
An Empirical Study of Security Issues Posted in Open Source Projects

Mansooreh Zahedi
IT University of Copenhagen

 mzah@itu.dk

Muhammad Ali Babar
University of Adelaide

ali.babar@adelaide.edu.au

Christoph Treude
University of Adelaide

christoph.treude@adelaide.edu.au

Abstract

When developers gain thorough understanding and

knowledge of software security, they can produce more
secure software. This study aims at empirically
identifying and understanding the security issues
posted on a random sample of GitHub repositories. We
tried to understand the presence of security issues and
their key themes and topics. We applied a mixed-
methods approach, combining topic modeling
techniques and qualitative analysis. Our findings have
revealed that a) the rate of security-related issues was
rather small (approx. 3% of all issues), b) the majority
of the security issues were related to identity
management and cryptography topics. We present 7
high-level themes of problems that developers face in
implementing security features.

1. Introduction

With a growth in connectivity of systems and
services to the Internet, security of software systems is
increasingly becoming important. Security
vulnerabilities can expose a system to attackers for
stealing sensitive data and performing malicious
activities that sometimes have tremendous impact. The
most recent example is the “WannaCry” attack in May
2017, which targeted more than 90 countries and
infected internal systems of organizations, e.g.,
hospitals in the UK. Therefore, different security
mechanisms, guidelines and tools are continuously
being provided with the purpose of decreasing software
security risks. It is found that scarcity of security
professionals and developers’ lack of knowledge of
secure coding are major concerns particularly for web
app development [1]. This motivates researchers (e.g.,
[2]) to investigate solutions to improve security skills
of developers. The lack of security professionals can be
due to ineffective methods (e.g., relying on
apprenticeship) that are normally used for sharing
security knowledge [3]. As a result, some initiatives

(e.g., [3], [4]) are taken to systematically organize
software security knowledge to be used by researchers
and practitioners in this domain. There also exist well-
known security dictionaries and catalogues (e.g.,
Common Vulnerabilities and Exposures - CVE) that
are maintained with categorized information about
vulnerabilities. Despite their popularity, these
catalogues typically have a very complicated structure
that makes them difficult to use.

In this paper, we explore the presence and key
themes of security issues in GitHub repositories. We
define a “security issue” as: a posted issue on GitHub
that contains a security-related aspect. Taking a
bottom-up approach, we aim to understand security-
related topics and themes emerging from issues that
software developers raised. We discuss that this tactic
could help us realize the difficulties that developers
face in this regard and identify the required knowledge
areas. Our study aimed at exploring the following
research questions:

RQ1: What is the rate of security issues posted in
open source projects?

RQ2: What are the most frequent security
keywords appearing in the issues of open source
projects?

RQ3: What are the main themes and topics of
security issues in open source projects?

We used a mixed-methods approach, combining
topic modeling and qualitative analysis to answer our
research questions. We collected the issues from 200
randomly sampled GitHub repositories and used them
as data corpus. Our findings demonstrate that: (1)
Approximately 3% of all issues were identified as
security-related. (2) The most frequent security
keywords found in the issues include: login, hash,
password, inject, authentic, crypt, cookie, credential
and certificate, among which “login” was dominantly
used. (3) We identified 26 security-related topics
across the issues that were mainly related to identity
management and cryptography problems. Our
qualitative analysis revealed 7 high-level themes and
key points indicating the problems that developers face
when implementing security features.

2. Related work

Software security focuses on developing secure

software by ensuring security through design, proper
testing, and educating developers and users on security
techniques [5]. It differs from application security that
protects software after development. It is discussed that
operating a secured network is easier and more cost
effective when running self-protecting software (i.e.,
properly designed and tested from a security
perspective) [5]. Initiatives (e.g., [3], [4]) are taken by
researchers to systematically organize security
knowledge forming the foundation for software
security. For example, Braun and McGraw [3] suggest
three categories of security knowledge including
perspective (e.g., rules and guidelines), diagnostic
(e.g., vulnerabilities) and historical (e.g., historical
risks), and they discuss their applications through the
software development lifecycle.

The popularity of open-source software and the
availability of big open data, motivated several
researchers to use this data for software security
purposes. For example, researchers commonly use
open-source applications for evaluating static analysis
tools that examine program source code for
vulnerabilities (e.g., [6]). Open source applications
have been also analyzed for relating architectural
tactics to common vulnerabilities [7] and
recommending tactics for security [8].

Pletea et al. [9] present sentiment analysis of
security-related discussions on GitHub. Having
analyzed 90 GitHub repositories, the authors conclude
that 10% of the discussions were security-related, and
they also involved negative emotions. We build on this
work and use the proposed security keywords for
exploring security issues on GitHub. However, our
study differs from [9] in several aspects: a) we use a
different dataset including 200 randomly sampled
GitHub repositories, b) we analyze issues rather than
comments on commits/pull requests, c) we particularly
investigate security themes and topics emerged from
posted issues.

3. Research method

This section describes the research methods used

for conducting our study. We elaborate on the
characteristics of our data corpus and analysis
methods. We used topic modeling as well as qualitative
analysis. Topic modeling was applied to the whole data
corpus to extract key security topics at an abstract
level. We complemented the results of topic modeling
through qualitative analysis of a subset of security
issues.

3.1. Dataset

We used GitHub as the main source of data. Using
a crawling application, we collected issues from 200
randomly selected GitHub repositories1. All the
repositories had at least 500 commits and at least 100
pull requests or issues. This strategy was taken to
ensure that the data could provide an overview of the
prevalence of security issues on GitHub, and only
active GitHub projects were part of the sample. The
most common programming languages in our sample
were the same as in all of GitHub2. We organized all
the issues in a single CSV (comma-separated values)
file. For each issue, we included related information
such as: name of the repository, title and body of the
issue, timestamp of posting the issue and the issue
status (open/closed). In addition, each issue was
examined to determine whether it was security related.
For this purpose, we used the set of security keywords
provided by [9]. We marked an issue as security-
related, if it (title or body) contained any of the security
keywords. We initially ran a pilot study and manually
verified the relevancy of 50 issues, which were
automatically marked as security related. This phase
helped us to ensure all the required constraints (e.g.,
when looking for 3-character terms) are in place as
suggested by [9], and decrease the rate of false
positives.

3.2. Topic modeling

Topic modeling is a Natural Language Processing
(NLP) technique to automatically extract topics out of
a corpus of textual data [10]. A topic refers to a
collection of words that frequently co-occurred in the
analyzed documents, and they are often semantically
interrelated [10], [11]. Analyzing a data corpus through
topic modeling enables a researcher to organize data in
the form of semantic structure without pre-assumed
knowledge about the content [10]. Latent Dirichlet
Allocation (LDA) [11] is a popular topic modeling
technique, which is commonly used by researchers for
mining software repositories [10]. The LDA model
provides flexibility in topic modeling by providing
possibilities to treat: a) a document as a member of
multiple topics and, b) a topic as a mixture of words
that could belong to multiple topics [11]. Applying
topic models, a data corpus could be categorized into a
different number of topics (i.e., called k-value),
varying from a few (e.g., k=4) to several (e.g., k=100)
topics. Yet, it is a researcher’s job to choose an
appropriate k-value that can represent the number of

1 Selected Repos listed at: http://tinyurl.com/SecurityIssuesProjects.
2 https://octoverse.github.com

key topics of a corpus. We decided to use topic models
based on the LDA technique due to its flexibility and
proven suitability in mining software repositories [10].
We performed our analysis using well-known R
libraries that support text mining, particularly the
“topicmodels” [12], “tm” [13], [14] and “ldatuning”
packages, and consulting with related materials
provided by [15]. Topic modeling was applied to the
security issues retrieved from all 200 repositories. To
do so, we chose the issues from our dataset, which
were marked as security-related (i.e., containing any of
the security keywords).

3.2.1. Pre-processing steps. Before applying topic
modeling, it is required to clean the data through pre-
processing steps. We performed the following
activities:
• Removing code snippets from the content of issues

using regular expressions.
• Removing irrelevant words using “stop-words”: We

used the existing list of stop-words provided in the
“topicmodels” R package [12]. This list includes
1000+ common English words designed for
analyzing natural language texts. Running topic
modeling and examining the results, we added a few
more words (e.g., the names of repositories) to the
list of stop-words.

• Removing punctuation, numbers and extra white
space between terms.

• Transforming all characters to lower-case.
• The words were transformed into their root.

Stemming was used to avoid formation of topics
with various forms of a term (e.g., inject, injection,
injects, injected, and injecting).

• Forming documents: In our study, we expected the
LDA algorithm to treat the issues of each repository
as a document. This choice was made since treating
each issue as a separate document would have
resulted in too many documents with almost no
content. Thus, all security issues (title and body) of
each repository were merged together to form a
single row in the pre-processed data corpus.

3.2.2. Applying topic modeling. We ran the LDA
algorithm on the pre-processed data using the “LDA()”
function from the “topicmodels” package. In order to
tune the input parameter (i.e., number of topics) of the
LDA model we used the “ldatuning” R package. This
package facilitates selecting an appropriate k-value for
a given dataset. It implements and compares the results
of four different metrics to find the optimal number of
topics. The implemented metrics are based on
maximization [16], [17] and minimization [18], [19]
approaches. A researcher could analyze the extreme
values of these metrics in order to determine the best

value for the number of topics. For a detailed
discussion on implementation and use of these metrics,
we refer readers to the related references. We have
examined these metrics for k=5 to k=30. The results
suggested the best number of topics to be between
k=17 and k=26. We chose k=26 for our analysis to
ensure that the entire range of key topics are included.
Besides, three metrics reached a reasonable value for
k=26, indicating its appropriateness.

3.3. Qualitative analysis

We qualitatively analyzed a subset of security
issues retrieved from GitHub repositories. This round
of analysis was performed to a) verify issues marked as
security-related, b) investigate the main themes of
security issues through manual analysis and an in-
depth interpretation. We selected the top 10
repositories with the highest rate of security issues and
qualitatively analyzed 234 issues. We performed
thematic analysis [20] on the content of all security
issues from the selected repositories. The security
issues were imported into Nvivo (i.e., a qualitative
analysis tool) and manually open coded. In Nvivo, the
issues were organized in form of datasets, i.e. one
dataset per repository and one row in the dataset per
issue. This data structure facilitated tracking
distribution of themes within the repositories and
issues, and ensuring all the issues being coded. The
emerging codes were further categorized into themes.

4. Findings

We present our findings to answer the research

questions of the study.

4.1. Distribution of security issues

We present the general findings from the
exploration of security issues. Table 1 highlights the
overview of our dataset. Our dataset included 64,963
issues posted from Feb 2007 to Aug 2016. Examining
the issues against the list of security keywords [9], we
have identified 1,938 security issues (i.e., ~ 3% of all
the issues).

Table 1 - Summary of dataset
Issues Dates # Security

Issues
% Security

Issues
64,963 2007/02 -

2016/08
1,938 2.98%

We explored the most frequently found security

keywords. Figure 1 depicts the word cloud of the
identified security keywords. We observe that “login”

Figure 1 - Word cloud of security keywords

is the most dominant keyword used in the security
issues, followed by “hash”, “password” and “inject”.

4.2. Security topics

Table 2 shows the 26 topics identified by our topic

model analysis. For each topic, we have provided the
top terms of the topic. We have manually assigned
descriptive labels to each topic based on a combination
of terms and investigation of the data whenever it was
required. Topic model analysis suggested several
topics regarding identity management that contained
words such as login, password, authent and credent
among their top-terms. These topics covered a broad
domain incorporating different

authentication/authorization mechanisms (e.g., web
authentication (T2), windows authentication (T13),
HTTP cookie authentication (T8), certificate
authentication (T20), user authentication (T5),
managing user accounts/use of OAuth (T6)), as well as
feature implementation and configuration supporting
user credentials (e.g., login implementation in websites
(T12), password UI features (T9), password
provisioning and verifications to server (T17)).

We found several topics related to the concept of
cryptography and encryption. These topics included
areas such as: crypto-currency mining (T1), developing
hash storage functionalities (T3), cryptography
algorithms (T4), public-key signature system (T25) as
well as encryption of sensitive data (T15 and T23). The
topic models suggested 3 topics about injection (i.e.,
T14, T18 and T19). Having investigated the contents
of these topics, we found that they were not related to
security (e.g., SQL injection), but about a particular
design pattern (i.e., dependency injection). There were
topics from other domains such as media player
security (T10), game development (T16), certificate
management (T21) and violation management (T22).
The combination of top terms appearing in some of the
topics (i.e., T7, T11, T24, and T26) was too varied and
did not clearly reflect a concept. While we have given
labels to these topics based on some of the top terms,
there is a possibility that they contain other contents.

Table 2 - List of identified topics and top terms

Id Topic Label Top Terms Explanation
T1 Crypto-currency

mining
hashrat, pool, login, password, user,
hash, account, set, network, rate

Refers to crypto-currency mining and possibly
managing users (login, password, account) in this
context.

T2 Web/LDAP
Authentication

login, password, ldap, user, web,
authent, server, connect, interface,
log

Refers to web authentication and possibly relates
to the use of LDAP for this purpose.

T3 Hash Storage
Implementation

sign, key, hashdict, set, log, modul,
hashset, creat, compil, iex

“hashdict”, “hashset” refer to Java classes for
storing and retrieving data using hash tables.
Other terms also relate to implementation.

T4 Cryptography
Algorithms

checksum, sha, line, file, encod,
hash, download, build, time, packag

Refers to cryptography algorithms (e.g., sha,
hash). Other terms are more about
implementation.

T5 User
Authentication
(sessions/cookies)

login, password, user, cooki,
authent, session, server, connect,
set, secur

Refers to user authentication and possibly use of
cookies and sessions in this regard.

T6 Managing User
Accounts (use of
OAuth)

Login, password, user, sign, page,
server, account, twitter, set, log,
oauth, facebook, ssl

Refers to managing user accounts (e.g., user,
account, login) and possibly the use of the OAuth
protocol in this regard (e.g., twitter, oauth,
facebook, ssl).

T7
Data Sanitization

Function, key, origin, report, check,
sanit, codegoogl, secur, version,
cba, sign, unsign, regexp

Combination of terms does not clearly reflect a
topic. It is partly about data sanitization (e.g.,
sanit, key, origin, sign, unsign, regexp).

T8 HTTP Cookie
Authentication

User, cooki, certif, tenant, sign,
authent, hash, server, header,

It is about HTTP cookie authentication (e.g.,
cooki, authent, hash, header, request, respons).

request, respons
T9 Password UI

Features
Password, login, user, sign, page,
email, link, chang, box, send

Refers to passwords and supporting UI features
(e.g., chang, box, page). For example, change
forgotten password.

T10 Media Player
Security

Track, video, add, secur, test, hack,
url, updat, locat, herm, android

Refers to security (e.g., secur, hack, test) aspects
in context of media player (e.g., track, video).

T11 Server Security
Configuration

link, server, login, add, secur,
Ubuntu, tile, compil, access, trusti,
instal, fail, test, port, instanc, integr

Does not clearly reflect a topic. Partly refers to
server security configuration (e.g., server, login,
access), likely about integration servers (integr).

T12 Login
Implementation in
Websites

Login, site, user, jetpack, page,
form, email, sso, comment, option,
component

Refers to login and its implementation in websites
(e.g., site, jetpack, form). Also, contains SSO (i.e.,
a shared authentication technique).

T13 Windows
Authentication

User, authent, password, window,
server, header, run, virtuoso, code,
client, explor, internet, ntlm, kerbero

Refers to user authentication in Windows-based
systems (e.g., window, internet, explor, ntlm,
kerbero).

T14 Dependency
Injection
Implementation - 1

Inject, compon, servic, href, chang,
test, creat, code, call, url

Refers to the dependency injection design pattern.
Not related to security, as no related word found
in top terms.

T15 Cookie Value
Encryption

Cooki, decod, encod, data, header,
yield, string, support, request, handl

Refers to cookies and encrypting their values
(e.g., decod, encod).

T16 Game
Development
Security
Configuration

Uniti, extra, render, declar, function,
length, forward, password, line, add,
signatur

Refers to development (e.g., function, line) in the
context of games (e.g., uniti3, render) and covers
security-related aspects (e.g., password,
signatur).

T17 Password
Provisioning and
Verification

Password, inject, user, connect,
box, vagrant, fail, run, fix, access,
server, framework, test, violat,

Refers to providing and verifying passwords to
servers (e.g., password, access, server, violat).
E.g., verifying password to connect to server.

T18 Dependency
Injection
Implementation - 2

Inject, compon, servic, injector, test,
depend, provid, constructor,
browser, router

Refers to the dependency injection design pattern.
Not related to security, as not related word found
in top terms.

T19 Hierarchical
Dependency
Injection Support

Inject, servic, parent, injector, class,
child, chang, direct, depend, provid

Refers to the dependency injection design pattern.
Not relates to security, as no related word found in
top terms.

T20 Certificate
Authentication

Certif, authent, github, server,
configur, check, oauth, set, log, ssl

Refers to certificate authentication (e.g., certif,
authent, oauth, ssl), which is used to secure
client-server network connection.

T21 Certificate
Management

Certif, sign, set, credenti, fail, profil,
cert, run, platform

Refers to managing certificates (e.g., certif, install,
run, fail). Could also relate to certificate profiles,
i.e., used for certificate configuration.

T22 Violation
Management

Violat, tabl, file, page, filter, oauth,
account, secur, type, url

Refers to violation management, possibly through
UI features (e.g., tabl, filter, page).

T23 User Credentials
(Encryption)

Login, password, user, encrypt,
page, data, system, server, button,
screen

Refers to managing user credentials, through
encryption (e.g., encrypt) and UI (e.g., page,
scree, button).

T24 Git Configuration/
Spam Issue

Password, git, login, authent, wallet,
implement, support, spam, doge,
block, salt.

Does not clearly reflect a topic. Partly refers to
development issues using Git, e.g., git-salt. Also,
it contains issues about spamming in the context
of crypto-currency mining (e.g., wallet, doge,
spam).

T25 Public-key
Signature System

Key, transact, sign, add, signatur,
credenti, support, creat, code, api

Refers to a public-key signature system (key,
transact, signatur) and supporting it in programs
(e.g., add, support, api).

T26 Cookie (nonce
authentication)

Form, cooki, page, check, fail,
email, nonc, secur, submit, plugin

Does not clearly reflect a topic. Partly refers to
cookie nonce authentication (e.g., cooki, nonce,
secur, plugin).

3 Unity (i.e., stemmed to uniti) is a popular game engine.

5. Qualitative results

Topic modeling treats documents as a bag of words
without understanding the semantic meaning of the
text. Therefore, we qualitatively analyzed a sample of
security issues (i.e., from the top 10 repositories with
the highest rate of security issues) for in-depth
understanding. Table 3 demonstrates our manual and
qualitative verification of the main topics that were
identified using topic modeling. By main topics we
mean the topics that were assigned to these repositories
with highest probability. Out of 10 repositories, we

verified the main topics of 6 repositories as relevant, 3
repositories partially relevant, and 1 repository
irrelevant. We observed that the identification of main
topics by LDA was more accurate for the repositories
that a) were specialized in a particular domain (e.g.,
cryptography library), b) had larger number of issues
(i.e., larger data corpus). We found that the allocation
of T7 (i.e., Data Sanitization) to the contents of a
repository was irrelevant.

Table 3 - Top 10 repos with high rate of security issues – allocated topics vs. manual verification

Repo % Sec.
Issues

Type/Domain of
Repository

Main
Topic

Manual Verification
relevant: ✓ partially relevant:v irrelevant: ✗

crypto-js 39.74% Library of cryptography
algorithms in JavaScript

T4 ü Majority of issues were about cryptography,
stating problems (e.g., wrong hash/cipher).

yourturn 20.69% Frontend console of STUPS
platform

T22 ü Majority of issues were about visualization of
credential violations (e.g., tabular format,
filtering options).

waffle 20.41% Windows Authentication
Framework

T13 ü Topic relates to type of the repository. Majority
of issues were about handling protocols (e.g.,
Kerberos, NTLM).

evenHire 15.38% Web application supporting
hiring workflow

T7 ✗ Not related to topic. Most of the issues were
 about UI-related problems of the login page
 (e.g., need of password verification text box).

sigh 13.64% Application for automatically
handling Provisioning
Profiles (PP)

T21 ü Topic relates to type of the repository. Majority
of issues were about setting up PPs (e.g.,
find/install certificates for PP setup).

formio 13.64% Form and API engine for
building server-less data
management applications

T5 v Topic is partially related. Most of the issues
were general authentication/authorization
issues (e.g., session expiration, not getting
authorized at server when giving credentials)

httparty 11.74% Ruby library supporting the
implementation of web APIs
and HTTP authentication

T8 ü Topic is highly related. Majority of issues were
about authentication varying from
implementation (e.g., handling authentication
headers) to vulnerabilities (e.g., improper
management of cookie values).

communit
yshare

11.54% Web application T2 v Partially related. Majority of issues were about
web authentication, but mainly UI related
(e.g., change password).

webob 11.45% Python library that facilitates
HTTP authentication
implementation

T15 ü Topic is related. Majority of issues were about
problems in parsing cookie values in HTTP
header (e.g., issue when ‘ “ ‘ is used). Yet, not
much about encryption.

anahita 11.11% Social networking platform T13 v Topic is partially related. The issues were
about handling authentication headers
between client/server. Yet, not about
Windows.

Besides verification of the topics, we identified the

key themes of security issues. Table 4 summarizes the
qualitative findings. Our analysis revealed that the
majority of security issues were about the problems
that developers face when implementing security

features (i.e., 201 out of 234). The remaining issues
were either not security-related or not understandable.
We did not find any issue reporting critical security
threats or vulnerabilities (e.g., XSS and SQL injection).
As it can be seen in Table 4, we have classified the

issues about implementing security features under
high-level categories including: 1)
authentication/authorization issues, (2) cryptography
issues, (3) handling security protocols/standards, (4) UI
features, (5) error-exception handling, (6) managing
cookie values/HTTP headers, and (7) others.

Our analysis revealed 29 issues related to
authentication/authorization concepts with the key
themes that are specified in the table. Most of the
issues in this category were related to implementing
shared authentication/authorization mechanisms (i.e.,
OAuth and SSO). For example, there were issues
indicating OAuth configuration problems, need of
managing flow of OAuth 2.0 tokens in the application
and SSO failure in the applications. The other common
issues in this category were about handling
authentication headers (e.g., parsing/encoding bugs of
authentication headers), issues about digest
authentication (e.g., failure/need of support), and email
authentication problems (e.g., error in sending
password to users via email). We found a few issues
indicating improper implementation of authentication/
authorization mechanisms. They include: application
bugs in showing contents without authentication,
wrong access control verification, and enabling
deleted/deactivated users to reset password.

Under the category of cryptography, we found 58
issues, all belonging to one repository (i.e., crypto-js).
This repository is a JavaScript library implementing
different cryptography algorithms including hashers
(e.g., MD5) and ciphers (e.g., AES). Most of the issues
in this category were related to incompatibility of the
cryptography solutions with different OSs (e.g., iOS,
Blackberry), programming languages (e.g., C#, PHP)
and applications (e.g., Browsers, PDF readers). In
addition, wrong cryptographic output (e.g., hash,
cipher) and lack of supporting different data types
(e.g., byte, string, hexadecimal) were frequently
reported. The rest of the issues indicated performance
problems, suggestions to improve crypto solutions
(e.g., adding pubic-key cryptography) and some
general implementation questions.

We found 17 issues about handling security
protocols and standards. These included issues about
SSL violations (e.g. certificate verification failure on
Windows using httparty), Kerberos (e.g., small size of
Kerberos token in waffle), NTLM (e.g., error in
transmitting NTLM token), SPNEGO (e.g., browser
error in transmitting SPNEGO authentication data) and
the Spring framework (e.g., error in using the
framework in waffle).

Our analysis revealed 49 issues related to User
Interface (UI) features with two main themes:
managing credentials (e.g., login, password) and
credential violations.

Table 4 – Issues in developing Sec. features
 Theme (frequency) #

Au
th

en
tic

at
io

n/
Au

th
or

iz
at

io
n

Is
su

es
 • Shared Authentication/Authorization

Mechanisms (OAuth, SSO) (12)
• Handling Authentication Headers (4)
• Issues with Email Authentication

(sending Passwords) (4)
• Digest Authentication Issues (3)
• General Inquiries (1)
• Possibility to reset password for

deleted/deactivated accounts (1)
• Showing Content without

authentication (2)
• Access control for service provider (1)
• Putting user in incorrect group with

wrong access control (1)

29

C
ry

pt
og

ra
ph

y
Is

su
es

• Incompatibility of Cryptographic
solutions with different platforms (18)

• Wrong Cryptographic output (e.g.
hash, cipher) (18)

• Limitation of Cryptographic solutions
with data types (11)

• Additional features to Strengthen
Cryptographic Solution (5)

• Performance issues with
Cryptographic solutions (4)

• Seeking input to Implement
Cryptographic Solutions (general
enquiries) (2)

58
H

an
dl

in
g

Pr
ot

oc
ol

s • SSL Violation issues (6)
• Kerberos (4)
• NTLM (3)
• SPNEGO (3)
• Spring Security Framework (1)

17

U
I

Fe
at

ur
es

 • Managing and Representing
Credential Violations (37)

• Managing Credential (e.g. login,
password) setup (12)

49

Ex
ce

pt
io

n
H

an
dl

in
g

• Exception in Checking invalid
credentials (2)

• Lack of Exception Handling when
dealing with malformed authorization
header (1)

3

C
oo

ki
es

/H
TT

P
H

ea
de

rs

 • Issues of Managing Cookies (13)
• Over-writing default HTTP header

values (3)
• Ignoring HTTP cookie values causes

manipulation of load balancer (1)
• Mutating cookie-hash in string (1)
• Over-writing hash header content (1)

19

O
th

er
s

• Setting up Provisioning Profiles (24)
• Logging and Showing Access

Controls (2)
• Configuring Permissions (1)

27

Total = 201

We found several issues about credential setups
varying from suggestions (e.g., adding login feature,
reset password, waiting message when loading
authentication data) to errors (e.g., poorly rendered
login page with lower resolution/small browser page
size). The issues about managing credential violations
were from one repository (i.e., yourturn), which
provides a front-end console for STUPS4. Given the
type and domain of the repository, it contained several
issues about managing and representing credential
violations (e.g., demonstrating a list of violations in
tabular format with different filtering options).

We found 19 issues with regards to handling cookie
values/HTTP headers. Among them several issues
were about cookie management varying from handling
HTTP cookies (e.g., error in setting cookie expiration
time, error in parsing cookie hash values, error in
sending cookie value) to same-site cookies (e.g.,
suggestion to support these cookies for preventing XSS
attacks). Furthermore, we identified a few issues in this
category indicating implementation faults that could
expose applications to security threats. For instance,
we observed bugs that cause over-writing default
values of cookies passed in HTTP headers. These
values are important as they are used to identify the
server to which the HTTP request should be sent.
Hence, a wrong value could redirect the request to an
unwanted server or cause unexpected errors. Similarly,
there was an issue indicating problems in transmitting
HTTP cookie values that were set and used by a load
balancer. Some of the load balancers operate with
cookie-based sessions to ensure an HTTP response gets
back to the same node that sent a request. Hence, errors
in maintaining and transmitting these cookies could
enable an attacker to interfere in the load balancer
function and manipulate sessions.

Unexpected errors and failure to handle exceptions
are counted among the key areas of software security
problems [21] that could expose a system to security
risks [22]. We have identified 3 issues related to faults
in error-exception handling. For example, it was
required to provide proper exception handling in the
system when dealing with a malformed authorization
header. Or, it was necessary to control unexpected
errors thrown by an authentication framework (i.e.,
waffle) when verifying invalid credentials.

The rest of the issues were classified as others. This
category included several issues related to setting up
Provisioning Profiles (PP), i.e., used to uniquely assign
a device to an iOS developer for testing apps. These
issues belonged to one repository (i.e., sigh) that
automatically configures PPs and included errors (e.g.,
in finding and installing certificates for PPs). In

4 STUPS toolsets provide audit-compliant Platform-as-a-Service

addition, suggestions for logging and representing
audit information, and general inquiries were included
in this category.

6. Limitations

We realize that our study is limited to a particular

population of software repositories that are hosted on
GitHub and are active (considering number of
commits, pull requests and issues). Our data provides
some degree of representativeness due to our attempt
to not filter repositories based on attributes such as
type or business domain, yet it does not
comprehensively include all open source software
repositories. Furthermore, there are limitations
associated with the applied analysis methods. We
identified security issues using a list of security
keywords proposed by [9]. This approach is associated
with the risk of including issues that contain keywords
but are not related to security. We tried to address this
risk and minimize the rate of false positives by
performing a pilot study and manually verifying
selected issues. Whilst this strategy significantly
helped us to improve our search and identify relevant
security issues, there is a chance of having false
positives in the analyzed data. An example of this
situation is given by issues containing “inject”, which
were not related to security (e.g., SQL injection) but
referring to a design pattern (i.e., dependency
injection). In addition, topic modeling has proved to be
applicable for analyzing a large corpus of textual data,
yet it does not always generate sets of terms that are
associated with analytically determined topics. Hence,
the assigned topic labels are largely based on
researchers’ opinions and associated with the risk of
misinterpretations. We tried to mitigate this risk by
verifying the identified topics against some of the top
repositories from which the topics are generated. In
case of high ambiguity, we manually checked a couple
of issues from related repositories. Besides, we tried to
complement the abstract results of topic modeling with
an in-depth view obtained through qualitatively
analyzing a sample of around 230 issues. It should be
noted that qualitative findings are based on analyzing a
proportion of data that may not be generalizable.
Lastly, our analysis relies on repository contributors
who experienced and posted the issues. We did not
verify the validity of issues against the code. Naturally,
our results only include security-related issues that are
known and have been reported.

7. Discussion and conclusion

Open source software introduces opportunities as
well as threats when it comes to system security [23],
[24]. Availability of the source code helps attackers to
manipulate software for malicious purposes [23], [24].
Conversely, users have more opportunity to increase
security of open source software by applying different
techniques (e.g., using auditing tools to automatically
identify vulnerabilities in the code) [23], [24]. Several
security researchers have investigated open source
software repositories for different purposes such as
evaluating effectiveness of static analysis tools in
finding buffer-overflow vulnerabilities [25],
understanding vulnerabilities related to architectural
tactics [7] and mining emotions around security issues
[9]. Many of these studies perform code-based analysis
of open source software for vulnerabilities and security
tactics. Taking a different approach, in this paper, we
have analyzed a random sample of open source
repositories for security issues. We aimed at
understanding the extent to which security issues are
posted in open source software repositories, and
identifying their main topics/themes. Choosing a
random set of repositories enabled us to investigate the
prevalence of security-related issues on GitHub. We
believe that our automatic search could extract any
type of security issue (e.g., threat, mechanism, and
standard) posted on the selected repositories, as we
used a comprehensive list of security keywords for the
search.

The findings from our study are two-fold:
methodological learning and content analysis results.

Using topic modeling along with qualitative
analysis enabled us to explore a large corpus of data at
an abstract level, while getting into depth on a
relatively smaller proportion of the data. Given our
experience, topic model analysis is associated with a
number of challenges such as: difficulties to identify
the proper number of topics, difficulties in
interpretation of topics based on the allocated terms.
Whilst we used a systematic solution for selecting the
number of topics, we observed that some of the topics
(e.g., T18, T19) had overlaps and could be merged. In
addition, the combination of terms in some of the
topics was quite varied, and did not clearly reflect a
meaningful concept. Therefore, we assert that topic
modeling is a useful analytical tool enabling
researchers to quickly learn about contents of a data
corpus. Yet, its results are highly abstract, and need to
be complemented with other analysis methods. When
we verified the topic modeling against the qualitative
findings, we observed that topic modeling produced
more accurate topics when data volume was larger, and
more specific (e.g., cryptography). We verified most of
the topics as properly assigned to the repositories, yet
one topic (i.e., T7) was found irrelevant in the context

of the assigned repository.
Our analysis demonstrated that the most frequent

security keywords used in the issues were login, hash,
password, inject, authentic, crypt, cookie, credential
and certificate, among which “login” was dominantly
used. Applying topic-modeling analysis on the issue
contents, we found that the majority of the security
issues were about identity management
(authentication/authorization/credentials) as well as
cryptography. Despite frequently finding the “inject”
keyword and identifying related topics, our
investigation revealed that these topics mainly referred
to a popular design pattern (i.e., dependency injection)
rather than security threat/attacks (e.g., SQL injection).
Our experience in this regard could be used by other
researchers who are interested in mining security issues
using keywords.

Furthermore, our qualitative findings revealed that
the majority of analyzed issues were problems that
developers face when implementing security features.
We did not find any issue reporting security
vulnerability or an attack among those issues that we
manually analyzed. Similarly, topic modeling did not
reflect well-known vulnerability topics. We argue that
this might be partly due to the development-centric
nature of GitHub issues. In fact, we observed that
GitHub repository owners tend to use issues for
tracking bugs. They sometimes maintain different
means (e.g., public mailing list) for discussing other
matters. There is a chance that critical security
problems are not posted as GitHub issues. A future
study could explore other communication channels for
open repositories for analyzing security problems. In
addition, we discuss that security vulnerabilities cannot
be easily encountered without running tests designed
for this purpose and/or the use of related tools (e.g.,
vulnerability scanners). Besides, identification of
(critical) security bugs requires security knowledge and
expertise that might not be in skillsets of the
developers who contribute to a repository. These might
also be the reasons for not observing issues reporting
security threats. Lastly, this observation might be due
to limitations of our analysis methods. Topic modeling
tends to reflect topics at an abstract level. It might not
be effective to extract particular vulnerabilities. While
the qualitative analysis enabled us getting into depth,
practically it was not possible to manually analyze all
the issues.

8. Future work

Our work can be extended from several angles in

the future. In this study, we explored a sample of
GitHub repositories from the security perspective.

Future studies can explore other open source
repositories (e.g., on SourceForge, Bitbucket) and
compare the results. Also, more samples from GitHub
can be explored longitudinally for potential trends. In
addition, a future study can explore correlation of
security issues with characteristics of repositories (e.g.,
programming language, domain, number of lines of
code, number of contributors). Our work can be
extended by analyzing a larger pool of data for
behavioral patterns (e.g., number of comments or

openness) and possible differences between security
and non-security issues.

The security topics and themes that emerged from
this study can be further explored and structured
towards areas of knowledge that developers require for
implementing security features. In this regard,
comparing our findings with existing security
classifications (e.g., CVE) is highly considered in the
future.

9. References

[1] P. Institute., "The State of Mobile Application
Insecurity.," 2015.
[2] C. Weir, A. Rashid, and J. Noble, "How to improve
the security skills of mobile app developers? Comparing and
contrasting expert views," in Twelfth Symposium on Usable
Privacy and Security (SOUPS 2016), 2016.
[3] S. Barnum and G. McGraw, "Knowledge for
software security," IEEE Security & Privacy, vol. 3, pp. 74-
78, 2005.
[4] A. Hazeyama, "Survey on body of knowledge
regarding software security," in Software Engineering,
Artificial Intelligence, Networking and Parallel &
Distributed Computing (SNPD), 2012 13th ACIS
International Conference on, 2012, pp. 536-541.
[5] G. McGraw, "Software security," IEEE Security &
Privacy, vol. 2, pp. 80-83, 2004.
[6] V. B. Livshits and M. S. Lam, "Finding Security
Vulnerabilities in Java Applications with Static Analysis," in
Usenix Security, 2005.
[7] J. C. Santos, A. Peruma, M. Mirakhorli, M.
Galstery, J. V. Vidal, and A. Sejfia, "Understanding Software
Vulnerabilities Related to Architectural Security Tactics: An
Empirical Investigation of Chromium, PHP and
Thunderbird," in Software Architecture (ICSA), 2017 IEEE
International Conference on, 2017, pp. 69-78.
[8] M. Mirakhorli, J. Carvalho, J. Cleland-Huang, and
P. Mäder, "A domain-centric approach for recommending
architectural tactics to satisfy quality concerns," in Twin
Peaks of Requirements and Architecture (TwinPeaks), 2013
3rd International Workshop on the, 2013, pp. 1-8.
[9] D. Pletea, B. Vasilescu, and A. Serebrenik,
"Security and emotion: sentiment analysis of security
discussions on GitHub," in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 348-
351.
[10] T.-H. Chen, S. W. Thomas, and A. E. Hassan, "A
survey on the use of topic models when mining software
repositories," Empirical Software Engineering, vol. 21, pp.
1843-1919, 2016.
[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent
dirichlet allocation," Journal of machine Learning research,
vol. 3, pp. 993-1022, 2003.

[12] K. Hornik and B. Grün, "topicmodels: An R
package for fitting topic models," Journal of Statistical
Software, vol. 40, pp. 1-30, 2011.
[13] D. Meyer, K. Hornik, and I. Feinerer, "Text mining
infrastructure in R," Journal of statistical software, vol. 25,
pp. 1-54, 2008.
[14] I. Feinerer, "Introduction to the tm Package Text
Mining in R," ed, 2017.
[15] J. Silge and D. Robinson, Text Mining with R.
http://tidytextmining.com: O'Reilly, 2017.
[16] J. Cao, T. Xia, J. Li, Y. Zhang, and S. Tang, "A
density-based method for adaptive LDA model selection,"
Neurocomputing, vol. 72, pp. 1775-1781, 2009.
[17] R. Arun, V. Suresh, C. Veni Madhavan, and M.
Narasimha Murthy, "On finding the natural number of topics
with latent dirichlet allocation: Some observations,"
Advances in Knowledge Discovery and Data Mining, pp.
391-402, 2010.
[18] T. L. Griffiths and M. Steyvers, "Finding scientific
topics," Proceedings of the National academy of Sciences,
vol. 101, pp. 5228-5235, 2004.
[19] R. Deveaud, E. SanJuan, and P. Bellot, "Accurate
and effective latent concept modeling for ad hoc information
retrieval," Document numérique, vol. 17, pp. 61-84, 2014.
[20] V. Braun and V. Clarke, "Using thematic analysis
in psychology," Qualitative Research in Psychology, vol. 3,
2006.
[21] K. Tsipenyuk, B. Chess, and G. McGraw, "Seven
pernicious kingdoms: A taxonomy of software security
errors," IEEE Security and Privacy, 2005.
[22] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly
Sins of Software Security - Programming Flaws and How to
Fix Them, 2010.
[23] C. Cowan, "Software security for open-source
systems," IEEE Security & Privacy, vol. 99, pp. 38-45, 2003.
[24] C. Payne, "On the security of open source
software," Information systems journal, vol. 12, pp. 61-78,
2002.
[25] M. Zitser, R. Lippmann, and T. Leek, "Testing
static analysis tools using exploitable buffer overflows from
open source code," in ACM SIGSOFT Software Engineering
Notes, 2004, pp. 97-106.

