
On-Demand Developer Documentation

Martin P. Robillard∗, Andrian Marcus†, Christoph Treude‡,
Gabriele Bavota§, Oscar Chaparro†, Neil Ernst¶, Marco Aurélio Gerosa‖, Michael Godfrey∗∗,

Michele Lanza§, Mario Linares-Vásquez††, Gail C. Murphy‡‡, Laura Moreno
x
, David Shepherd

xi
, and Edmund Wong∗∗

∗McGill University, Canada
†The University of Texas at Dallas, USA
‡University of Adelaide, Australia

§Università della Svizzera italiana, Switzerland
¶University of Victoria, Canada
‖Northern Arizona University, USA
∗∗University of Waterloo, Canada

††Universidad de los Andes, Colombia
‡‡University of British Columbia, Canada

x
Colorado State University, USA

xi
ABB, USA

Abstract—We advocate for a paradigm shift in supporting the
information needs of developers, centered around the concept
of automated on-demand developer documentation. Currently,
developer information needs are fulfilled by asking experts or
consulting documentation. Unfortunately, traditional documenta-
tion practices are inefficient because of, among others, the manual
nature of its creation and the gap between the creators and
consumers. We discuss the major challenges we face in realizing
such a paradigm shift, highlight existing research that can be
leveraged to this end, and promote opportunities for increased
convergence in research on software documentation.

I. THE VISION

We advocate for a new vision for satisfying the information
needs of developers, which we call On-Demand Developer
Documentation (OD3). Development tasks typically involve
a variety of artifacts, tools, processes, and other humans.
Currently, when developers have questions, they may consult
curated documentation, explore artifacts, browse Questions
and Answers (Q&A) websites, or seek the advice of experts.
Within this new perspective, an OD3 system would automati-
cally generate high-quality documentation in response to a user
query; the OD3 system would use a combination of knowledge
extraction techniques on an underlying collection of struc-
tured and unstructured artifacts, including source code, issue
tracking system metadata, and posts from Q&A forums. For
example, a developer assigned to repair a fault related to copy-
paste functionality might ask about the implementation of the
system’s Clipboard feature; in response, the OD3 system might
generate a document that explains relevant design decisions for
this feature (e.g., based on mining historical project data), and
suggest alternatives (e.g., based on processing Q&A forum
data). This paper is the outcome of a community effort; in the
remainder, we motivate the need for OD3 and then discuss
major research challenges that need to be addressed to realize
a vision of OD3.

II. MOTIVATION

Documentation pervades many, if not most, software en-
gineering activities [1], [2]. A particular type of documenta-
tion, which we call developer documentation, is specifically
intended to assist software developers in the creation or
modification of a system. Common types of developer doc-
umentation include source code comments, tutorials and ref-
erence documentation for application programming interfaces
(APIs), and design documentation. Developer documentation
is considered to be one of the most useful pieces of information
by developers during software maintentance [1].

Although the ideal of fully self-documented software has
been with us since the dawn of the discipline [3], the reality
of software development technology and practice falls short.
Documentation is an essential resource for creating and main-
taining software systems, but it suffers from two fundamental
limitations. First, it is costly to create and maintain, and
second, it is a non-executable artifact whose presence and
correctness are not technically critical to the construction of
software. The combination of high cost and low immediate
return on investment is particularly nefarious, and reports on
documentation being a low priority task are routine [1], [4].
Over the years, tools have been developed to reduce some of
the accidental inefficiencies related to the production of doc-
umentation. However, documentation tools provide relatively
little help with the creation of original content.

Curated documentation can provide coherent and authorita-
tive answers to some classes of questions, but the scope of such
documentation is necessarily limited. The field has benefited
from many studies of information needs of developers and
maintainers [5], [6], [7], from which questions arise that would
be hard to document, especially in the absence of a clear
promise of return on investment.



The advent of web-based collaboration platforms has cre-
ated major new opportunities for supporting the creation
of, and access to, developer documentation. However, the
large quantity and heterogeneity of online resources makes
searching, perusing and interpreting the information a daunting
task. Crowd-sourced developer documentation may even com-
pound the problems observed with documentation, as the sheer
amount of resources available increases the documentation
bloat and the authoritativeness of crowd-contributed resources
can be difficult to assess.

III. CHALLENGES

Realizing OD3 technology requires advances in three areas.
First, advances in information inference are needed to derive,
find, or link information useful to developers from different
types of information elements. Second, developers must be
able to form a document request based on an incomplete
or even incorrect understanding of these needs. Third, an
OD3 system must be able to perform document generation to
produce high-quality documents that address the information
needs of developers. Here we use the term document to denote
a coherent collection of information available to a developer,
and not necessarily a “document” meeting any existing docu-
mentation standard or intended for archival purposes.

A. Information Inference

Increasing automation in the documentation generation pro-
cess carries the assumption that the information presented
to developers will not already exist in a finished and well-
formed state. Instead, it must be inferred or synthesized from
other sources of information. We consider that, in an OD3
system, a document can be created from abstractions we
will call documentation elements that can be represented as
a model. In our Clipboard example where a developer is
assigned to repair a fault related to the copy-paste feature,
documentation elements could include the data structures used
by the clipboard, usage protocols for APIs used to access
temporary system memory, serialization encodings and the
rationale for their selection, etc. We focus this section on the
goal of obtaining elements for integration in a document.

1) Establishing Precise Links Between Artifacts: Generat-
ing documentation by combining elements requires that these
elements can be effectively retrieved. Although classic [8] or
specialized [9] information retrieval techniques can play a role
in the identification of certain documents, the statistical nature
of text-based information retrieval coupled with the technical
nature of software engineering artifacts usually means that the
results are not always fine-grained and accurate [10]. To create
documents on demand in answer to specific questions from
developers, advanced techniques are needed that can precisely
and accurately link fined-grained elements (e.g., source code
functions or paragraphs in documents such as blogs).

Research on software traceability [11] is concerned with all
aspects of the process of linking high-level artifacts (typically
requirements) with low-level ones (typically source code). In
the traceability research agenda, it is generally assumed that

the recovered traceability links will be inspected for validity
by a human analyst. The requirements of an OD3 system make
this manual step impossible, which greatly raises the expec-
tations on the precision of the results. Feature location [12]
can be viewed as a specialization of the general traceability
problem to that of establishing links between a high-level
feature (concern, or requirement) and the corresponding source
code. The major limitation of feature location tools in the
context of OD3 systems is that the code retrieved is typically
provided without explanations. The goal of OD3 systems is to
provide more semantic context than mere location; to explain
why the code in question is related to a feature requires an
additional level of information integration.

Finally, major advances have also been proposed in the
area of code element resolution, which covers a number of
techniques proposed to resolve a general (typically ambiguous)
mention of a potential code element (e.g., a class or a method)
to its definition [13], [14], [15], [16]. Resolution techniques
have been shown to precisely link code elements mentioned in
a variety of contexts, from tutorials to Stack Overflow posts.
However, links have little explanatory power in themselves,
and identifying elements mentioned in a document is only a
first step in the further processing of this document. Recent
developments have targeted the qualification of mentions in
terms of their explanatory power for an element [17], [18],
and used links to validate the accuracy of existing documen-
tations [19], [20]. These two applications are examples of
innovations that can help support the development of OD3.

2) Inferring Undocumented Properties: Many important
pieces of information that developers need are neither ex-
plicitly documented nor easily extractable. These include, in
particular, program properties, such as usage constraints for
components, best practices and design patterns, typestates, and
invariants. For example, knowledge of a critical initialization
step for the Clipboard might directly answer the developer’s
question about the copy-paste behavior.

Many techniques have been proposed to automatically infer
properties from software components [21]. These techniques,
which typically rely on a combination of static and dynamic
analysis and data mining, have reached a high level of maturity
in terms of technical development. However, the amount of
customization effort required to deploy such techniques in
realistic contexts limits their practicality. One potential reason
is the almost universal problem of false positives generated by
data mining techniques applied to software systems. Specifi-
cally, inference techniques will infer any property supported by
the data, whether it is sensible to a developer or not. Although
this problem can be mitigated by various optimizations and
filtering heuristics, the essential issue is that applying an
inference algorithm, in general, provides insufficient context
to automatically assess the value of the algorithm’s output.
The context of an OD3 system can play a major role in
mitigating the problem of false positives in program property
inference systems, by providing a detailed context for filtering
results [22]. By inferring properties in the case of a specific



request for documentation, OD3 research has the potential to
improve the usability of property inference techniques.

3) Discovering Latent Abstractions and Rationales: An-
swering complex questions that require an explanation is
unlikely to be achieved by the mechanical extraction of
facts from software artifacts, such as software dependencies,
coverage information, or method pre-conditions. Mature OD3
technology will need to support the production of documenta-
tion elements that represent more human-centered constructs,
such as abstractions and rationale.

Although tools already exist that can create models from
source code, they either proceed systematically without cre-
ating any new abstractions [23], require manual input to
specify abstractions and mappings [24], or rely on statistical
techniques [25] that produce abstractions that may be diffi-
cult to interpret. OD3 provides a new opportunity to create
models that target specific developer questions by integrating
information from multiple sources. OD3 may also spawn
new research directions to capture and evolve descriptions
of abstractions [26] as documentation elements that can be
integrated into the generation process.

The notion of explanation implies that the corresponding
documentation will include justification, or rationale, for de-
sign decisions. The research challenges for design rationale
recovery and capture are similar to those of abstractions [27].
As a fuzzy human concept, their recovery is notoriously
difficult, and may ultimately require the use of advanced
natural language processing techniques. The presence of an
OD3 system, however, may one day prove to be a sufficient
incentive to motivate the more systematic capture of rationale
as some sort of documentation element that, as for abstrac-
tions, can be integrated into the generation of documents.

B. Document Request

On-demand developer documentation implies that develop-
ers are able to express their demands in such a way that
an OD3 system can produce high-quality documentation in
response to their information needs. This challenge is exacer-
bated by the fact that developers might have an incomplete or
even incorrect understanding of their needs. In addition, even
in scenarios where two developers are working on identical
tasks, their information needs are not necessarily identical:
they depend on the wider context of the task as well as the on
particular background knowledge of the developer. To support
developers in expressing their information needs, an OD3
system should also be aware of what information needs it can
address and, as much as possible, guide developers towards a
successful inquiry.

1) Expressing Information Needs: Many researchers have
studied information needs of software developers, for example
identifying question types [28] or questions asked in particular
scenarios (e.g., [5]). Studies of Q&A websites such as Stack
Overflow have categorized different kinds of questions [29]
and enumerated their topics [30], among others. Often, infor-
mation needs of developers are difficult to address, such as

questions about intent and rationale [31]. Understanding in-
formation needs may provide clues to techniques for enabling
developers to express needs; expression may be particularly
difficult if developers have an incomplete or even incorrect
understanding of the information they need. An OD3 system
should understand the technologies that a developer is using
along with their documentation and interdependencies, as well
as the developer’s objective.

2) Capturing Task Context: To understand what a developer
is trying to do, an OD3 system can build upon task context,
defined as the program elements and relationships relevant
to completing a particular task, which is formed from the
interactions that a developer has with artifacts and the structure
of those artifacts [32]. Building on this definition, an OD3
system should be able to understand a developer’s task beyond
program elements and their relationships alone, taking into
account issue tracker information, relevant documentation,
and related communication channels, for example. The major
challenge lies in the interpretation of the large amounts of
data available about a developer’s activity, filtering out noise
and focusing on relevant information only. The application of
natural language processing to artifacts produced by software
developers (e.g., method names [33], issue trackers [34], or
documentation [35]) appears to be the most promising research
direction for capturing and understanding task context.

3) Personalization: Information needs of developers do not
depend only on the task that they are working on, but also on
their individual background. To differentiate between personal
backgrounds of developers, an OD3 system could rely on
developer profiles that capture the characteristics of a software
developer [36]. Similar to task context and building on a
large body of work on automatically identifying developer
expertise [37], such information could be captured from de-
velopers’ interaction with the tools they use, focusing on the
information they have seen, technologies they have used, and
expertise they have provided, e.g., in communication channels.
An OD3 system could learn implicitly from the queries that a
developer makes, using queries as a proxy for a knowledge gap
of a particular developer, or by explicitly asking developers
what they know. An OD3 system would also need to ensure
the privacy of developers, e.g., by not revealing potentially
embarrassing knowledge gaps to other users of the system.

4) Awareness of Available Information: By being aware of
the information available, an OD3 system can guide developers
towards queries that are likely to address their information
needs. A particular challenge is the vocabulary gap that exists
between documentation producers and consumers [38]. To
address this challenge, an OD3 system should be aware of
domain-specific synonyms [39]. However, synonyms alone
are not sufficient to communicate to the user of an OD3
system which queries are likely to succeed or to advise
on the best way to phrase a particular query. To support
developers in expressing their information needs, structured
queries, semantic search [40], indexing of the available docu-
mentation [41], and content-sensitive auto-complete interfaces
could be employed [35]. However, such approaches would not



understand a developer’s information need. Accommodating
information needs will require a coordinated effort, joining
research on information needs with research on automated
interpretation of documentation [19], [35].

C. Document Generation

Following a request by a developer, an OD3 system will
combine and transform relevant documentation elements into
a document. In many cases, the amount of information relevant
to a developer request can be staggering. Assembling all this
information into a document in its entirety would be imprac-
tical and is likely to overwhelm the user. In consequence,
the related challenges are selecting the relevant information,
determining the abstraction level and amount of information
to include in the document, and generating the content and
presentation format.

1) Selection: One challenge is to determine which docu-
mentation elements from a heterogeneous collection of rele-
vant information should be included in the generation of a
requested document. What makes this problem particularly
difficult is that the selection criteria depend on the task
context and the specific information need of the developer.
For example, an experienced developer who needs to use the
Clipboard feature in her code may need information about
only the most commonly used APIs and examples of their
use. Conversely, a less experienced developer, who plans to
implement a similar feature in a new application, may need
detailed design and implementation information, including
dependencies to other parts of the system, and possibly
information about external libraries used in the Clipboard
implementation. Existing research in generating documenta-
tion [42], [43] has focused on context-independent approaches
and typically generates generic documentation, based on built-
in heuristics. For example, when documenting API uses, some
approaches generate abstract usage examples [44], whereas
other approaches produce actual usage examples, which are
exemplars from clusters of related uses [42]. Selecting the
documentation content based on the developer task and context
remains an open research issue.

2) Summarization and Synthesis: A second challenge is
deciding how many of the selected documentation elements
should be included in the documentation. Research on software
summarization [45] promises to address this challenge. As
before, the developer context presents a problem. Existing
research that generates summaries of software artifacts, such
as code elements [46], [47], [48], bug descriptions [49], or
code changes [50], [43], [51], is also context independent.
For example, work on Java class summarization [47] includes
public methods in the summaries at the expense of private
methods and fields. Reducing textual artifacts, such as dis-
cussions or bug descriptions, to their most essential phrases
or words relies on decades of research in natural language
summarization [52]. Summarizing code or mixed artifacts is
substantially more challenging; as yet, little research has been
done on determining which code statements best summarize
a given code element [48]. Many existing automated software

summarization approaches generate extractive summaries [53],
[54], which include information directly extracted from the ar-
tifacts that are being summarized. A more difficult problem is
to generate abstractive summaries, which include information
not present in the artifact [55]. For example, if the Clipboard
feature is implemented in four classes, the responsibility of
each class can be summarized independently from the others.
However, the collection of those summaries may not provide
a satisfactory answer to the question of how the Clipboard
is implemented. To provide a more comprehensive answer,
information about the relationships between the four classes
and their uses (likely contained in other places) should be also
included. It is likely that the answer to most complex devel-
oper questions will include both code and natural language
elements. Combining them to achieve readable and coherent
documents is an active area of research [46], [47], [51].

3) Presentation: Once all the relevant information is se-
lected, prioritized, and summarized, the challenge in gener-
ating the documentation relates to the presentation of the
information to ensure high-quality documentation. Existing
research focused on producing hierarchical documents that
reveal information at lower abstraction level on-demand, via
interaction with the user [43]. Simple questions can have very
complex answers. For example, asking what changed in a
software system since the last release can generate a document
with hundreds of elements. Presentation is one important way
to tackle the documentation complexity.

IV. CONCLUSION

We exposed our vision of on-demand developer documenta-
tion (OD3) as a promising avenue for the fulfillment of devel-
oper information needs, and as a means to bring convergence
in the current space of research on this area. The research
challenges we discussed are by no means the only way to
present or discuss current research in this field. However, with
this discussion, we aimed to show how many relevant research
areas are maturing and becoming increasingly complementary.
The time is ripe for a concerted effort.

Acknowledgments. This paper is an outcome of the First
International Workshop on Dynamic Software Documentation,
held at the Bellairs Research Institute in February 2017.

REFERENCES

[1] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: the state of the practice,” IEEE Software, vol. 20,
no. 6, pp. 35–39, 2003.

[2] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proc. Int’l. Conf.
Design of Communication, 2005, pp. 68–75.

[3] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[4] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, 2015.

[5] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proc. Int’l. Symposium Foundations
of Software Eng., 2006, pp. 23–34.

[6] B. de Alwis and G. C. Murphy, “Answering conceptual queries with
ferret,” in Proc. Int’l. Conf. Software Eng., 2008, pp. 21–30.



[7] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Software Eng., vol. 32,
no. 12, pp. 971–987, dec 2006.

[8] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to infor-
mation retrieval. Cambridge Univ. Press, 2008, no. 1.

[9] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proc. Int’l. Conf.
Software Eng., 2003, pp. 125–135.

[10] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[11] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and
A. Zisman, “Software traceability: Trends and future directions,” in Proc.
Future of Software Eng., 2014, pp. 55–69.

[12] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” J. Software: Evolution and
Process, vol. 25, no. 1, pp. 53–95, 2013.

[13] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proc. Int’l. Conf. Software Eng., 2010, pp. 375–384.

[14] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an API and its learning resources,” in Proc. Int’l. Conf. Software Eng.,
2012, pp. 47–57.

[15] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proc. Int’l. Conf. Software Eng., 2013,
pp. 832–841.

[16] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documen-
tation,” in Proc. Int’l. Conf. Software Eng., 2014, pp. 643–652.

[17] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering information
explaining API types using text classification,” in Proc. Int’l. Conf.
Software Eng., 2015, pp. 869–879.

[18] H. Jiang, J. Zhang, Z. Ren, and T. Zhang, “An unsupervised approach for
discovering relevant tutorial fragments for APIs,” in Proc. Int’l. Conf.
Software Eng., 2017, pp. 38–48.

[19] B. Dagenais and M. P. Robillard, “Using traceability links to recommend
adaptive changes for documentation evolution,” IEEE Trans. Software
Eng., vol. 40, no. 11, pp. 1126–1146, 2014.

[20] H. Zhong and Z. Su, “Detecting API documentation errors,” in Proc.
ACM SIGPLAN Int’l. Conf.Object-Oriented Programming Systems Lan-
guages and Applications, 2013, pp. 803–816.

[21] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API property inference techniques,” IEEE Trans. Software
Eng., vol. 39, no. 5, pp. 613–637, 2013.

[22] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples
to improve code completion systems,” in Proc. 7th Joint Meeting
European Software Eng. Conf. ACM SIGSOFT Symposium Foundations
of Software Eng., 2009, pp. 213–222.

[23] D. Jackson and A. Waingold, “Lightweight extraction of object models
from bytecode,” IEEE Trans. Software Eng., vol. 27, no. 2, pp. 156–169,
2001.

[24] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion models:
Bridging the gap between design and implementation,” IEEE Trans.
Software Eng., vol. 27, no. 4, pp. 364–380, 2001.

[25] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
concepts from code with probabilistic topic models,” in Proc. Int’l. Conf.
Automated Software Eng., 2007, pp. 461–464.

[26] M. P. Robillard and G. C. Murphy, “Representing concerns in source
code,” ACM Trans. Software Eng. and Methodology, vol. 16, no. 1, pp.
1–38, 2007.

[27] W. C. Regli, X. Hu, M. Atwood, and W. Sun, “A survey of design
rationale systems: approaches, representation, capture and retrieval,”
Engineering with computers, vol. 16, no. 3, pp. 209–235, 2000.

[28] S. Letovsky, “Cognitive processes in program comprehension,” in Papers
Presented at the 1st Workshop on Empirical Studies of Programmers on
Empirical Studies of Programmers, 1986, pp. 58–79.

[29] E. C. Campos and M. de Almeida Maia, “Automatic categorization of
questions from Q&A sites,” in Proc. Symposium on Applied Computing,
2014, pp. 641–643.

[30] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Eng., vol. 19, no. 3, pp. 619–654, 2014.

[31] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Workshop on Evaluation and Usability of Programming Languages
and Tools, 2010, pp. 8:1–8:6.

[32] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in Proc. Int’l. Symposium Foundations of Software
Eng., 2006, pp. 1–11.

[33] E. Hill, L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method signa-
tures,” in Proc. Int’l. Conf. Automated Software Eng., 2011, pp. 524–527.

[34] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker,
“Using natural language program analysis to locate and understand
action-oriented concerns,” in Proc. Int’l. Conf. Aspect-oriented Software
Development, 2007, pp. 212–224.

[35] C. Treude, M. P. Robillard, and B. Dagenais, “Extracting development
tasks to navigate software documentation,” IEEE Trans. Software Eng.,
vol. 41, no. 6, pp. 565–581, 2015.

[36] A. T. Ying and M. P. Robillard, “Developer profiles for recommendation
systems,” in Recommendation Systems in Software Eng., 2014, pp. 199–
222.

[37] A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” in Proc. Int’l. Conf. Software Eng.,
2002, pp. 503–512.

[38] P. Mika, E. Meij, and H. Zaragoza, “Investigating the semantic gap
through query log analysis,” Int’l. Semantic Web Conf., pp. 441–455,
2009.

[39] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in Proc. Int’l.
Conf. Software Eng., 2017, pp. 450–461.

[40] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in software
forums,” in Proc. Int’l. Conf. Automated Software Eng., 2011, pp. 323–
332.

[41] A. Tang, P. Liang, and H. v. Vliet, “Software architecture documen-
tation: The road ahead,” in Proc. Working IEEE/IFIP Conf. Software
Architecture, 2011, pp. 252–255.

[42] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus, “How
can I use this method?” in Proc. Int’l. Conf. Software Eng., 2015, pp.
880–890.

[43] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “ARENA: an approach for the automated generation of
release notes,” IEEE Trans. Software Eng., vol. 43, no. 2, pp. 106–127,
2017.

[44] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: mining and
recommending API usage patterns,” in Proc. European Conf. Object-
Oriented Programming, 2009, pp. 318–343.

[45] L. Moreno, “Software documentation through automatic summarization
of source code artifacts,” Ph.D. dissertation, The University of Texas at
Dallas, 2016.

[46] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for Java meth-
ods,” in Proc. Int’l. Conf. Automated Software Eng., 2010, pp. 43–52.

[47] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for Java
classes,” in Int’l. Conf. Program Comprehension, 2013, pp. 23–32.

[48] A. T. Ying and M. P. Robillard, “Selection and presentation practices for
code example summarization,” in Proc. Int’l. Symposium Foundations
of Software Eng., 2014, pp. 460–471.

[49] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization of
bug reports,” IEEE Trans. Software Eng., vol. 40, no. 4, pp. 366–380,
2014.

[50] R. P. L. Buse and W. Weimer, “Automatically documenting program
changes,” in Proc. Int’l. Conf. Automated Software Eng., 2010, pp. 33–
42.

[51] L. F. Cortes-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in Int’l. Working Conf. on Source Code Analysis
and Manipulation, 2014, pp. 275–284.

[52] K. Spärck Jones, “Automatic summarising: The state of the art,” Inf.
Process. Manage., vol. 43, no. 6, pp. 1449–1481, 2007.

[53] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate extractive
summaries,” in Proc. Int’l. Conf. Software Eng., 2017, pp. 49–59.

[54] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in Working Conf. Reverse Eng., 2010, pp. 35–44.

[55] P. W. McBurney and C. McMillan, “Automatic source code summariza-
tion of context for Java methods,” IEEE Trans. Software Eng., vol. 42,
no. 2, pp. 103–119, 2016.


