

Who is who in the mailing list? Comparing six
disambiguation heuristics to identify multiple

addresses of a participant
Igor Scaliante Wiese1, José Teodoro

da Silva2, Igor Steinmacher1
Computer Science Department1

Federal University of Technology -
Parana (UTFPR) - Brazil

{igor, igorfs}@utfpr.edu.br

Christoph Treude
School of Computer Science,

University of Adelaide
Adelaide, SA, Australia

christoph.treude@adelaide.edu.au

Marco Aurélio Gerosa2
Department of Computer Science2

University of São Paulo (USP)
São Paulo, SP, Brazil

{jteodoro, gerosa}@ime.usp.br

Abstract — Many software projects adopt mailing lists for the
communication of developers and users. Researchers have been
mining the history of such lists to study communities’ behavior,
organization, and evolution. A potential threat of this kind of
study is that users often use multiple email addresses to interact in
a single mailing list. This can affect the results and tools, when,
for example, extracting social networks. This issue is particularly
relevant for popular and long-term Open Source Software (OSS)
projects, which attract participation of thousands of people.
Researchers have proposed heuristics to identify multiple email
addresses from the same participant, however there are few
studies analyzing the effectiveness of these heuristics. In addition,
many studies still do not use any heuristics for authors’
disambiguation, which can compromise the results. In this paper,
we compare six heuristics from the literature using data from 150
mailing lists from Apache Software Foundation projects. We
found that the heuristics proposed by Oliva et al. and a Naïve
heuristic outperformed the others in most cases, when considering
the F-measure metric. We also found that the time window and
the size of the dataset influence the effectiveness of each heuristic.
These results may help researchers and tool developers to choose
the most appropriate heuristic to use, besides highlighting the
necessity of dealing with identity disambiguation, mainly in open
source software communities with a large number of participants.

Keywords— Email address disambiguation; mailing lists;
Apache Software Foundation; mining software repositories

I. INTRODUCTION
Mailing lists enable the communication and information

dissemination to subscribers using the email infrastructure
[1]. In Open Source Software (OSS) communities,
developers use mailing lists to discuss and share
information about the project, coordinate activities, etc. [2].

Mailing list archives are a rich source of information for
researchers exploring communication and social interaction
[3]. These archives have been used to explore the
community structure [4]; to analyze the community's social
network from its communication [5], to understand the
evolution of the software based on its discussions [6]; to
understand the leadership structure and relationships
between community members [7]; to study the roles of
members in a project [8]; to analyze process and
development practices [2], [9]; to understand the
communication among participants [10]; to examine how

list participation affects new members of the community
[11]; among many others.

Many of the aforementioned studies consider email
addresses as unique identifiers of the participants. This can
threaten the results’ validity, as highlighted by Bettenburg
et al. [12] and Bird et al. [4], because users have different
email addresses and use them to interact in the mailing list.
Disambiguating the identities is difficult because of the
dynamics of how people use email: short usernames; no
standard email username formation rules; business email
addresses change when people change companies;
community members frequently use both personal and
professional email addresses on the lists; and email clients
are configured inconsistently regarding user name.

Some authors proposed heuristics for dealing with
identity disambiguation, such as Bird et al. [13], Oliva et al.
[8], Goeminne and Mens [14], and Kouters et al. [15]
(Naïve Approach). However, many studies still consider
each email address as a unique identifier. Part of the reason
may be the lack of studies diagnosing the problem, and
evaluating and comparing the efficacy of the heuristics,
making it difficult to choose one.

The goal of this work was to evaluate six identity
disambiguation heuristics from the literature. We used
public data from 150 mailing lists from Apache Software
Foundation projects and built a reference dataset to
evaluate the effectiveness of each heuristic. We used the
issue tracker, public keys, the projects website, and the
ASF (Apache Software Foundation) website to build a
reference base to evaluate the performance of each
disambiguation heuristic in terms of precision, recall, and
F-measure. This study was conducted to group different
email identities from Apache committers and not all
participants from mailing lists. We performed the analysis
in this way because the available data to build the reference
base is related to committer identities.

Our research questions are:

RQ1: What is the performance of the disambiguation
heuristics?

RQ2: How does the time window influence the
performance of the heuristics?

RQ3: How does the community size influence the
performance of the heuristics?

Our contributions include: (i) identifying the best
heuristics; (ii) understanding how the time window and the
number of instances influence the results; (iii) proposing an
automated way of identifying multiple emails from a
participant in the ASF; and (iv) providing a curated data
set1 and supporting tools for this kind of study2.

We found that the heuristic proposed by Oliva et al. and
the Naïve one outperformed the other heuristics in most
cases. We also found evidence on how the size of the data
set, both in terms of the time window and the number of
participants, affects the results.

This paper is organized as follows: Section II presents
the related work on mailing lists and disambiguating
authors; Section III presents the research design; Section IV
contains the results, Section V shows the discussion;
Section VI shows the threats to validity; and Section VII
presents the conclusions.

II. RELATED WORK
Disambiguation of information referring to a concept

occurs when multiple forms are used to represent the same
entity. Examples of situations in which disambiguation is
necessary are the identification of unique authors in a
collection of scientific papers [7], the identification of
individuals by their names in a collection of documents [8],
and the identification of unique message authors in
discussion lists [4].

Mailing lists are used in software projects by developers
and users to communicate among themselves. Some
projects make the full log of their mailing lists freely
available. Mailing list archives are a rich source to
understand software evolution [6]. This data can be used to
understand collaboration, social organization, and evolution
of software communities [2], [4]. However, there are
challenges related to mining mailing lists, as pointed out by
Bettenburg et al. [12], who explicitly discuss the problem
of authorship attribution and alert us about misleading
evaluations caused by the poor identification of authors.
Hemmati et al. [16] also point to author disambiguation as a
good practice when mining discussion lists.

In general, disambiguation heuristics on mailing lists use
the pair <name, email address> extracted from the message
header to identify the message’s author. In this paper, the
term identity refers to a person who owns a set of email
addresses used in the mailing lists. In the same way, when a
heuristic joins/groups a set of emails, it means that the

1 https://github.com/joseteodoro/masterDegreeAnalisys/tree/master/datasets
2 https://github.com/joseteodoro/masterDegreeAnalisys

heuristic is considering that the same person (identity)
owns all these emails.

We split related work into two categories: papers
proposing heuristics to deal with the disambiguation
problem in mailing lists and papers evaluating heuristics.

A. Heuristic proposals
To the best of our knowledge, Bird et al.’s study [13] is

currently the most cited3 work proposing a heuristic to deal
with identification of authors in mailing lists. Bird et al.
defined the heuristic considering common patterns of how
users and institutions create email addresses. They use
Levenshtein similarity [17] to evaluate the similarity
between a pair of addresses/full-names and link any pair
with a result above a threshold (0.93). Before the
identification, they remove accent marks and punctuation in
the names and split the name into first and last name. Given
the similarity function simil, the prefix of the email (text
before the @), the threshold t, and the first and last name of
the senders, the heuristic considers addressA and addressB
as from the same identity in the following cases:

simil(completeNameA, completeNameB) ≥ t;

simil(firstNameA, firstNameB) ≥ t and
simil(lastNameA, lastNameB) ≥ t;

prefixB contains firstNameA and lastNameA;

prefixB contains firstNameA and the initial of
lastNameA;

prefixB contains the initial of firstNameA and
the lastNameA; or

simil(prefixA, prefixB) ≥ t.

Canfora et al. [18] (CAN) use a similar approach to
investigate bug fixes in FreeBSD/OpenBSD. However,
differently from Bird et al., they do not use similarity in
order to avoid false positives. Given a sender, they search
for other names and email prefixes comprising the initial of
the first name plus the last name, the initials of the name, or
the initials plus the last name of the sender. If the name is
not available, they try to find candidates based on the email
prefix. They remove special characters from all emails and
try to find exact matches of prefixes or names that generate
the prefix according to the aforementioned strategies.

Robles and Gonzalez-Barahona [19] (ROB) were the
first authors to propose a disambiguation heuristic in the
context of mailing lists of software projects. The proposed
heuristic extracts the parts of the names, but uses them in a
different way than the aforementioned heuristics. They
create a set of possible usernames combining names and
initials in different ways. After that, they search for public
keys to identify the multiple email addresses of a person.
They used the proposed heuristic to explore data from the
Gnome community.

3 Bird et al.’s work had 398 citations according to the site
https://scholar.google.com.br in August 2015.

Goeminne and Mens [14] (GOE) proposed a heuristic
that, like Bird et al., uses the Levenshtein similarity to
group identities. However, they use a second comparison.
They create a set of possible usernames by permuting all
the parts of a name (Bird et al. used just the first and last
names).

Oliva et al. [8] (OLI) adopted a distinct approach. They
created a heuristic to group identities in order to
characterize the core developers of the Apache Ant project.
They start from the assumption that people use the same
name in the configuration of their email clients, although
they use different email addresses. Their heuristic groups
the email addresses if they have the same sender’s name.

Kouters et al. [15] (Naïve) propose the use of Latent
Semantic Analysis to identify authors. This technique is
used to calculate the similarity of names and email
addresses, identifying groups of addresses that potentially
belong to the same person. Both Kouters et al. [15] and
Goeminne and Mens [14] have also documented a naïve
heuristic to group identities. This heuristic groups email
addresses with the same email prefix (text before @ in the
email address). We considered it as a baseline and a trivial
heuristic.
 Several works in the literature use one of the
aforementioned heuristics while mining mailing list data.
For example, Panichella et al. [20] built social networks
using the social interactions from mailing lists, forums, and
issue tracker, using an adaptation of Bird et al.’s heuristic.
Xuan and Filkov [21] used the same approach to analyze
the productivity and communication of a software project.
Rigby et al. [22] used Bird et al.’s original approach to
study good practices on code review in the Apache Http
project. Nia et al. [10] used the same approach to examine
the stability of social network metrics in the context of a
mailing list. Bird et al. [23] used it to analyze the complex
social structure in a software community and to explore
how the communities can be self-organized.

B. Heuristic evaluations
 We found just two comparative works of
disambiguation approaches: Goeminne and Mens [14] and
Kouters [24]. Goeminne and Mens [14] evaluated four
disambiguation heuristics: a naïve heuristic; Bird et al.;
Robles and Gonzalez-Barahona, and an improved version
of Bird et al., including parts of Robles and Gonzalez-
Barahona’s heuristic. They evaluated these heuristics on
three OSS projects: Evince, Brasero, and Subversion. Their
reference base was done based only on manual work,
without considering official information available on the
project websites and in the issue tracker. Their result shows
a better result for the improved version of Bird et al. and
that the original Bird et al. heuristic had less precision than
the naïve one. Kouters [24] compared his heuristic to Bird
et al.’s and a naïve one. He compared them using the
Gnome project data. His heuristic uses vector space models
and creates a term-document matrix to evaluate the aliases
from each message on the mailing list. He found a better

result for his heuristic and that the Bird et al. heuristic has
worse results than the naïve one.
 Our work differs from these two studies, considering
more projects, encompassing more heuristics, using a
reference base based on multiple sources, and performing
different kinds of analysis, such as of the effects of
different time windows and community sizes.

III. RESEARCH DESIGN
 In this section, we detail how we collected the data,
how we built the reference base, and how we compared
each heuristic. First, we collected data from mailing lists
from Apache Software Foundation projects. Then, we built
a reference base using different sources. We used the
reference base to check how effectively each heuristic
grouped the multiple email addresses of a community
member. For this step, we used well-known measures from
information retrieval, like precision, recall, and F-measure,
considering different time windows and community sizes.
A. Data Collection
 As we aimed to include a large number of projects in
our study, we decided to focus on a single ecosystem, in
which the projects used similar tools and followed similar
processes, enabling us to automate the data collection as
much as possible. Thus, we chose the Apache Software
Foundation (ASF) ecosystem, since it matches these
characteristics, has a large number of developers and users,
involves people from different countries, involves
professionals and volunteers, and its projects are frequently
used in empirical studies [8], [11], [13]. In addition, the
ASF keeps the full history of all its projects’ mailing lists4
and includes projects with different characteristics, like
domains and community size.
 We collected data from the developer mailing list
archives of 150 different projects. For each mailing list, we
extracted all the history from the first message until the
messages sent in October, 2015. In total, we obtained 3.85
million messages and more than 315 thousand different
email addresses. Each message collected was parsed from
the mbox format [23]. This format contains the full headers
of the emails.
B. The Reference Base
 The challenge of this kind of comparative study is to
obtain reliable datasets for the participants’ multiple email
addresses. The construction of a reference base was
necessary to compare the performance of the heuristics.
Only one reference base was found in the literature: the
Squire dataset [7], which comprises only data from Apache
Community sites. We used data from 150 ASF projects, and
the Squire dataset [7] covered less than 3.65% of all email
addresses from these projects. Because of this small

4 http://mail-archives.apache.org/

coverage, we decided to build a new reference base to
compare the heuristics.

 To build our reference base, we used different data
sources to retrieve information. Our expanded dataset
contains the email addresses and the full name of each
committer member extracted from public key repositories
(Pkr), projects’ websites, and JIRA. Our dataset contains 23
times more email addresses than the Squire dataset [7]
(Squire contains 192 email addresses and our dataset 4,563).

 Figure 1 summarizes the steps used to build the
reference base. First, we collected data from the public key
repository5 (Pkr). Pkr contains the public keys of each
committer and a set of valid email addresses supplied by
their owners. We extracted 857 unique email addresses
linked to 722 identities from this repository. After that, we
merged the data obtained from Pkr with data obtained from
the projects’ websites collected by the Squire dataset [7] and
Silva et al. [25].

Fig 1. The construction of the reference base.

 The official projects’ websites also contain information
about the software teams. Some projects make the name of
the developers, email addresses, JIRA login, and the role of
each member in the project available. In some cases, it was
also possible to find the committer list with the same
information. Squire [7] compiled a dataset using the ASF
members’ websites. We gathered from this dataset the users
who had listed an email not pertaining to the apache.org
domain, since this email can be inferred from the user
identifier. We obtained 192 identities linked to 476 email
addresses from this source. The second source was a dataset
created by our research group that crawled 16 ASF projects
sites [25].

 Finally, we merged data from JIRA with the previous
three sources. ASF projects use JIRA as the default issue
tracker. To use JIRA, the community members need to
create an account with username, email address, and name.
We created scripts to mine the usernames from the
repository and used these usernames to find the email

5 https://people.apache.org/keys/committer/

address of each committer in JIRA. ASF adopts the same
login in the version control system, JIRA, and as a prefix to
the Apache domain email address, if the user has an
“@apache.org” email address and the user is a committer.
We were able to retrieve information from 1,992 users from
JIRA. Considering these users, we were able to identify
2,267 unique email addresses.

 After retrieving the addresses from these sources, we
merged the data to consolidate a single data source, called
reference base. Figure 2 shows the intersections of the
emails extracted from each data source. We classified the
sources into completely automatic (JIRA and public key
repository) and human-assisted extraction (Squire Dataset
[7], [25]). The addresses identified exclusively by human-
assisted extraction represented 4.79% (219 emails) of the
reference base. In total, human-assisted identified 1,036
emails. In the figure, we can also observe that JIRA and
public key repository have the highest number of addresses
recovered: 2,815. Their intersection gathered 309 addresses.
From the diagram, it is also possible to observe that all
sources contributed to the reference base.

 We used the ASF unique committer identification to link
multiple emails for each Apache member. Each user has a
unique identification linked to an Apache domain address.
The final dataset comprised 4,563 email addresses linked to
1,639 identities (persons).

Fig 2. The number of emails identified in each source to construct the
reference base.

 Table 1 compares the percentage of email addresses
identified using Pkr, the reference base, and the Squire
Dataset [7] to the total number of emails collected from 150
Apache Project mailing lists. Different timeframes were
analyzed since one of our goals was to check the influence
of the time window on the results.

 We performed a Cliff Delta non-parametric test, as
described by Macbeth et al. [27] and Cliff’s Delta [28] to
check if our reference base can statistically improve the
coverage of identities compared to the Squire [7] and Pkr.
We also checked if there is a difference between the amount
of email addresses recovered by each information source

using a Mann-Whitney U-Test [26] with 95% significance
level (p <0.05).

 We found that even covering only 12% of all emails
from the Apache Community, the improvement has a large
effect size when we compare the Reference Base against the
Squire dataset [7] and Pkr. We also found that there is a
statistically significant difference between the coverage of
the Reference Base compared to Pkr and Squire in all time
windows. It means that data collected from JIRA improved
the reference base. We also observed that the percentage of
addresses identified by the reference base decreased when
we increased the time window.
TABLE 1. PERCENTAGE OF ADDRESSES IDENTIFIED BY THE REFERENCE
BASE, PKR, AND THE SQUIRE DATASET [7] IN EACH TIMEFRAME COMPARED
TO THE TOTAL NUMBER OF EMAILS COLLECTED IN THE APACHE
COMMUNITY.

Time
window

Pkr Reference Base Squire
Avg Stdv. Avg Stdv Avg Stdv

3 months 9.69 10.19 20.14 13.88 6.19 9.47
6 months 8.90 8.86 18.19 12.28 5.65 8.24
12 months 8.24 7.83 16.11 11.25 5.16 7.46
24 months 7.75 6.87 14.56 10.35 4.72 6.36
36 months 7.61 6.80 13.96 10.69 4.52 6.16
48 months 7.62 6.50 13.72 9.25 4.31 5.46
All history 7.06 5.15 12.29 7.89 3.65 3.61

 Although our reference base comprises only email
addresses gathered from reliable sources, we assume that we
do not have all the email addresses of the participants.
Therefore, our reference base is incomplete. Besides, we
have only the email addresses of committers. However, we
have a high confidence that the information present in the
dataset really indicates multiple emails from the
participants.

TABLE 2. DESCRIPTIVE STATISTICS OF THE REFERENCE BASE
Number of email addresses 4,563
Average addresses per person 1.89
Median number of addresses per person 2
Minimum number of addresses per person 1
Maximum number of addresses per person 15
Standard deviation of addresses per person 1
Average prefix size 7.73
Median prefix size 7
Standard deviation of the prefix size 3.34

Minimum prefix size 1
Maximum prefix size 25
Addresses with prefixes with at most 7 chars 55.35%
Addresses with prefixes with at most 6 chars 40.36%
Addresses with prefixes with at most 5 chars 24.55%

In Table 2, we present descriptive statistics of our reference
base. On average, we found 1.89 emails per person. We
found one person with 15 addresses. We inspected this
extreme case and some other random cases, searching the
messages, the projects, and the web in general to validate
the base and we could not find anything that would raise

doubts about the validity of the groupings. Regarding size,
on average the prefixes have 7.73 characters. It is worth
nothing that most of the heuristics take into consideration
the email prefixes and 40% of them have at most 6
characters.

C. Evaluation Method
 To evaluate the heuristics, we compared our reference
base with the addresses grouped by each heuristic. We
contacted the authors of the automated heuristics asking if
they could share their implementation. We had access to the
original implementations of Bird et al., Oliva et al., and
Kouters. For the others, we replicated the heuristics based
on how they were described in the literature. Kouters’
implementation did not work for the size of the dataset we
used, so we left the comparison of this heuristic for future
work but we implemented the Naïve approach described in
his work.

 To evaluate the performance of the six disambiguation
heuristics, we used traditional information retrieval
measures: recall, precision, and F-measure. These metrics
were also used in the papers that proposed the heuristics
[24], [29]. Recall and precision enable us to evaluate the
right matches between the heuristic results and the reference
base. If the precision is low, the heuristic presents many
false positives. On the other hand, if the recall is low, there
were too many false negatives. We used three different sets
to compute the recall and precision. The set “RB” represents
all email addresses for each person in the reference base.
The set “H” represents the set of addresses suggested for
each person by the heuristic. The set “I” is equal to the
intersection between the addresses found in sets RB and H.

 Figure 3 presents an example of the emails grouped in
the reference base, heuristic and the intersection set.

Fig 3. Example of email addresses grouped to evaluate the
heuristics.

 To illustrate this example, suppose that the set of
addresses found for the person “P1” in the reference base is
RB = {B@B, C@C, D@D}. For example, the heuristic “X”
grouped five emails for the person “P1” e.g. H = {B@B,
X@X, Y@Y, W@W, D@D}. The intersection set
represents the matched results e.g. I = {B@B, D@D}. We
define the number of elements in the set “H” equal to 5, and
the number of elements in the set “RB” equal to 3. The

intersection of RB and H is equal to 2, since two emails
{B@B, D@D} were correctly grouped by the heuristic.
Based on RB, I and H, we computed the values of precision
and recall as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	 +
,

 	 	 	 	 	 	 𝑅𝑒𝑐𝑎𝑙𝑙 = 	 +
01

 In our example, Recall = 2/3 (66%) and Precision = 2/5
(40%) for the person P1. Since we evaluated a set of persons
in each analysis, we computed the average Recall and
average Precision, where P represents the number of persons
with addresses in the reference base.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	
1
𝑃
∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 𝑖)

9

:;<

	

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	 𝑅𝑒𝑐𝑎𝑙𝑙 = 	
1
𝑃
∗ (𝑅𝑒𝑐𝑎𝑙𝑙	 𝑖)

9

:;<

 The F-measure is the harmonic mean of precision and
recall. We calculate the F-measure using the following
formula:

𝐹-‐‑𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 To perform the evaluation and answer the research
questions, we split our dataset in the following ways: whole
history and periods of 3, 6, 12, 24, 36, and 48 months. As
some heuristics are more aggressive in grouping emails, we
aimed at testing different periods to evaluate the heuristics’
behavior when applied to smaller and larger sets of
addresses. Besides, some studies in the literature focus on
short periods, such as iterations or releases, and do not need
to process the whole history. Thus, the researchers may
choose the most appropriate heuristic according to the study
design.

IV. RESULTS
 In this section, we present the results of the heuristics’
comparison. We compared (i) the performance of
disambiguation heuristics; (ii) the influence of time
windows on the performance of each heuristic; and (iii) the
influence of the community size.

A. RQ1: What is the performance of the disambiguation
heuristics?

 Approach. For this research question, we considered the
whole history of each mailing list. We performed a Mann-
Whitney U-Test to pairwise compare the performance of
heuristics against each other using a 95% significance level
(p <0.05). After that, we used the Cliff’s Delta [28] statistic,
a non-parametric effect size measure that quantifies the
amount of difference between two groups of observations
beyond p-value interpretation. According to Romano et al.
[30], the magnitude of delta(|d|) is assessed using the
following thresholds: |d|<0.147 "negligible", |d|<0.33
"small", |d|<0.474 "medium", otherwise "large".

 Results. Figure 4 shows the boxplot of precision and
recall values for each heuristic considering 150 Apache
projects. We noticed that the recall values are very similar
for all heuristics and the precision values were different.
Although all heuristics presented good precision values in
some projects (in some cases achieving precision of 1), we
observed some variation for the same heuristics in different
projects. We can observe that the variance was very
different for different heuristics. For example, while CAN
presented a high variance, OLI and the Naïve approach have
a small difference between the minimum and the maximum
values of precision.

Fig 4. Boxplot of precision and recall values for each heuristic considering
the whole history.

 Table 3 presents the effect size of the pairwise
comparison of precision values among heuristics. Negative
values indicate that the heuristic in the row was better than
the heuristic in the column. Positive values mean the
opposite. We found statistically differences and effect size
values between the heuristics. For example, OLI obtained
better precision values than all other heuristics. The Naïve
approach has the second best performance.
TABLE 3. PRECISION EFFECT SIZE COMPARISON AMONG HEURISTICS

 BIR
CAN 0.69*

(large)
CAN

GOE 0.18*
(small)

-0.60*
(large)

GOE

Naïve -0.21*
(small)

-0.78*
(large)

-0.37*
(medium)

Naïve

OLI -0.34*
(medium)

-0.83*
(large)

-0.49*
(large)

-0.15*
(small)

OLI

ROB 0.64*
(large)

-0.29*
(small)

0.50*
(large)

0.77*
(large)

0.84*
(large)

 * indicates p < 0.05 significance level of the Mann-Whitney U-Test

Table 4 presents the effect size analysis considering the
F-measure, to quantify the importance of recall in
recognizing each address correctly. We observed that in the
F-measure comparison, the effect size decreased compared
to the precision values presented in Table 3 (highlighted
cells). In 7 out of 15 comparisons, like BIR against GOE,
the effect size reduced from small to negligible. When we
considered F-measure, BIR, GOE, Naïve and OLI obtained
similar performance according to the effect size test.

TABLE 4. F-MEASURE EFFECT SIZE COMPARISON AMONG HEURISTICS
 BIR
CAN 0.59*

(large)
CAN

GOE 0.10

-0.49*
(large)

GOE

Naïve -0.07

-0.63*
(large)

-0.16*
(small)

Naïve

OLI -0.06 -0.63*
(large)

-0.16*
(small)

0.005 OLI

ROB 0.47*
(medium)

-0.28*
(small)

0.33*
(medium)

0.56*
(large)

0.54*
(large)

 * indicates p < 0.05 significance level of the Mann-Whitney U-Test

 We conducted a manual inspection to understand each
case in which heuristics did not correctly identify the group
to which an email belongs. We observed two different
problems: when emails from two different individuals in the
reference base were grouped by the heuristic; and cases
when the heuristic grouped fewer emails than the person
has. An example is presented in Figure 5.

Fig 5. Example of wrong cases issued by a disambiguation heuristic

 TABLE 5. CHARACTERISTICS OF EACH DISAMBIGUATION HEURISTIC

Approaches by
Heuristic

SIM ILU PAP CED CRI

Bird et al. Yes Yes
Canfora et al. Yes Yes
Robles and Gonzalez-
Barahona

 Yes Yes

Oliva et al. Yes Yes Yes
Goeminne and Mens Yes Yes Yes
Naïve Yes

 The heuristics use different approaches to group email
addresses. For example: infer the login from the name of the
user; consider email address domain; consider just
antecedent of logins; use login/name similarity; infer login
from parts of the name; permute all the parts of the name; or
use just first and last names. We present some
characteristics of each heuristic in Table 5, showing some
real examples extracted from the Apache Httpd and Tomcat
mailing lists below.

Consider the email address' domain (CED):
Pros: "<dan@fabulich.someDomain>" is correctly disjoined with
"<dan@kulp.someDomain>"
If the heuristic does not consider this, it can join these two addresses
incorrectly.

Consider just reincidence (CRI):
Pros: A more conservative approach to avoid incorrect joins.
Cons: "dfabulich <dfabulich@someDomain.org>" is the same person
as "Dan Fabulich <dan@fabulich.someDomain>", however the
heuristic cannot join these.

Use similarity on logins (SIM):
Pros: Some people abbreviate the middle names and the heuristics can
join these email addresses.
Cons: "<dain@someDomain.org>" is incorrectly joined with
"<dan@someDomain.org>"
and "Ken Steven <k.steven@someDomain.co.uk>" with "Steve Barr
<steveb@someDomain.com>".

Infer login from the name of the user (ILU):
Pros: "Daniel Kulp <daniel.kulp@someDomain.org>" is correctly
joined with "Daniel K <dkulp@someDomain.org>".
Cons: If heuristic does not use the middle names, it can join two
different persons.

Consider and permute all name parts (PAP):
Pros: "James Duncan Davidson
<james.davidson@someDomain.com>" is correctly joined with "James
Duncan Davidson <duncan@someDomain.com>".
Cons: "Mark A. Imbriaco" <mark@someDomain.net>" joined with
"Mark J Cox <mark@someDomain.com>" and "Mark Montague
<mark@someDomain.org>", all three are different persons.

We found that OLI was better when compared to all other five
heuristics in terms of precision. When the F-measure was
compared, we found that OLI, BIR, Naïve and GOE were
statistically better than ROB and CAN.

B. RQ2 How does the time window influence the
performance of the heuristics?

 Approach. For this research question, we aimed at
evaluating how the heuristic results were affected by the
time window. We computed F-measure values for each
heuristic in each different time window. To compute F-
measure, we compared the reference base to the list of
emails and members returned by each heuristic. To evaluate
the effect of time windows we used different numbers of
months to group email addresses and compare the reference
base and each heuristic.

 Results. We pairwise compared heuristics in seven
different time windows: 3, 6, 12, 24, 36 and 48 months.
When we used the entire history of Apache projects, we
found that the median number of months was 75 months.
The project with the highest number of months (244) was
the HTTPD project. The first quartile points to 45 months
and the third quartile was 111 months.

Fig 6. Impact of time window on heuristics considering the F-measure values

 Figure 6 shows the impact of time window size on each
heuristic in terms of F-measure. We noticed that BIR, OLI,
GOE, and the Naïve approach are more stable than ROB
and CAN since the medians of F-measure are more similar
among different time windows. However, we observed that
F-measure decreased when the whole history is considered.

 We conducted statistical tests to evaluate the
effectiveness of each heuristic in different time windows.
We used the Mann-Whitney U-Test to check if two
heuristics’ performances were different and Cliff’s Delta to
evaluate the effect size of this difference.

 In Table 6 we present the heuristics’ performance
ranking. We performed 15 tests for each time window and
sorted the heuristics by their performance. The results were
placed from left (better) to right (worse) using the symbol
“>” to divide the heuristics. For the first three time windows
(3, 6, and 12 months) we did not observe a statistical
difference between BIR, GOE, OLI, and Naïve approach.

 We found a small effect size difference between the F-
measure of the former when compared to ROB and CAN
heuristics. Considering the time windows with 24, 36, and
48 months, we found that BIR, GOE, OLI, and the Naïve
approach remained the best heuristics.

 However, ROB presented better performance than CAN
with a small effect size. We also noticed that compared to
ROB, OLI and GOE obtained medium effect size, while
BIR and Naïve presented small effect size considering the
F-measure obtained using 36 months as time window.

TABLE 6. EFFECT SIZE RANKING OF HEURISTICS PERFORMANCE
CONSIDERING THE F-MEASURE VALUES IN EACH TIME WINDOW

Time window Ordered heuristic by its effectiveness (F-measure)

3 months BIR , GOE, OLI, Naïve >* ROB, CAN
6 months BIR , GOE, OLI, Naïve >* ROB, CAN
12 months BIR , GOE, OLI, Naïve >* ROB, CAN
24 months BIR , GOE, OLI, Naïve >* ROB > CAN
36 months BIR , GOE, OLI, Naïve >* ROB > CAN
48 months BIR , GOE, OLI, Naïve >* ROB > CAN

Whole history BIR , OLI, Naïve >* GOE >* ROB >* CAN

* indicates p < 0.05 significance level of the Mann-Whitney U-Test

 When we increased the time window to 48 months, we
observed that BIR, GOE, OLI, and the Naïve approach
obtained medium effect size compared to ROB and large
effect size compared to CAN.

 In the whole histories of the projects, Naïve, BIR, and
OLI had the best results compared to GOE. For shorter time
windows, BIR, GOE, OLI, and the Naïve approach
outperformed the others. ROB and CAN were always the
worst heuristics in all time windows evaluated.

Using the whole history decreases the quality of the results of each
heuristic in terms of F-measure, mainly for ROB and CAN.
Considering the time windows evaluated, Naïve, OLI, and BIR
were better compared to the other heuristics. In shorter time
windows (<= 48 months), GOE presented similar results
compared to the former.

C. RQ3 How does the community size influence the
performance of the heuristics?

 Approach. We evaluated the influence of the
community size on the heuristic results. We used the
number of email addresses found in each project to
represent the community size. For this analysis, we
considered only the results of the complete mailing list
history. To evaluate the relationship between the heuristic
results and community size, we computed the Spearman
correlation between the number of unique email addresses
found in the discussion of a mailing list and the F-measure
values of each heuristic. We used Spearman, because the F-
measure did not follow a normal distribution according to
the Shapiro-Wilk test [31].
 Results. The results, presented in Table 7, suggest that
the number of email addresses used in the mailing list
negatively correlates with the quality of the heuristics’
results. The more email addresses on the list, the worse the
results of the heuristics. However, we could observe that
OLI and the Naïve heuristic were less influenced by the
community size. This evidence suggests better outcomes for
these two heuristics in situations with large datasets.

TABLE 7. SPEARMAN CORRELATION BETWEEN F-MEASURE AND THE
AMOUNT OF EMAIL ADDRESSES IN ENTIRE HISTORY.

Heuristic Spearman
correlation

BIR -0.5800478
OLI -0.1545838

ROB -0.3952133
CAN -0.6569058
GOE -0.8077635
Naïve -0.1491139

All heuristics are negatively impacted by the size of the community,
mainly GOE, CAN, BIR, and ROB. The effectiveness of the Naïve
and OLI strategies are less influenced by the size of the community.

V. DISCUSSION
 The results of our study show that indeed participants
use multiple emails to participate in OSS developer
discussion lists and the heuristics from the literature work
well in general. However, their results degrade differently
with the increase of the size of the community and the
period considered.
 According to Guzzi et al. [2], the mailing list use has
changed in recent years. Depending on the project, mailing
lists are used to report project status, discuss problems in the
software, look for operating instructions, coordinate project
members, send notices, etc. [2]. The archives of lists can be
used to explore human interactions and project development
process. However, it is necessary to use identity
disambiguation heuristics to mitigate the problem of
multiple email addresses of a participant [12], [13].
 Regarding the disambiguation of authors, our results
show that in fact a large number of developers use more

than one email to interact in the list and the heuristics are
effective to identify these multiple emails, mainly for small
projects or short periods of time. Thus, we suggest
researchers and tool developers to use a heuristic to identify
authors. Depending on the dataset size, more attention
should be paid to choosing an appropriate heuristic.
 Another interesting result from our study is the relatively
strong performance of the Naïve heuristic. In particular for
long time frames (2 or more years), there was no significant
difference among the heuristics of BIR, OLI, GOE and the
Naïve heuristic. This finding suggests that in many cases, a
very simple heuristic can be used to produce satisfactory
results in any time window. However, when we considered
the amount of email addresses in the entire history, the
Naïve heuristic and OLI were less influenced by community
size.
 In a prior study [8], we characterized the core developers
of a release of the Apache Ant project. For that purpose, we
mined data from the developer mailing list. Based on the
data extracted, we created social networks to represent the
communication among the participants and to identify the
core members. To have a more concrete idea about the
differences of the heuristics, we replicated the study varying
the heuristic applied to deal with author disambiguation.
 Figure 7 presents the amount of developers in the core
member group identified by each heuristic.

Fig 7. Comparison among heuristics during the replication of
core/periphery study conducted by Oliva et al.

 We can notice that the results were very similar
indicating that all heuristics identified the most part of the
core members (57 developers). These results corroborate
our conclusion that the heuristics produce similar results
when the number of emails is low. In this case, we used 3
years as time window and we identified 535 email
addresses.
 Finally, ethical issues may be raised when mining
mailing lists. In the case of the Apache Foundation, used in
this work, they announce that the emails sent to the mailing
lists are subject to the rules of the Public Forums Files
Policy. This policy makes it clear that any information sent
to these lists becomes public to promote the spirit of
transparency and openness of the community [32]. The
Apache community understands that maintaining free access

to historical communication is of vital importance for the
functioning of the community because it allows the
existence of a public record of its activities and a searchable
repository of what happens in the history of projects [32].
Tool developers and researchers may leverage this
information to gain understanding and to improve software
development practices.

VI. THREATS TO VALIDITY AND LIMITATIONS
 Our comparison considers just the email addresses
existent in our reference base, which contains data from the
project committers. As any person can post in the developer
mailing lists, this may have biased the results.
 We also focused only on the Apache Software
Foundation. Users from other communities may create their
identities following different patterns that can impact the
heuristics and change the results. In future work, we can
evaluate if other project characteristics may influence the
result of the heuristics. We had considered just approaches
using the data from mailing list message headers. As future
work, we can evaluate other approaches using other sources
like content and IP addresses. We considered the username
of the apache.org domain as equivalent to the username in
the source code repository. We based this decision on the
content of the committer manual existent on the ASF site6
and we sampled the dataset to confirm that this assumption
holds true for all analyzed cases.

Our reference dataset does not contain all the emails used
on the mailing lists (see Table 1) and it penalizes heuristics’
precision. Since the precision equation considers the number
of email addresses for each identity, the precision result
could be underrated because there are more email addresses
in the mailing list than in the reference base.

VII. CONCLUSIONS
 Mailing lists are an important communication channel in
software projects. Because of that, researchers are using this
rich source of information for different proposes. By mining
mailing lists, a potential threat can affect the results of a
study if the researchers did not pay attention to multiple
email addresses used by developers to interact.
 In this sense, different heuristics were proposed in the
literature to deal with author disambiguation, such as Bird et
al. [13], Oliva et al. [8], Goeminne and Mens [14], and
Kouters et al. [15]. However, many studies still consider
each email address as a unique identifier. Part of the reason
may be the lack of studies diagnosing the problem, and
evaluating and comparing the efficacy of the heuristics,
making it difficult to choose one.
 In this paper we used information extracted from
different places (JIRA, project websites, and community
public keys repository) to build a reference baseline and
used it to evaluate six disambiguation heuristics from the

6 https://reference.apache.org/committer/email

literature: BIR, OLI, CAN, GOE, ROB and the Naïve
heuristic. We applied each of these heuristics using different
time windows (3, 6, 12, 24, 36, and 48 months) and for the
complete mailing list history.
 We found evidence that the performance of heuristics is
affected by the use of the complete mailing list history,
which represents a larger set of email addresses.
Conservative heuristics like OLI and Naïve (do not infer
email from names) were less affected by the time window
compared to other more aggressive heuristics like GOE,
CAN and ROB.
 The larger time window exposes the heuristics to a
larger chance of members with similar names and email
addresses. Nevertheless, BIR, OLI, and the Naïve heuristics
showed good results in all cases. Smaller time intervals
appear to be advantageous for all heuristics. It is preferable,
if possible, to avoid the use of the complete mailing list
history in studies using this kind of data. We also found a
tradeoff between the impact of time window and the size of
community. BIR and GOE were more influenced by the
community size compared to Naïve and OLI approaches.
CAN and ROB obtained the worst performance in terms of
F-measure considering the time window and were also
affected by the community size.
 Our results imply that previous studies using mailing
lists author extraction that did not use author disambiguation
were exposed to threats to validity and point to the need for
researchers to take into account the existence of author
disambiguation heuristics. As future work, we will explore
how heuristics are related to the characteristics of each
community and how these characteristics can influence the
disambiguation capability of these heuristics. This kind of
work is becoming more relevant as numerous collective
production communities are appearing (e.g., MOOCs,
crowd-development projects, communities of practice, etc.).

ACKNOWLEDGMENT
We thank Fundação Araucária, NAPSOL, NAWEB, FAPESP, and
CNPQ (461101/2014-9) for the financial support.

VIII. REFERENCES
[1] S. M. Pujar, G. Manjunath, and M. N. Juttiyavar,
“Information sharing and dissemination by use of mailing lists,”
DESIDOC Journal of Library & Information Technology, vol. 23,
no. 6, 2003.
[2] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van
Deursen, “Communication in open source software development
mailing lists,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, 2013, pp. 277–286.
[3] A. E. Hassan, “The road ahead for mining software
repositories,” in Frontiers of Software Maintenance, 2008. FoSM
2008., 2008, pp. 48–57.
[4] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological
analysis of the open souce software development community,” in
System Sciences, 2005. HICSS’05. Proceedings of the 38th Annual
Hawaii International Conference on, 2005, p. 198a–198a.

[5] J. Roberts, I.-H. Hann, and S. Slaughter, “Communication
networks in an open source software project,” in Open Source
Systems, Springer, 2006, pp. 297–306.
[6] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger,
“Analysing Software Repositories to Understand Software
Evolution,” in Software Evolution, T. Mens and S. Demeyer, Eds.
Springer, 2008, pp. 37–67.
[7] M. Squire, “Project Roles in the Apache Software
Foundation: A Dataset,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 301–304.
[8] G. A. Oliva, F. W. Santana, K. C. de Oliveira, C. R. de
Souza, and M. A. Gerosa, “Characterizing key developers: a case
study with apache ant,” in Collaboration and Technology,
Springer, 2012, pp. 97–112.
[9] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza,
“Content classification of development emails,” in Software
Engineering (ICSE), 2012 34th International Conference on,
2012, pp. 375–385.
[10] R. Nia, C. Bird, P. Devanbu, and V. Filkov, “Validity of
network analyses in open source projects,” in Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on,
2010, pp. 201–209.
[11] I. Steinmacher, I. Wiese, A. P. Chaves, M. Gerosa, and
others, “Why do newcomers abandon open source software
projects?,” in Cooperative and Human Aspects of Software
Engineering (CHASE), 2013 6th International Workshop on,
2013, pp. 25–32.
[12] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical
study on the risks of using off-the-shelf techniques for processing
mailing list data,” in Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on, 2009, pp. 539–542.
[13] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A.
Swaminathan, “Mining email social networks,” in Proceedings of
the 2006 international workshop on Mining software repositories,
2006, pp. 137–143.
[14] M. Goeminne and T. Mens, “A comparison of identity
merge algorithms for software repositories,” Science of Computer
Programming, vol. 78, no. 8, pp. 971–986, 2013.
[15] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. van den
Brand, “Who’s who in Gnome: Using LSA to merge software
repository identities,” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on, 2012, pp. 592–595.
[16] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang,
R. Holmes, and M. W. Godfrey, “The MSR cookbook: Mining a
decade of research,” in Mining Software Repositories (MSR),
2013 10th IEEE Working Conference on, 2013, pp. 343–352.
[17] G. Navarro, R. A. Baeza-Yates, E. Sutinen, and J. Tarhio,
“Indexing methods for approximate string matching,” IEEE Data
Eng. Bull., vol. 24, no. 4, pp. 19–27, 2001.
[18] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta,
“Social interactions around cross-system bug fixings: the case of

FreeBSD and OpenBSD,” in Proceedings of the 8th working
conference on mining software repositories, 2011, pp. 143–152.
[19] G. Robles and J. M. Gonzalez-Barahona, “Developer
identification methods for integrated data from various sources,”
ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–
5, 2005.
[20] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G.
Antoniol, “How Developers’ Collaborations Identified from
Different Sources Tell Us about Code Changes,” in Software
Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, 2014, pp. 251–260.
[21] Q. Xuan and V. Filkov, “Building it together: synchronous
development in OSS,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 222–233.
[22] P. C. Rigby, D. M. German, and M.-A. Storey, “Open
source software peer review practices: a case study of the apache
server,” in Proceedings of the 30th international conference on
Software engineering, 2008, pp. 541–550.
[23] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P.
Devanbu, “Latent social structure in open source projects,” in
Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, 2008, pp. 24–35.
[24] E. Kouters, “Identity matching and geographical movement
of open-source software mailing list participants,” 2013.
[25] J. T. Da Silva, M. A. Gerosa, I. F. Steinmacher, and I. S.
Wiese, “Quem é quem na lista de discussão? Identificando
diferentes emails de um mesmo participante,” in Collaborative
Systems (SBSC), 2015 Brazilian Symposium on, 2015.
[26] G. W. Corder and D. I. Foreman, Nonparametric statistics:
a step-by-step approach. John Wiley & Sons, 2014.
[27] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s
Delta Calculator: A non-parametric effect size program for two
groups of observations,” Universitas Psychologica, vol. 10, no. 2,
pp. 545–555, 2011.
[28] N. Cliff, “Ordinal methods for behavioral data analysis.,”
1996.
[29] M. Goeminne, “Understanding the Evolution of Socio-
technical Aspects in Open Source Ecosystems: An Empirical
Analysis of GNOME,” Ph. D. dissertation, UMONS, 2013.
[30] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek,
“Appropriate statistics for ordinal level data: Should we really be
using t-test and Cohen’sd for evaluating group differences on the
NSSE and other surveys?,” in annual meeting of the Florida
Association of Institutional Research, 2006, pp. 1–3.
[31] S. S. Shapiro and M. B. Wilk, “An analysis of variance test
for normality (complete samples),” Biometrika, vol. 52, no. 3/4,
pp. 591–611, 1965.
[32] Apache Software Foundation (ASF), “Public Forum
Archive Policy.” 2015.

