twice more chances of being subject
to bug-fixing activities as compared to clean classes).

The defined web MVC smells have a negative impact
on class change-proneness (RQ1). In terms of defect-
proneness, we claim a negative impact for only for the
MEDDLING SERVICE smell (RQ2).

B. Developers Perception of the Web MVC Smells

In Figure 3a, we present violin plots of the developers’ per-
ception of MVC smells, traditional smells, and clean classes.
Also, we report the developers’ perception of each single
MVC-smell — Figure 3b — as well as of each considered
traditional smell — Figure 3c. On the y-axis, 0 (zero) indicates
classes not perceived by the developers as problematic (i.e.,
answer “no” to the question: Does this class exhibit any design
and/or implementation problem?), while values from 1 to 5
indicates the severity level for the problem perceived by the
developer.

Clean classes have a median of severity equal to 0 (Q3=2).
This indicates that, as expected, developers do not consider
these classes as problematic. As a comparison, classes affected
by MVC-smells have median=4 (Q3=4.25) and thus, are
perceived as serious problems by developers. The difference
in developers’ perception between MVC-smelly and clean
classes is statistically significant (p-value<0.001) with a large



(a) Clean=Non smelly classes, MVC=Classes
affected by our defined smells,

Traditional=Classes affected by traditional smells

(b) MS=Meddling Service, FR=Fat Repository,
SC=Smart Controller, PC=Promiscuous

Controller, SR=Smart Repository,
LRM=Laborious Repository Method

(c) CC=Complex Class, LM=Long Method,
LC=Long Class, CBO=Coupling Between

Objects, LPL=Long Parameter List, GC=God
Class

Figure 3: Participants on the severity of each smell.

effect size (d = 0.56). Concerning the traditional smells, the
severity median is 3 (Q3=4). It shows that classes affected by
these smells are perceived by developers as problematic, even
if less than MVC-smells. However, while this difference in
perception is clear by looking at the violin plots in Figure 3a,
such a difference is not statistically significant (p-value=0.21).
We conjecture that this might be due to the limited number of
data points (21 participants).

God Classes (GC) are the most perceived traditional smell
(median=4). Regarding the proposed smells, MEDDLING SER-
VICE, FAT REPOSITORY, and SMART CONTROLLER achieve
medians equal to 4, meaning they are perceived as really
problematic by the participants. Several developers, without
knowing our smells’ catalogue, were able to correctly identify
the smell, providing a description very close to the defini-
tion of our smells. For instance, one of them when facing
a SMART CONTROLLER stated: “Property validation and
entity construction are really responsibilities that should be
encapsulated within the service layer; a lot of domain model
knowledge is needlessly leaked into the Controller.”. Another
participant simply claimed: “it does too much for a Con-
troller”. Also when facing a PROMISCUOUS CONTROLLER,
developers were able to catch the problem (e.g., “I count 12
@RequestMapping!”). The annotation @RequestMapping is
indeed used to define a route in a Spring MVC Controller. This
maps directly to the concept of our smell. Participants also
noticed that SMART REPOSITORIES are complex: “program-
mer(s) should worry just about querying instead of handling
and logging hibernate errors”.

The least perceived smells by developers are LABORIOUS
REPOSITORY METHOD (MVC) and COMPLEX CLASSES (tra-
ditional), as both medians are zero, i.e., over half of the
participants did not perceive classes affected by this smell as
problematic.

Classes affected by the proposed MVC smells are per-
ceived as problematic by developers when compared to
non-smelly classes (RQ3).

V. RELATED WORK

Code smells have been discussed for a while in the software
engineering community. Webster’s book [32] may be the first
one in which the term code smells was used to refer to
bad practices. Long methods and excessive complexity are
examples. Since then, many other researchers and practitioners
have defined catalogues of code smells. As example, Riel [33]
has defined more than 60 different characteristics of good
object-oriented code, and Fowler [1] suggests refactorings
in more than 20 different code issues. Smells such as God
Classes, Feature Envy, and Blob Classes are popular among
practitioners and popular tools in industry, such as PMD and
Sonar, attempt to detect them.

Researchers evaluated the impact of these smells in terms
of code quality. As a first step to identify smelly classes,
Marinescu [34] proposed detection strategies that rely on the
combination of metric-based rules and logical operators, such
as AND or OR. Then, Lanza and Marinescu [14] defined a set
of thresholds based on benchmarking metrics in real software
systems. In their approach, authors relied on quartile analysis.
There exist other approaches in literature, such as HIST [35],
which makes use of the evolution history to detect the smells,
and DECOR [36], a DSL for specifying smells using high-
level abstractions.

After, Khohm et al. [6] showed that smelly classes are more
prone to change and to defects than other classes. Li and
Shatnawi [37] also empirically evaluated the effects of code
smells and showed a high correlation between defect-prone
and some bad smells. Yamashita and Moonen [4] showed that
the existence of more than a single smell in a class can nega-
tively impact the maintenance of that piece of code. This was
also confirmed by Abbes et al. [38], who conducted controlled
experiments investigating the impact of some code smells on
program comprehension. They showed that the existence of
a single smell in a class does not significantly decrease the
performance of a developer. However, when a class presented
more than one smell, the performance of developers during
maintenance tasks was significantly reduced.

Indeed, the perception of a developer may be not precise.



A study from Palomba et al. [28] showed that smells related
to complex or long source code are perceived as harmful by
developers; other types of smells are only perceived when their
intensity is high. Yamashita and Moonen [39] conducted a
survey with 85 professionals, and results indicate that 32% of
developers do not know or have limited knowledge about code
smells. Arcoverde et al. [40] performed a survey to understand
how developers react to the presence of code smells. The
results show that developers postpone the removal to avoid
API modifications. Peters and Zaidman [27] analyzed the
behavior of developers regarding the life cycle of code smells
and results show that, even when developers are aware of the
presence of the smell, they do not refactor.

Regarding web development, most studies focus on related
client-side technologies, such as bad practices in CSS [41],
[42], Javascript [43], [44], and HTML [45]. To the best of
our knowledge, no research was focused on code smells for
server-side MVC web applications. The smells we propose in
this study are currently not captured by “traditional smells”,
as the former aim to more general good practices, i.e., they do
not focus on SQL complexity (as SMART REPOSITORIES do)
or number of dependencies to entity classes (as FAT REPOS-
ITORIES do). To perform this research, we relied on current
findings and approaches of the field, such as the definition of
metric-based code smells detection strategies [14], analysis of
the impact on class change- and defect-proneness [6], [7], as
well as on developers’ perceptions [28]. As a derivated product
of this research, we developed an open source tool [15] that
reports any class that contains a smell from our catalogue.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly due
to the measurements we performed. Since the subject systems
did not have an issue tracker, we relied on the heuristic pro-
posed by Fischer et al. [23] to identify bug fixing commits. We
are aware that such a heuristic can introduce imprecisions in
the computation of the classes’ defect-proneness. To diminish
the issue, we made sure via manual analysis that the systems
used in this study use meaningful commit messages.

Detection strategies for the defined smells were derived
from the participants’ answers and the expert analysis. There
might be better strategies for their detection. Further research
needs to be conducted in order to optimize them. However,
our current strategies were able to detect classes perceived
as problematic by developers and possibly increasing change-
proneness. Also, possible imprecisions might be introduced
due to errors in the implementation of the tool we wrote to
detect the smells. We wrote automated tests to ensure the
correct behavior of our tool that is open source.

To determine the thresholds we used in our detection
strategies, we applied quartile analysis on a set of projects that
were not used to answer our research questions. While other
strategies can be used (e.g., Alves et al.’s [46] and Oliveira
et al.’s [47]), up to now there is no empirical evaluation of
which strategy works best.

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated. We did not consider possible tangled
changes [48] and thus we cannot exclude that some bug fixing
commits grouped together tangled code changes, of which just
a subset aimed at fixing the bug.

Threats to conclusion validity concern the relation between
the treatment and the outcome. Although this is mainly an
observational study, wherever possible we used an appropriate
support of statistical procedures, integrated with effect size
measures that, besides the significance of the differences
found, highlight the magnitude of such differences.

Threats to external validity concern the generalisation of
results: (1) Although we derived the thresholds to identify
the smells on 20 systems, we do not claim these thresholds
are the optimal ones. A larger set of systems is needed to
increase the thresholds’ generalizability; (2) We evaluated our
smells in Spring MVC applications. Although there might be
similarities between most of the MVC frameworks, we do
not claim that our results are generalizable to all of them;
(3) The response rate of our role-focused survey was low.
Still, we do not use the answers to generalize the provided
catalogue of smells; (4) Finally, our catalogue only includes
six smells for MVC web applications. We do not claim this
is a comprehensive catalogue. Further research is needed to
investigate other possible bad practices in MVC applications.

VII. CONCLUSIONS AND FUTURE WORK

Good practices and code smells are a great asset for
developers to increase the quality (and the maintainability) of
their software systems. However, most code smell catalogues
are focused on general good practices, i.e. practices that can
be applied to any system, regardless of its architecture.

In this study, we provide a catalogue of 6 smells that are spe-
cific to Web MVC systems, namely SMART REPOSITORY, FAT
REPOSITORY, PROMISCUOUS CONTROLLER, SMART CON-
TROLLER, LABORIOUS REPOSITORY METHOD, and MED-
DLING SERVICE. This catalogue was coined after interviewing
and surveying 53 software developers. We also analyzed 100
Spring MVC projects in order to quantify the impact of the
proposed smells. We showed that these smells can have a
negative impact on class change-proneness and, in the case
of MEDDLING SERVICE, also on defect-proneness. We also
performed a survey with 21 developers about their perceptions
on classes affected by these smells, and results show that they
perceived smelly classes as highly problematic.

We learned that besides traditional smells, architecture-
specific smells can also be problematic for the maintenance of
software systems. Web developers can already start to benefit
from our catalogue and from the publicly available detection
tool [15]. Indeed, a deeper investigation is needed to carefully
assess the comprehensiveness of our catalogue as well as the
impact of these smells on maintainability (e.g., by running a
controlled experiment). This is part of our future work agenda,
together with the definition and empirical analysis of other
catalogue of smells, specific for other architectures.
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