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ABSTRACT
Stack Overflow (SO) is the most popular question-and-answer web-
site for software developers, providing a large amount of code
snippets and free-form text on a wide variety of topics. Like other
software artifacts, questions and answers on SO evolve over time,
for example when bugs in code snippets are fixed, code is updated
to work with a more recent library version, or text surrounding a
code snippet is edited for clarity. To be able to analyze how content
on SO evolves, we built SOTorrent, an open dataset based on the
official SO data dump. SOTorrent provides access to the version his-
tory of SO content at the level of whole posts and individual text or
code blocks. It connects SO posts to other platforms by aggregating
URLs from text blocks and by collecting references from GitHub
files to SO posts. In this paper, we describe how we built SOTorrent,
and in particular how we evaluated 134 different string similarity
metrics regarding their applicability for reconstructing the version
history of text and code blocks. Based on a first analysis using the
dataset, we present insights into the evolution of SO posts, e.g., that
post edits are usually small, happen soon after the initial creation of
the post, and that code is rarely changed without also updating the
surrounding text. Further, our analysis revealed a close relationship
between post edits and comments. Our vision is that researchers
will use SOTorrent to investigate and understand the evolution of
SO posts and their relation to other platforms such as GitHub.
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1 INTRODUCTION
Stack Overflow (SO) is the most popular question-and-answer web-
site for software developers. As of December 2017, its public data
dump [49] lists over 38 million posts and over 8 million registered
users. Many answers contain code snippets together with explana-
tions [60]. Similar to other software artifacts such as source code
files and documentation [17, 29, 34, 38], text and code snippets on
SO evolve over time, e.g., when the SO community fixes bugs in
code snippets, clarifies questions and answers, and updates docu-
mentation to match new API versions. Since the inception of SO in
2008, a total of 13.9 million SO posts have been edited after their
creation—19,708 of themmore than ten times. While many SO posts
contain code, the evolution of code snippets on SO differs from the
evolution of entire software projects: Most snippets are relatively
short (on average 12 lines, see Section 6.1) and many of them cannot
compile without modification [60]. In addition, SO does not provide
a version control or bug tracking system for post content, forcing
users to rely on the commenting function or additional answers to
voice concerns about a post.

Recent studies have shown that developers use SO snippets in
their software projects, regardless of maintainability, security, and
licensing implications [1, 2, 4, 14, 25, 27, 59, 61]. Assuming that
developers copy and paste snippets from SO without trying to thor-
oughly understand them, maintenance issues arise. For instance, it
may later be more difficult for developers to refactor or debug code
that they did not write themselves. Moreover, if no link to the SO
post is added to the copied code, it is not possible to check the SO
thread for a corrected or improved solution in case problems occur.

The SO data dump keeps track of different versions of entire
posts, but does not contain information about differences between
versions at a more fine-grained level. In particular, it is not trivial to
extract different versions of the same code snippet from the history
of a post to analyze its evolution. To address these challenges, we
present the open dataset SOTorrent, which enables researchers to
analyze the version history of SO posts at the level of whole posts
and individual post blocks, and their relation to corresponding
source code in GitHub repositories. We also use this dataset to
answer three research questions about the evolution of post content
on SO, which are, to the best of our knowledge, not sufficiently
answered yet: How do Stack Overflow posts evolve? (RQ1), Which
posts get edited? (RQ2), andWhat is the temporal relationship between
edits and comments? (RQ3).

While answering the first two questions will further our un-
derstanding of the phenomenon of SO post evolution, the third
question aims at finding a connection between post edits and other
events on the SO platform. We found that SO posts grow over time
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Figure 1: Exemplary Stack Overflow answers with code
blocks (top, 3758880) andwith inline code (bottom, 4888400).
The LocalId represents the position in the post.

in terms of their number of text and code blocks, but the size of
the individual blocks is relatively stable. Most edits (86.6%) just
modify a single line of text or code, but only in 6.1% of the cases are
code blocks changed without also changing text content; post edits
usually happen shortly after the creation of the post. Our research
suggests that comments and post edits are closely related: Some
comments might trigger edits, others might be made in response
to the edits. The contribution of this work consists of the publicly
available dataset SOTorrent, the algorithms and techniques used for
its construction, and an initial analysis of SO post evolution.

2 THE SOTORRENT DATASET
To answer our research questions, and to support other researchers
in answering similar questions, we build SOTorrent, an open dataset
based on data from the official SO data dump [49] and the Google
BigQuery GitHub (GH) dataset [30]. SOTorrent provides access to
the version history of SO content at the level of whole posts and
individual post blocks. A post block can either be a text or a code
block, depending on how the author formatted the content (see
Figure 1 for an example). Beside providing access to the version
history, the dataset links SO posts to external resources in two ways:
(1) by extracting linked URLs from text blocks of SO posts and (2)
by providing a table with links to SO posts found in the source code
of GitHub projects. This table can be used to connect SOTorrent
and GH datasets such as GHTorrent [31]. Our dataset is available
on Zenodo as a database dump [9] together with instructions on
how to import the dataset. We also published the source code of the
software that we used to build [7, 11] and analyze [6, 8] SOTorrent.

The current release 2018-02-16 of the dataset contains the version
history of all 38,394,895 questions and answers in the official SO
data dump. It contains 60,235,289 post versions and 186,924,947
post block versions, ranging from the creation of the first post on

July 31, 2008 until the last edit on December 1, 2017. We extracted
links to 11,019,477 distinct URLs from 19,453,365 different post
block versions and further identified 5,816,307 links to SO posts
in 430,521 public GH repositories. In the following sections, we
provide information about SOTorrent’s data storage and collection
process, before we use the dataset to answer our research questions.

3 DATABASE SCHEMA
SOTorrent contains all tables from the official Stack Overflow data
dump, published December 1, 2017 [49] (see database schema in
Figure 2). However, that dump does only provide the version his-
tory at the level of whole posts as Markdown-formatted text. To
analyze how individual text or code blocks evolve, we needed to
extract individual blocks from that content. This extraction also
enabled us to collect links to external sources from the identified
text blocks. In the SO dump, one version of a post corresponds to
one row in the table PostHistory. However, that table does not
only document changes to the content of a post, but also changes
to metadata such as tags or title. Since our goal was to analyze the
evolution of SO posts at the level of whole posts and individual
post blocks, we had to filter and process the available data. First,
we selected edits that changed the content of a SO post, identified
by their PostHistoryTypeId [48] (2: Initial Body, 5: Edit Body, 8:
Rollback Body). We linked each filtered version to its predecessor
and successor and stored it in table PostVersion.

The content of a post version is available asMarkdown-formatted
text. We split the content of each version into text and code blocks
(see Section 4) and extracted the URLs from all text blocks using
a regular expression (table PostVersionUrl). To reconstruct the
version history of individual post blocks (table PostBlockVersion),
we established a linear predecessor relationship between the post
block versions using a string similarity metric that we selected after
a thorough evaluation (see Section 5.4). For each post block version,
we computed the line-based difference to its predecessor, which is
available in table PostBlockDiff.

One row in table PostReferenceGH represents one link from
a file in a public GH repository to a post on SO. To extract those
references, we utilized Google BigQuery, which allows to execute
SQL queries on various public datasets, including a dataset with all
files in the default branch of GitHub projects [30]. To find references
to SO, we applied the following regular expression to each line of
each non-binary file in the dataset:
(?i:https ?:// stackoverflow\.com /[^\s)\.\ "]*)

Because there are different ways of referring to questions and
answers on SO, i.e. using full URLs or short URLs, we mapped all
extracted URLs to their corresponding sharing link (ending with
/q/<id> for questions and /a/<id> for answers) and stored that
link together with information about the file and the repository in
which the link was found in table PostReferenceGH. We ignored
other links referring to, e.g., users or tags on SO.

4 POST BLOCK EXTRACTION
Our goal was to analyze the evolution of individual text and code
blocks, for example to trace changes to particular code snippets
or to identify bug fixes for code on SO. Moreover, the differen-
tiation between the two post block types allowed us to extract

https://stackoverflow.com/a/3758880
https://stackoverflow.com/a/4888400
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PostBlockDiff

Id INT(11)

PostId INT(11)

PostHistoryId INT(11)

PredPostBlockVersionId INT(11)

PostBlockVersionId INT(11)

PostBlockDiffOperationId TINYINT(4)

Text TEXT

Indexes

PostBlockDiffOperation

Id TINYINT(4)

Name VARCHAR(50)

Indexes

PostBlockType

Id TINYINT(4)

Type VARCHAR(50)

Indexes

PostBlockVersion

Id INT(11)

PostVersionId INT(11)

PostId INT(11)

PostHistoryId INT(11)

PostBlockTypeId TINYINT(4)

LocalId INT(11)

Content TEXT

Length INT(11)

LineCount INT(11)

RootPostBlockId INT(11)

PredPostBlockId INT(11)

PredEqual TINYINT(1)

PredSimilarity DOUBLE

PredCount INT(11)

SuccCount INT(11)

Indexes

PostHistory

Id INT(11)

PostHistoryTypeId TINYINT(4)

PostId INT(11)

RevisionGUID VARCHAR(64)

CreationDate DATETIME

UserId INT(11)

UserDisplayName VARCHAR…

Comment TEXT

Text MEDIUMTEXT

Indexes

PostReferenceGH

FileId VARCHAR(40)

RepoName VARCHAR(255)

Branch VARCHAR(255)

Path TEXT

FileExt VARCHAR(255)

Size INT(11)

Copies INT(11)

PostId INT(11)

PostTypeId TINYINT(4)

SOUrl TEXT

GHUrl TEXT

Indexes

PostType

Id TINYINT(4)

Type VARCHAR(…

Indexes

PostVersion

Id INT(11)

PostId INT(11)

PostHistoryId INT(11)

PostTypeId TINYINT(4)

CreationDate DATETIME

PredPostHistoryId INT(11)

SuccPostHistoryId INT(11)

Indexes

PostVersionUrl

Id INT(11)

PostId INT(11)

PostHistoryId INT(11)

PostBlockVersionId INT(11)

Url TEXT

Indexes

Posts

Id INT(11)

PostTypeId TINYINT(4)

AcceptedAnswerId INT(11)

ParentId INT(11)

CreationDate DATETIME

DeletionDate DATETIME

Score INT(11)

ViewCount INT(11)

Body TEXT

OwnerUserId INT(11)

OwnerDisplayName VARCHAR(40)

LastEditorUserId INT(11)

LastEditorDisplayName VARCHAR(40)

LastEditDate DATETIME

LastActivityDate DATETIME

Title VARCHAR(250)

Tags VARCHAR(150)

AnswerCount INT(11)

CommentCount INT(11)

FavoriteCount INT(11)

ClosedDate DATETIME

CommunityOwnedDate DATETIME

Indexes

Figure 2: Database schema of SOTorrent: The tables from the offical SO dump [48] are marked gray, the additional tables are
marked blue. Not all tables from the official SO dump and not all foreign key constraints are shown.

links to external resources only from text blocks, not from code
blocks. The latter may, for example, contain XML namespace links
or links to stylesheet files, which we do not consider to be ex-
ternal sources of the post. The first step towards reconstructing
the version history of individual post blocks is their extraction
from the Markdown-formatted text that SO uses for the content
of posts. In our notion, a code block is not a short inline code
fragment embedded into a text block (see Figure 1 for an exam-
ple), but a continuous code snippet. We consider inline-code to
be part of the surrounding text block. According to SO’s Mark-
down specification [50], code blocks are indented by four spaces
and inline code is framed by backtick characters. However, as we
found during our research, users are free to use other Markdown
specifications or HTML tags, which are not officially supported,
but correctly parsed and displayed on the SO website. We itera-
tively tested and refined our post block extraction approach using
a random sample of over 100,000 SO posts (slarge). We ran the ex-
traction, randomly checked the extracted posts blocks, and added
a new test case if the result differed from the rendering on the SO
website (class PostVersionHistoryTest [11]). We then updated
the extraction such that all test cases passed and re-ran the extrac-
tion on the test data. The final version of our post block extraction
method was able to detect various notations that SO authors used to
mark code blocks, including SO Markdown (indented by 4 spaces),
code fencing Markdown (enclosed by three backticks), SO stack
snippets (enclosed by <!--begin/end snippet-->), stack snippet
language tags (prepended by <!--language:...-->), HTML code
tags (enclosed by <pre><code>), and HTML script tags (enclosed
by <script>).

5 POST BLOCK MATCHING
After successfully extracting the post blocks from a post version,
we had to map the extracted post blocks to their predecessors in the

previous post version to reconstruct their version history. Since this
mapping had to work for text and code content, the latter in various
programming languages, we decided to utilize syntax-based similar-
ity metrics. We implemented 134 different string similarity metrics
(see Section 5.1), which we evaluated regarding their correctness
and performance using the manually validated version history of
600 SO posts (see Sections 5.2 and 5.4). In case of multiple matches,
we had to choose between different predecessor candidates. Thus,
we developed a matching strategy that considers the location and
context of a post block (see Section 5.3).

5.1 Similarity Metrics
A similarity metric maps two input strings to a value in [0, 1],
where 0 corresponds to inequality and 1 corresponds to equality.
We implemented five different types of similarity metrics: edit-
based metrics (e.g., Levenshtein), set-based metrics (e.g., n-grams
with Jaccard coefficient), profile-based metrics (e.g, cosine similarity),
fingerprint-based metrics (Winnowing), and equality-based metrics,
which served as a baseline in the metrics evaluation (see Section 5.4).
Our Java implementation of all metrics is available on GitHub [12].
Table 1 shows all metrics that we implemented and evaluated.

The edit-based metrics define the similarity of two strings based
on the number of edit operations needed to transform one string
into the other. Optimal string alignment (OA) allows the two oper-
ations ‘insertion of one character’ and ‘deletion of one character’.
The Levenshtein distance further allows ‘substitution of one char-
acter’. The Damerau-Levenshtein distance is similar to Levenshtein,
but additionally allows the operation ‘swap two neighboring char-
acters’. The longest common subsequence (LCS) of two strings is
the longest sequence of characters (order irrelevant) that can be
found in both strings. It can be interpreted as a variant of Damerau-
Levenshtein with the additional restriction that each character can
only be modified once (e.g., swapping two characters and then
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Table 1: Overview of all evaluated similarity metrics (n = 134).

Type Metric Variants

edit levenshtein damerauLevenshtein with/without normalizationlongestCommonSubsequence (LCS) optimalAlignment (OA)

set nGram{Jaccard|Dice|Overlap} nShingle{Jaccard|Dice|Overlap} nGram : n ∈ {2, 3, 4, 5}, nShingle : n ∈ {2, 3}
with/without normalization, padding (nGram)token{Jaccard|Dice|Overlap}

profile
cosineNGram{Bool|TF|NormalizedTF} manhattanNGram nGram : n ∈ {2, 3, 4, 5}, nShingle : n ∈ {2, 3}

with normalization (both) and without (cosine)cosineNShingle{Bool|TF|NormalizedTF} manhattanNShingle
cosineToken{Bool|TF|NormalizedTF} manhattanToken

fingerprint winnowingNGram{Jaccard|Dice|Overlap|LCS|OA}
nGram : n ∈ {2, 3, 4, 5},
with/without normalization

equal equal tokenEqual with/without normalization

replacing one of them is not possible). To derive a similarity met-
ric from the number of edit operations and the longest common
subsequence, we used the following approaches:

Definition 5.1 (Edit/LCS Similarity). Let S1, S2 be two strings, d
be the edit distance and LCS be the longest common subsequence
between the two strings: (S1, S2) → R+0 . The edit- and LCS-based
similarity functions sim : (S1, S2) → [0, 1] are then defined as

simedit(S1, S2) =
max(|S1 |, |S2 |) − d(S1, S2)

max(|S1 |, |S2 |)

simlcs(S1, S2) =
LCS(S1, S2)

max(|S1 |, |S2 |)
The profile-based metrics consider each distinct token, n-gram,

or n-shingle in the two input strings as one dimension of a vector
space. Tokens can be extracted from a string by a tokenization with
whitespaces as delimiter, n-grams split the string in sequences of
n consecutive characters, n-shingles split the string in sequences
of n consecutive words or tokens. One input string is then char-
acterized as one vector in the vector space. In the simplest form
(bool), the values of the dimensions can either be 1 (token, n-gram,
or n-shingle present in the string) or 0 (not present). Alternatively,
one can consider the number of occurrences of each token, n-gram,
or n-shingle as the value of the dimensions (term frequency). We
also considered the BM15 weighting scheme (k = 1.5) [35], which
intends to lower the effect of very frequent terms skewing the com-
parison. The similarity of the two strings is then defined as the
cosine or Manhattan distance between the two vectors that have
been derived from the strings using one of the three approaches
described above.

For the set-based metrics, we considered all distinct tokens, n-
grams and n-shingles in the strings as elements of sets. We used
three coefficients to compare the resulting sets:

Definition 5.2 (Similarity Coefficients). Let S1, S2 be sets of tokens,
n-grams, or n-shingles.

Jaccard(S1, S2) =
|S1 ∩ S2 |
|S1 ∪ S2 |

Dice(S1, S2) =
2 · |S1 ∩ S2 |
|S1 | + |S2 |

Overlap(S1, S2) =
|S1 ∩ S2 |

min(|S1 |, |S2 |)

Version count of Stack Overflow Q&A (n=36,062,267)

Edited Posts (35.9%)

1 2 3 4 5 6 7 8 9 ≥ 10

0

5m

10m

15m

20m

25m

Figure 3: Histogram and boxplot showing the number of
Stack Overflow questions and answers with a certain ver-
sion count (PostHistoryTypeIds 2, 5, 8); based on the SO data
dump 2017-06-12; vertical line is median.

The fingerprint-based metrics apply a hash function to substrings
of the input strings and then use the computed hash values to de-
termine the similarity. The Winnowing algorithm is one approach
to calculate and compare the fingerprints of two strings [24, 45].
Winnowing is often used for plagiarism detection, e.g., in the source
code comparison software MOSS [15, 33, 36]. We implemented dif-
ferent variants of the algorithm described by Schleimer et al. [45],
e.g., using different n-grams sizes and different approaches to com-
pare the fingerprints.

We implemented each metric in different variations. In the vari-
ants with normalized input strings, we used different approaches
for different metric types: For the edit metrics, we unified the white-
space characters, i.e. reduced them to a single space, and converted
all characters to lower case. For the n-gram metrics, we converted
all characters to lower case, removed all whitespace, and removed
some special characters ({};). For the shingle metrics, we again
converted all characters to lower case, unified the whitespace char-
acters, and removed all non-word characters ([ˆa-zA-Z_0-9]). We
used common n-gram and shingle sizes [15] and also implemented
an optional n-gram padding that emphasizes the beginning and the
end of the input strings. All these variations lead to a total number
of 134 different similarity metrics.
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Figure 4: App developed to create ground truth for similarity metric evaluation.

Figure 5: Post with multiple equal predecessors (13064858).

5.2 Ground Truth
To evaluate the correctness of the post block mappings retrieved
using different string similarity metrics, we created a set of 600 man-
ually validated post version histories. Figure 4 shows a screenshot of
the tool we developed to create those manually validated histories
(available on GitHub [23]). It visualizes a post version (right) and
its predecessor (left). Post blocks with equal content and type that
are unique in the two versions are automatically connected. For the
other post blocks, the user has to choose a match by clicking on a
post block of the same type in each version; the tool then visualizes
the line-based difference between the connected blocks. It is also
possible to add comments for individual post blocks, e.g., in case
the user is not confident in his or her mapping, or in case the post
block extraction failed.

We drew four different samples from the SO data dump released
June 12, 2017. The first sample with 200 posts (srand) was randomly
drawn from all SO questions and answers with at least two versions
(otherwise no mapping is needed). Since there are many posts with
only two versions (see Figure 3), we decided to draw another sample
of 200 posts from SO questions and answers with at least seven
versions (99% quantile). We denote this sample srand+. As the initial
focus of our research was on Java, we also drew a sample with
200 Java posts (sjava) from all SO questions tagged with <java> or
<android>, and the corresponding answers. The last sample (smult),
which contains 100 posts with multiple possible predecessors, was
not used to evaluate the metrics, but to evaluate our matching
strategy (see Section 5.3). In this sample, we included posts which
had at least two possible matches (two post blocks of the same type
with identical content) in two adjacent versions.

The validated version histories of the samples were created by a
graduate student, and then later discussed with two of the authors.
The student was introduced to the app and told to comment all post
blocks where he is not sure about the mapping. Together, we looked
at all post blocks with comments indicating an unclear mapping
(n = 38) and tried to find a mapping we all agreed on. If that was
not possible, we moved the post to a new sample sunclear, which we
separately analyzed. After discussing all 38 posts, sunclear contained
17 posts (4 from srand, 8 from srand+, and 5 from sjava). All samples
are available on Zenodo [13].

5.3 Matching Strategy
Our goal was to establish a linear predecessor relationship for all
post block versions, thus each post block version can only have one
predecessor. The reason for this decision was the fact that we rarely

https://stackoverflow.com/posts/13064858/revisions
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observed splits andmerges in the post version histories wemanually
analyzed. Moreover, even if multiple predecessors have equal or
similar content, usually only one of them is the actual predecessor
(see Figure 5 for an example). To correctly choose the predecessor
from different candidates, we had to develop a matching strategy
for post block versions, which we present in this section. In the
database, we not only store the matched predecessor, but also the
number of possible predecessors and successors, to be later able to
identify post version histories that could contain splits or merges.
For our analysis (see Section 6), we consider post block lifespans, i.e.
chains of connected post block versions that are predecessors of
each other. Those lifespans can be easily retrieved from the database,
because each post block version has a RootPostBlockId, which is
the id of the first post block version in the chain. As mentioned
above, we utilized a dedicated sample smult to evaluate how well
our matching strategy can handle posts with multiple possible
connections. In case of differences between the ground truth and
the results of our approach, we wrote unit tests replicating the issue
and then updated the strategy until all unit tests passed. We further
used the sample slarge to test the strategy’s scalability. To be able
to describe our matching strategy, we define our notation for post
versions, post block versions, and possible predecessors:

Definition 5.3 (Post Version). Letp be a post withn versions. Then
pi denotes one post version and |pi | denotes the number of post
blocks in pi for i ∈ {1 . . .n}.

Definition 5.4 (Post Block Version). Let pi be one post version
and τ ∈ {text, code} be a post block type. Then bτ(i,l ) denotes one
post block of type τ with local id l for l ∈ {1 . . . |pi |}. The function
idτ : pi → {1 ≤ l ≤ |pi |} maps a post version to the local ids of the
post blocks of type τ in that version.

Definition 5.5 (Possible Predecessors). Let bτ(i−1,l ), b
τ
(i, j) be post

blocks of the same type in subsequent post versions,

equal(bτ(i−1,l ),b
τ
(i, j)) → {true, false}

be a function that tests if the post blocks’ contents are equal, and

simτ (bτ(i−1,l ),b
τ
(i, j)) → [0, 1]

be the similarity of the two post blocks’ contents according to the
similarity metric simτ . Let ϑτ ∈ [0, 1] be a threshold for simτ . Then,
we define the set of equal predecessors as

PredEqual(bτ(i, j)) = {βτ(i−1,k ) | equal(β
τ
(i−1,k ),b

τ
(i, j)) = true,

k ∈ idτ (pi−1), j ∈ idτ (pi )}

We define the maximum predecessor similarity as

maxSimτ =max({simτ (βτ(i−1,k),b
τ
(i, j)) | sim

τ ≥ ϑτ ,

k ∈ idτ (pi−1), j ∈ idτ (pi )})

In case no predecessor with a similarity above the threshold exists,
we definemaxSimτ (∅) = 0. We define the set of similar predeces-
sors as

PredSim(bτ(i, j)) = {βτ(i−1,k ) | sim
τ (βτ(i−1,k),b

τ
(i, j)) ≥ maxSimτ ,

k ∈ idτ (pi−1), j ∈ idτ (pi )}

Finally, we define the set of possible predecessors as

Pred(bτ(i, j)) =
{
PredEqual(bτ(i, j)), if PredEqual(bτ(i, j)) , ∅,
PredSim(bτ(i, j)), if PredEqual(bτ(i, j)) = ∅.

The set of possible successors Succ(bτ(i, j)) is defined analogously.

As it can be seen in the above definition, we need two different
similarity metrics (simtext and simcode) and two different similarity
thresholds (ϑ text and ϑ code). We only compute the similarity if the
content of the post blocks is not equal, because we want to be able
to distinguish equal post block versions from post block versions
with similarity 1 according to the metric. Before we describe our
matching strategy, we present two methods that we use in case of
multiple possible predecessors. Both methods iterate over all post
blocks bτ(i, j) in a post version p2≤i≤n that do not have a predecessor
yet. They follow different strategies for selecting a predecessor:

setPredContext(pi ,BOTH ) tries to select a predecessor using the
post blocks before and after bτ(i, j), i.e. the blocks with local ids j − 1
and j + 1. Please note that those blocks usually have a different post
block type than bτ(i, j). In case the predecessors of those neighboring
blocks are already set and one post block bτ(i−1,l ) ∈ Pred(bτ(i, j)) has
the predecessors of those two post blocks as neighbors (local ids l−1
and l + 1 in version pi−1), the function sets bτ(i−1,l ) as predecessor
of bτ(i, j) and returns true. If no predecessor has been set, it returns
false. In case of parameter ABOVE, only the post block above (local
id j−1) is taken into account; in case of parameter BELOW, only the
post block below (local id j + 1) is taken into account. Examples for
posts that motivated this strategy are answer 32841902 (mapping
of version 2 to 1) and answer 37196630 (mapping of version 2 to 1).

setPredPosition(pi ) sets the post block bτ(i−1,l ) ∈ Pred(bτ(i, j))
with ∆pos =min(|l − j |), i.e. the post block with the local id closest
to j, as predecessor of bτ(i, j). If two possible predecessors have the
same ∆pos, the method chooses the one with the smallest local id.
This approach is based on our observation that the order of post
blocks rarely changes (see Section 6.1). Examples for posts that
motivated this strategy are question 18276636 (mapping of version
2 to 1) and answer 2581754 (mapping of version 3 to 2).

The complete matching strategy that selects (at most) one pre-
decessor for each post block in a post version can be found as
pseudo code in Algorithm 1. The actual source code can be found
in method processVersionHistory of class PostVersionList in
the corresponding GitHub project [11].

5.4 Metrics Evaluation
The matching strategy described above depends on the results of
the similarity metrics simtext and simcode and the thresholds ϑ text

and ϑ code. To select the best metrics for reconstructing the version
history of post blocks, we evaluated all 134 metrics in different com-
binations with different thresholds using our ground truth samples
srand, srand+, and sjava. Please note that the correctness of simtext

and simcode cannot be evaluated independently, because the neigh-
boring post blocks that setPredContext takes into account usually
have different types. To assess the performance, we measured the
runtime of the post history extraction for each configuration. To as-
sess the correctness of the extracted post block history, we regarded

https://stackoverflow.com/posts/32841902/revisions
https://stackoverflow.com/posts/37196630/revisions
https://stackoverflow.com/posts/18276636/revisions
https://stackoverflow.com/posts/2581754/revisions
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Algorithm 1Matching Strategy

for all p2≤i≤n do
// set predecessors where only one candidate exists
for all bτ(i,1≤j≤ |pi |)

do
if |Pred(bτ(i, j))| = 1 then

Let pred be the equal or similar predecessor
if |Succ(pred)| = 1 then

Set pred as predecessor of bτ(i, j)
continue

end if
end if

end for
// set predecessors using context
predSet = true
while predSet do

predSet = setPredContext(pi ,BOTH )
end while
while predSet do

predSet = setPredContext(pi ,BELOW )
end while
while predSet do

predSet = setPredContext(pi ,ABOVE)
end while
// set predecessors using position
setPredPosition(pi )

end for

each metric configuration as a binary classifier that either assigns
the predecessor of a post block version correctly or not (compared
to the ground truth). To calculate the number of true/false posi-
tives/negatives, we consider the set of predecessor connections, i.e.
all (bτ(i−1,l ), b

τ
(i, j)) from p2≤i≤n that have been connected with a

certain metric configuration. We then compare those connections
with the connections from the ground truth:

Definition 5.6 (Metric Evaluation). Let GTτ be the set of prede-
cessor connections of type τ in the ground truth, Cτ be the set of
predecessor connections of type τ determined using a certain met-
ric configuration, and nτpos =

∑
2≤i≤n |idτ (pi )| be the number of

possible predecessor connections of type τ . We define the number
of true positives tpτ , false positives fpτ , true negatives tnτ , and
false negatives fnτ as:

tpτ = |C ∩ GT| fpτ = |C \ GT|
tnτ = nτpos − |C ∪ GT| fnτ = |GT \ C|

After each comparison run, we ranked the configurations accord-
ing to their Matthews correlation coefficient (MCC) [37], which
takes tpτ , fpτ , tnτ , and fnτ into account. If two configurations
had the sameMCC value, we ranked them according to their run-
time.MCC is the preferred measure when evaluating binary clas-
sifiers [19] and should be chosen over evaluation measures such
as recall, precision, or F-measure [43]. In our case, it correlates the
connections from the ground truth and the connections set by a
certain metric configuration. TheMCC values are in range [−1, 1];

a total disagreement is represented by −1, a perfect agreement by
1. The source code of the tool we used for the metrics evaluation is
available on GitHub [10].

In the first comparison run, we configured simtext = simcode and
chose ϑ {text, code} ∈ {0.0, 0.1, 0.2, . . . , 1.0}. This resulted in 1,474
different configurations. The first run took about 24 hours on a
regular desktop PC (Intel Core i7-7700, 64 GB RAM, 512 GB SSD).

For the second run, we selected themetrics which, for a particular
threshold, achieved a MCC value in the 95% quantile of all three
samples either for text or for code blocks. Some metrics cannot be
applied to very short strings (e.g., if string length < n-gram size). For
the final implementation, we wanted to have a backup metric that
works for all input strings. We filtered edit- and token-based metrics
and selected the best candidates according to the criterion described
above. Finally, we selected 27 regular and 4 backup metrics for the
second run. We also added the equal metric as a baseline. We tested
those metrics again with simtext = simcode, but this time we chose
ϑ {text, code} ∈ {0.0, 0.01, 0.02, . . . , 1.0} Thus, the second run tested
3,232 different configurations, which took about 20 hours.

As motivated above, the results of the text and code metrics
depend on each other. In the third and last run, we tested all com-
binations of the best (99% quantile) text and code configurations
together with the best backup configurations. This was the first run
with simtext , simcode and with a backup metric for text and code
blocks. Those backup metrics were only used if the input strings
were too short for the configured metrics. The run, which took
about 14 hours, tested all combinations of 13 text configurations,
3 text backup configurations, 15 code configurations, and 2 code
backup configurations, resulting in 1,170 combinations in total. For
the final selection, we ranked the combinations according to the
sum of their MCC scores for text and code blocks. The selected
configuration was:

simtext = manhattanFourGramNormalized (ϑ text = 0.17)
simcode = winnowingFourGramDiceNormalized (ϑ code = 0.23)
simtext

backup= cosineTokenNormalizedTermFrequency (ϑ text = 0.36)
simcode

backup= cosineTokenNormalizedTermFrequency (ϑ code = 0.26)

Figure 6 shows the performance of the selected metrics for dif-
ferent thresholds with simtext = simcode, compared to the baseline
metric equals. The final configuration achieved aMCC value of 0.86
for text (true positive rate 0.99, false positive rate 0.14) and 0.92 for
code (true positive rate 0.99, false positive rate 0.07).

6 DATA ANALYSIS
After describing how we reconstructed the version history for indi-
vidual text and code blocks, we come back to our initial research
questions. We first characterize the phenomenon of SO post evo-
lution, and in particular the evolution of individual post blocks
(RQ1). To find out if edited posts share common characteristics, we
analyzed if certain measures such as score or number of comments
correlate with the number of edits (RQ2). We also investigated if
those measures have a temporal relationship with the edits, in par-
ticular if comments happen immediately before or after edits (RQ3).
As descriptive statistics, we use mean (M), standard deviation (SD),
median (Mdn), and the first and third quartiles (Q1, Q3). To test for
significant differences, we applied the nonparametric two-sided



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●
●●

●
●
●

●
●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

Performance of selected metrics

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●

●●●●
●●

●
●
●

●
●
●

●

●

●

●

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

equaltext

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

equalcode

●

ϑcode = 0.0
ϑcode = 1.0

ϑtext = 0.0
ϑtext = 1.0

Figure 6: Performance of selected metrics: manhattan-
FourGramNormalized for text (blue) and winnowingFour-
GramDiceNormalized for code (red); selected thresholds:
0.17 for text and 0.23 for code (dotted lines).

Wilcoxon rank-sum test [58] and report the corresponding p-value
(pw ). To measure the effect size, we used Cohen’s d [20, 28]. Our in-
terpretation of d is based on the thresholds described by Cohen [21]:
negligible effect (|d | < 0.2), small effect (0.2 ≤ |d | < 0.5), medium
effect (0.5 ≤ |d | < 0.8), otherwise large effect. We used the non-
parametric Spearman’s rank correlation coefficient (ρ) [47] to test
the statistical dependence between two variables. Our interpreta-
tion of ρ is based on Hinkle et al.’s scheme [32]: low correlation
(0.3 ≤ |ρ | < 0.5), moderate correlation (0.5 ≤ |ρ | < 0.7), high cor-
relation (0.7 ≤ |ρ | < 0.9), and very high correlation (0.9 ≤ |ρ | ≤ 1).

6.1 Evolution of Stack Overflow Posts
In the following, we describe different properties of post blocks and
post block versions either for their latest version in the dataset, or
for different versions over time:

Post Block Count: Half of all posts in the SOTorrent dataset con-
tain between one and two text blocks and between zero and two
code blocks (Q1,3). There are only few posts without text blocks
(1.0%), but over a third of all posts do not have code blocks (36.6%).
Examples for such posts include conceptual questions and an-
swers, but also posts with inline code that we considered to be
part of the text blocks. If we compare the first and the last version
of edited posts, we can observe a statistically significant differ-
ence in the number of text and code blocks (ptext, codew < 2.2e−16);
posts tend to grow over time. However, the effect is only small
(d text = 0.21, dcode = 0.23).

Post Block Length: Code blocks tend to be larger than text blocks.
Figure 7 visualizes the difference measured in number of lines. The
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Figure 7: Boxplots showing the line count of text and code
blocks in the latest version of Stack Overflow posts (n =
69, 940, 599 for text and n = 42, 568, 011 for code).

average text block contains 2.5 lines (Mdn = 2, SD = 3.1) and
247.5 characters (Mdn = 153, SD = 319.1); the average code block
contains 12.0 lines (Mdn = 5, SD = 23.4) and 455.9 characters
(Mdn = 194, SD = 989.3). We compared the length of post blocks
in the first and the last version and found no effect. Thus, we can
conclude that posts tend to become longer over time in terms of
their number of post blocks, but the length of individual post blocks
is relatively stable.

Post Block Versions: For our analysis of post block versions, we
retrieved all post block lifespans in the dataset, but only considered
the initial versions and later versions where the content of the
blocks changed (not all blocks are edited in all versions). We found
that about half of all post blocks were edited after their creation
(see Figure 8). On average, text blocks have 4.8 and code blocks
4.1 versions. We analyzed the line-based differences between post
block versions and found that 86.6% of all edits modify only one
line (92.5% for text blocks and 71.4% for code blocks). There is a
significant difference in the size of changes when comparing text
and code blocks (pw < 2.2e−16) with a small to medium effect
(d = 0.46 for the number of added lines and d = 0.51 for the
number of deleted lines): Changes in code blocks are larger, which
is expectable due to the larger size of code compared to text blocks.

Post Block Co-change: We were also interested in the co-change
of text and code blocks, i.e. if text and code is edited together. On
average, 1.5 text blocks and 0.9 code blocks were edited in each
post version (Mdn = 1 and SD = 1.1 for both types). We found that
text and code blocks were either edited together (49.3% of all post
versions), or just the text blocks were edited (44.6%). Only in 6.1%
of all post versions, code blocks were changed without also editing
text blocks. This could indicate that SO authors document changes
to their code snippets in the text blocks or update the description
of the modified code.

Order of Post Blocks: To check our assumption that the order of
post blocks rarely changes, we computed the difference between
the local ids of all post blocks versions and their predecessors. We
found that 95.5% of all post block versions have the same local id
as their predecessor. Of all absolute differences, two was the most
common one (3.1%), which is expectable, because text and code
blocks usually alternate. Thus, e.g., swapping two blocks of the
same type leads to a local id difference of two in the next version.

Timespan Between Edits: For the posts that have been edited after
their creation, we analyzed the timespan between the edits. 80.6%
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Figure 9: Bar chart visualizing all edit timespans between
one and eight weeks (85.5% of all values, n = 18, 677, 709); the
other 14.5% are spread over a range of 475 weeks.

of the first post edits happen on the same day as the creation of
the post, 4.6% within one week (>1 and ≤ 7 days), 5.1% within one
year (> 7 and ≤ 365 days), and 9.7% more than one year after the
creation. If we only consider the second or later edits, not much
changes: 74.2% of them happen on the same day, 6.2% within one
week, 7.9% within one year, and 11.7% more than one year after
the creation. Overall, 78.2% of all edits happen on the same day, i.e.
soon after the creation of the post, and 83.4% happen on the same
day or within the first week after the creation (see Figure 9).

Post Editors: On SO, either the author of a post or a moderator,
i.e. a SO user with a reputation of at least 2,000, can make edits. We
found that 87.4% of all edits were conducted by the post authors
themselves and 12.6% by moderators. We found no effect of the
authors’ reputation on the fact that a moderator edits the post.
We consider an analysis of typical moderator changes to be an
interesting direction for future work.

Table 2: Correlation table with Spearman’s correlation coef-
ficients ρ for different properties of Stack Overflow posts
(p-value < 0.001 for all combinations).

ρ Versions Age Score Comments GHMatches
Versions −0.03 0.09 0.26 0.09
Age −0.03 0.25 −0.03 0.10
Score 0.09 0.25 0.08 0.23

Comments 0.26 −0.03 0.08 0.09
GHMatches 0.09 0.10 0.23 0.09

n 38.4m 38.4m 38.4m 38.4m 137k

6.2 Properties of Edited Posts
To investigate which properties edited posts possess, we searched
for monotonic relationships between the version count of a post
and other properties such as the age of the post, its score, comment
count, or the number of distinct files on GH referring to the post.
Table 2 shows the correlation coefficients (ρ) for those relationships.
There was no correlation that exceeded the threshold for a low cor-
relation (0.3). However, the relationship between the version count
and the number of comments drew our attention as it had the high-
est correlation coefficient in the table. We decided to explore that
relationship using a quasi-experiment: We compared the number of
comments of all posts with only one version to all posts with more
than one version (version count over all posts:Mdn = 1,M = 1.6,
SD = 1.0). The difference was significant (pw < 2.2e−16) and the
effect size was medium (d = 0.52). We also compared the opposite
relationship, i.e. the number of versions of all posts with at most
one comment to all posts with more than one comment (comment
count over all posts: Mdn = 1, M = 1.6, SD = 2.5). Again, the
difference was significant (pw < 2.2e−16), but the effect size was
small (d = 0.49).

6.3 Edits and Comments
To further explore the relationship between comments and post
edits, we looked at their temporal connection, i.e. if comments
usually happen before or after edits. First, we aggregated all edits
(including post creation) and all comments per post id and day.
Thus, our units of observation were all days where posts were
either created, edited or commented. We found that in 32.3% of
the cases, the posts were created or edited and commented; in
33.3% of the cases they were only created, in 9.1% of the cases
only edited, in 7.5% of the cases only created and edited, and in
17.8% of the cases only commented. If we focus on the comments,
we see that 64.4% of them happened on a day where the post had
either been created or edited. We then further focused on those
days and calculated the time difference between a comment and
the closest edit. If a comment was closer to the creation then to an
edit, we assigned the comment to the creation. We found that 34.7%
of the edits were related to the creation of the post and 65.3% were
related to an edit. Of the latter, 47.9% were made before an edit
and 52.1% afterwards. Moreover, the comments were usually made
right before (M = −1.2 hours,Mdn = −0.3, SD = 2.6) or soon after
the edits (M = +1.3 hours,Mdn = +0.3, SD = 2.7).
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7 DISCUSSION
The SOTorrent dataset has allowed us to study the phenomenon
of post editing on SO in detail (RQ1). We found that a total of
13.9 million SO posts (36.1% of all posts) have been edited at least
once. Many of these edits (86.6%) only modify a single line of text
or code, and while posts grow over time in terms of the number
of text and code blocks they contain, the size of these individual
blocks is relatively stable. Interestingly, only in 6.1% of all cases
are code blocks changed without corresponding changes in text
blocks of the same post, suggesting that SO users typically update
the textual description accompanying code snippets when they
are edited. Studying the exact nature of such edits will be part of
our future work. We also found that edits are mostly made shortly
after the creation of a post (78.2% of all edits are made on the same
day when the post was created), and the vast majority of edits
are made by post authors (87.4%)—although the remaining 12.6%
will be of particular interest for our future work. The number of
comments on posts without edits is significantly smaller than the
number of comments on posts with edits, suggesting an interplay
of these two features (RQ2). We find evidence which suggests that
commenting a post on SO helps to bring attention to it (RQ3). Of
the comments that were made on the same day as an edit, 47.9%
were made before an edit and 52.1% afterwards, typically (median
value) only 18 minutes before or after the edit. Comments before
edits might trigger them, comments after edits might be feedback.

To investigate the connection between post edits and comments
made immediately before or after edits, we conducted a preliminary
qualitative analysis. We drew a random sample of 50 posts, 25 posts
for which at least one comment had been made at most 10 minutes
before an edit and 25 posts for which at least one comment had been
made at most 10 minutes after an edit. We qualitatively analyzed
the posts and found that, in the majority of cases, the comments
and edits were clearly related (34 of 50 posts in our sample) and
that the edit added or modified a code block (30/50). We classified
a small set of comments as bug reports (10/50) and found that in
some cases, the edit was explicitly documented in the post (11/50,
e.g., by prefixing content with “EDIT:”). Comments often asked for
additional information (22/50), and in cases where comments hap-
pened shortly before the edits, the comment was often a clarifying
question (14/25). Answer 154379371 represents a typical example:
In a timespan of 35 minutes, a user answered a question, edited
the answer three times, and commented on it once in response to
three comments from the user asking the question. Analyzing such
communication structures, e.g., to learn how comments are used
for feedback on posts, is part of our future work.

8 RELATEDWORK
Over the past years, there have been various research papers on
leveraging knowledge from SO, e.g., to support post edits [18],
to automate the search [16, 41], or to augment API documenta-
tion [53]. Regarding the population of SO users, studies described
properties such as gender [55] and age [39]. Wang et al. [57] ana-
lyzed the asking and answering behavior of SO users and found
that most of them only answer or ask one question. We comple-
ment those results with our finding that post edits happen soon
1https://stackoverflow.com/a/15437937

after post creation and that comments are closely linked to edits.
Xia et al. [59] describe that it is common for developers to search
for reusable code snippets on the web. Yang et al. [60] found that
SO Python and JavaScript snippets are more usable in terms of
parsability, compilability and runnability, compared to Java and
C#. Yang et al. [61] analyzed code clones between Python snip-
pets from SO and Python projects on GH and found a considerable
number of non-trivial clones, which may have a negative impact
on code quality [1]. Other studies aimed at identifying API usage
in SO code snippets [51], describing characteristics of effective
code examples [40], investigating whether SO code snippets are
self-explanatory [54], or analyzing the impact of copied SO code
snippets on application security [2, 25]. There has also been work
on the interplay between user activity on SO and GH [5, 46, 56].
SOTorrent enables researchers to further investigate this connection
by collecting links from public GH projects to SO posts. To describe
topics of SO questions and answers, different methods like manual
analysis [52] and Latent Dirichlet Allocation [3, 57] have been used.
Automatically identifying high-quality posts has been another re-
search direction, where metrics based on the number of edits on
a question [62], author popularity [42], and code readability [22]
yielded good results. With our dataset, the evolution of such high-
quality posts can easily be analyzed. German et al. [26] investigated
how code siblings, code clones that evolve in a different system
than the original code, flow between systems with different licenses.
Tracing the flow of siblings between GH projects, posts on SO, and
external sources is another possible direction for future work that
SOTorrent can support. Two fields related to our research are source
code plagiarism detection [33] and code clone detection [44], which
both rely on determining the similarity of code fragments.

9 CONCLUSION
In this paper, we presented SOTorrent, an open dataset that enables
researchers to analyze the evolution of SO content at the level of
whole posts and individual text and code blocks. We described
how we evaluated 134 different string similarity metrics regarding
their suitability to match text and code blocks to their predecessor
versions. For text blocks, a profile-basedmetric using theManhattan
distance yielded the best results; for code blocks, a fingerprint-based
metric using the Winnowing algorithm [24, 45] outperformed the
other metrics. Since multiple predecessor candidates may exist,
we also developed a matching strategy that we iteratively refined
using random samples of SO posts. First analyses using the dataset
provided new insights into the evolution of SO posts. In future
work, we want to deepen our understanding of how code snippets
are maintained on SO. To this end, we want to identify bug-fixing
edits. Moreover, as SOTorrent also collects links from SO posts to
other websites and from public GH projects to SO posts, we can
explore how code flows from and to external sources like blog posts
and open source software projects. Beside the investigation of new
research questions, we will improve and maintain the dataset, for
example by developing means to automatically detect code blocks
that are not used for code, but for markup (see, e.g., second code
block in Figure 1). Our vision is that SOTorrent will help other
researchers to further investigate the evolution of SO posts and
their connection to other platforms and resources.
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