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Abstract README files play an essential role in shaping a developer’s first
impression of a software repository and in documenting the software project
that the repository hosts. Yet, we lack a systematic understanding of the con-
tent of a typical README file as well as tools that can process these files
automatically. To close this gap, we conduct a qualitative study involving the
manual annotation of 4,226 README file sections from 393 randomly sam-
pled GitHub repositories and we design and evaluate a classifier and a set
of features that can categorize these sections automatically. We find that in-
formation discussing the ‘What’ and ‘How’ of a repository is very common,
while many README files lack information regarding the purpose and sta-
tus of a repository. Our multi-label classifier which can predict eight different
categories achieves an F1 score of 0.746. To evaluate the usefulness of the clas-
sification, we used the automatically determined classes to label sections in
GitHub README files using badges and showed files with and without these
badges to twenty software professionals. The majority of participants perceived
the automated labeling of sections based on our classifier to ease information
discovery. This work enables the owners of software repositories to improve
the quality of their documentation and it has the potential to make it easier
for the software development community to discover relevant information in
GitHub README files.
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1 Introduction and Motivation

The README.md file for a repository on GitHub is often the first project docu-
ment that a developer will see when they encounter a new project. This first
impression is crucial, as Fogel [21] states: “The very first thing a visitor learns
about a project is what its home page looks like. [...] This is the first piece
of information your project puts out, and the impression it creates will carry
over to the rest of the project by association.”

With more than 25 million active repositories at the end of 20171, GitHub
is the most popular version control repository and Internet hosting service for
software projects. When setting up a new repository, GitHub prompts its users
to initialize the repository with a README.md file which by default only contains
the name of the repository and is displayed prominently on the homepage of
the repository.

A recent blog post by Christiano Betta2 compares the README files of
four popular GitHub repositories and stipulates that these files should (1)
inform developers about the project, (2) tell developers how to get started, (3)
document common scenarios, and (4) provide links to further documentation
and support channels. In its official documentation3, GitHub recommends that
a README file should specify “what the project does, why the project is
useful, how users can get started with the project, where users can get help with
your project, and who maintains and contributes to the project”. Brian Doll
of GitHub claimed in a recent interview for IEEE Software that “the projects
with good README files tend to be the most used, too, which encourages
good README writing behavior” [5].

In the research literature, GitHub README files have been used as a
source for automatically extracting software build commands [26], developer
skills [23, 27], and requirements [58]. Their content has also played a role in
cataloguing and finding similar repositories [63, 76] as well as in analyzing
package dependency problems [16].

However, up to now and apart from some anecdotal data, little is known
about the content of these README files. To address this gap, our first re-
search question RQ1 asks, What is the content of GitHub README files?
Knowing the answer to this question would still require readers to read an en-
tire file to understand whether it contains the information they are looking for.
Therefore, our second research question RQ2 investigates, How accurately can
we automatically classify the content of sections in GitHub README files?. To
understand a README file’s most defining features, our third research ques-
tion RQ3 asks, What value do different features add to the classifier?. Finally,
to evaluate the usefulness of the classification, our last research questions RQ4
investigates, Do developers perceive that the automated classification makes it
easier to discover relevant information in GitHub README files?

1 https://octoverse.github.com/
2 https://betta.io/blog/2017/02/07/developer-experience-github-readmes/
3 https://help.github.com/articles/about-readmes/

https://octoverse.github.com/
https://betta.io/blog/2017/02/07/developer-experience-github-readmes/
https://help.github.com/articles/about-readmes/
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To answer our research questions, we report on a qualitative study of a
statistically representative sample of 393 GitHub README files containing a
total of 4,226 sections. Our conclusions regarding the frequency of section types
generalize to the population of all GitHub README files with a confidence
interval of 4.94 at a confidence level of 95%. Our annotators and ourselves
annotated each section with one or more codes from a coding schema that
emerged during our initial analysis. This annotation provides the first large-
scale empirical data on the content of GitHub README files. We find that
information discussing the ‘What’ and ‘How’ of a repository is common while
information on purpose and status is rare. These findings provide a point of
reference for the content of README files that repository owners can use to
meet the expectations of their readers as well as to better differentiate their
work from others.

In addition to the annotation, we design a classifier and a set of features to
predict categories of sections in the README files. This enables both quick
labeling of the sections and subsequent discovery of relevant information. We
evaluated the classifier’s performance on the manually-annotated dataset, and
identify the most useful features for distinguishing the different categories of
sections. Our evaluation shows that the classifier achieves an F1 score of 0.746.
Also, the most useful features are commonly related to some particular words,
either due to their frequency or their unique appearance in sections’ headings.
In our survey to evaluate the usefulness of the classification, the majority
of twenty software professionals perceived the automated labeling of sections
based on our classifier to ease information discovery in GitHub README files.

We make the following contributions:

– A qualitative study involving the manual annotation of the content of 4,226
sections from 393 randomly selected GitHub README files, establishing a
point of reference for the content of a GitHub README file. We distinguish
eight categories in the coding schema that emerged from our qualitative
analysis (What, Why, How, When, Who, References, Contribution, and
Other), and we report their respective frequencies and associations.

– We design and evaluate a classifier that categorizes README sections,
based on the categories discovered in the annotation process.

– We design and conduct a survey to evaluate the usefulness of the classifi-
cation by (i) using the automatically determined classes to label sections
in GitHub README files using badges and (ii) showing files with and
without these badges to twenty software professionals.

We describe background materials on GitHub and README files of repos-
itories hosted there in Section 2. We describe our manual annotation method-
ology in Section 3 and the results of the annotation in Section 4. Section 5
introduces the classifier we built for sections of GitHub README files, which
we evaluate in Section 6. We discuss the implications of our work in Section 7
and present the threats to validity associated with this work in Section 8. We
review related work in Section 9 before we conclude in Section 10.
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2 Background

GitHub is a code hosting platform for version control and collaboration.4

Project artifacts on GitHub are hosted in repositories which can have many
branches and are contributed to via commits. Issues and pull requests are the
primary artifacts through which development work is managed and reviewed.

Due to GitHub’s pricing model which regulates that public projects are
always free5, GitHub has become the largest open source community in the
world, hosting projects from hobby developers as well as organizations such
as Adobe, Twitter, and Microsoft.6

Each repository on GitHub can have a README file to “tell other people
why your project is useful, what they can do with your project, and how
they can use it.”7 README files on GitHub are written in GitHub Flavored
Markdown, which offers special formatting for headers, emphasis, lists, images,
links, and source code, among others.8 Figure 1 shows the README file of D3,
a JavaScript library for visualizing data using web standards.9 The example
shows how headers, pictures, links, and code snippets in markdown files are
represented by GitHub.

With 1 billion commits, 12.5 million active issues, and 47 million pull re-
quests in the last 12 months, GitHub plays a major role in today’s software de-
velopment landscape.10 In 2017, 25 million active repositories were competing
for developers’ attention, and README files are among the first documents
that a developer sees when encountering a new repository.

To gain an understanding of readers’ expectations about README files,
in our survey to evaluate our classifier, we asked participants what content
they expect to find in the README file of a GitHub repository and what
single piece of information they would consider most important to be included.
Twenty professionals answered our survey—we refer readers to Section 6.7 for
details on survey design and participant demographics. Here, we summarize
the responses we received regarding readers’ expectations about the content
of GitHub README files.

In response to the open-ended question “What content do you expect to
find in the README file of a GitHub repository?”, participants mentioned
usage instructions (five participants), installation instructions (three partici-
pants), prerequisites (three participants), repository license (two participants),
purpose of the repository and target audience (two participants), known bugs
and trouble-shooting tips (two participants), coding style (one participant),
contribution guidelines (one participant), change log (one participant), and
screenshots (one participant). For example, one participant answered “Infor-

4 https://guides.github.com/activities/hello-world/
5 https://github.com/open-source
6 https://github.com/collections/open-source-organizations
7 https://help.github.com/articles/about-readmes/
8 https://guides.github.com/features/mastering-markdown/
9 https://github.com/d3/d3

10 https://octoverse.github.com/

https://guides.github.com/activities/hello-world/
https://github.com/open-source
https://github.com/collections/open-source-organizations
https://help.github.com/articles/about-readmes/
https://guides.github.com/features/mastering-markdown/
https://github.com/d3/d3
https://octoverse.github.com/
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Fig. 1 An excerpt from D3’s GitHub README file

mation about the program, how to use it, parameters (if applicable), trouble-
shooting tips (if applicable)” and another indicated “I expect to see how to
install and run the program successfully”. Nine of the twenty participants pro-
vided generic answers, such as “More technical information and guidance” and
“updates”.

In response to “What single piece of information would you consider most
important to be included in a GitHub README file?”, we also received twenty
responses. Usage instructions (e.g., “How to use the features or components of
the repository”) and license information (e.g., “With my job it’s most impor-
tant to know the licensing information”) were identified as most important by
three participants each. Two participants indicated known bugs and trouble-
shooting tips as being most important, while the other participants mentioned
a variety of types of information including target audience, coding style, con-
tribution guidelines, testing information, prerequisites, screenshots and demos,
and project type.

In this work, we study and classify the content of README files on GitHub
to investigate the extent to which these expectations are met.
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3 Research Methodology

In this section, we present our research questions and describe the methods
for data collection and analysis.

3.1 Research Questions

Our work was guided by four research questions, which focus on categorizing
the content of GitHub README files and on evaluating the performance and
usefulness of our classifier:

RQ1 What is the content of GitHub README files?

Answers to this question will give insight to repository maintainers and
users about what a typical README file looks like. This can serve as a guide-
line for repository owners who are trying to meet the expectations of their
users, and it can also point to areas where owners can make their repositories
stand out among other repositories.

RQ2 How accurately can we automatically classify the content of sections in
GitHub README files?

Even after knowing what content is typically present in a GitHub
README file, readers would still have to read an entire file to understand
whether it contains the kind of information they are looking for. An accurate
classifier that can automatically classify sections of GitHub README files
would render this tedious and time-consuming step unnecessary. From a user
perspective, an automated classifier would enable a more structured approach
to searching and navigating GitHub README files.

RQ3 What value do different features add to the classifier?

Findings to our third research question will help practitioners and re-
searchers understand the content of README files in more detail and shed
light on their defining features. These findings can also be used in future work
to further improve the classification.

RQ4 Do developers perceive that the automated classification makes it easier
to discover relevant information in GitHub README files?

The goal of our last research question is to evaluate the usefulness of the
automated classification of sections in GitHub README files. We use the
automatically determined classes to label sections in unseen GitHub README
files using badges, and we show GitHub README files with and without
these labels to developers and capture their perceptions regarding the ease of
discovering relevant information in these files.
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Table 1 Number of repositories excluded from the sample

Reason for Exclusion Repositories

Software, but small README file, i.e., < 2 KB 429
Not software, but large enough README file 127
Not software and small README file 196

README file not in English 48

Number of repositories included in the sample 393

Total number of repositories inspected 1,193

3.2 Data Collection

To answer our research questions, we downloaded a sample of GitHub
README.md files11 by randomly selecting GitHub repositories until we had
obtained a statistically representative sample of files that met our selection
criteria. We excluded README files that contained very little content and
README files from repositories that were not used for software development.
We describe the details of this process in the following paragraphs.

To facilitate the random selection, we wrote a script that re-
trieves a random GitHub repository through the GitHub API using the
https://api.github.com/repositories?since=<number> API call, where
<number> is the repository ID and was replaced with a random number be-
tween 0 and 100,000,000, which was a large enough number to capture all
possible repositories at the time of our data collection. We repeated this pro-
cess until we had retrieved a sufficient number of repositories so that our final
sample after filtering would be statistically representative. We excluded repos-
itories that did not contain a README file in the default location.

Following the advice of Kalliamvakou et al. [32], we further excluded repos-
itories that were not used for software development by inspecting the program-
ming languages automatically detected for each repository by GitHub. If no
programming language was detected for a repository, we excluded this repos-
itory from our sample.

We manually categorized the README files contained in our samples as
end-user applications, frameworks, libraries, learning resources, and projects
related to UI. The majority of our README files were related to end-user
applications (i.e., 42%) which includes client/server applications, apps/games,
plugins, engines, databases, extensions, etc. The second largest category of files
was related to libraries (27.9%). Our sample also contained README files
related to programming learning resources (17.4%) such as tutorials, assign-
ments, and labs. The remaining files were categorized as frameworks (7.3%)
and user interfaces (5.4%) such as CSS styles and images.

11 We only consider README.md files in our work since these are the ones that GitHub
initializes automatically. GitHub also supports further formats such as README.rst, but
these are much less common and out of scope for this study.
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Fig. 2 Number of sections per README file in our sample

We also excluded repositories for which the README file was very small.
We considered a file to be very small if it contained less than two kilobytes
of data. This threshold was set based on manual inspection of the files which
revealed that files with less than two kilobytes of content typically only con-
tained the repository name, which is the default content of a new README
file on GitHub.

During the manual annotation (see Section 3.4), we further excluded
README files if their primary language was not English. Table 1 shows the
number of repositories excluded based on these filters. Our final sample con-
tains 393 README files, which results in a confidence interval of 4.94 at a
confidence level of 95% for our conclusions regarding the distribution of sec-
tion types in the population of all GitHub repositories, assuming a population
of 20 million repositories.

We then used GitHub’s markdown12 to extract all sections from the
README files in our sample, yielding a total of 4,226 sections distributed
over the 393 README files. GitHub’s markdown offers headers at different
levels (equivalent to HTML’s h1 to h6 tags) for repository owners to struc-
ture their README files. Figure 2 shows the distribution of the number of
sections per README file. The median value is seven and 50% of the files
contain between five and twelve sections.

3.3 Coding schema

We adopted ‘open coding’ since it is a commonly used methodology to identify,
describe, or categorize phenomena found in qualitative data [13]. In order to
develop a coding scheme, one author manually classified a random sample of
fifty README files into meaningful categories (known as codes [45]). Our
findings from this examination consist of a tentative list of seven categories
(e.g. what, why, how) and sub categories (e.g., introduction, background).
After defining initial codes, we trialed them on 150 README sections using
two annotators. For this round of coding, we obtained inter-rater reliability
of 76%. Following this trial, we refined our codes until we reached agreement
on a scheme that contained codes for all of the types of README sections
we encountered. Finally, we define the ‘other’ category only when all other
possibilities have been exhausted. Table 2 shows the finalized set of categories
as well as example section headings for each category found in this initial
sample of README files. The categories roughly correspond to the content
of README files that is recommended by GitHub (cf. Introduction).

12 https://guides.github.com/features/mastering-markdown/

https://guides.github.com/features/mastering-markdown/
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We identified the first category (‘What’) based on headings such as ‘Intro-
duction’ and ‘About’, or based on the text at the beginning of many README
files. We found that either a brief introduction or a detailed introduction is
common in our dataset. Conversely, category two (‘Why’) is rare in README
files. For instance, some repositories compare their work to other repositories
based on factors such as simplicity, flexibility, and performance. Others list
advantages of their project in the introduction.

The most frequent category is ‘How’ since the majority of README
files tend to include instructions on how to use the project such as
programming-related content (e.g., configuration, installation, dependencies,
and errors/bugs). Table 2 lists a sample of section headings that belongs to
the ‘How’ category. Further, it is also important to the reader of a README
file to be familiar with the status of the project, including versions as well as
complete and in-progress functionality. We categorize this kind of time-related
information into the fourth code (‘When’).

We categorize sections as ‘Who’ content when they include information
about who the project gives credit to. This could be the project team or ac-
knowledgements of other projects that are being reused. This category also
includes information about licence, contact details, and code of conduct. The
second most frequent category is ‘References’. This category includes links to
further details such as API documentation, getting support, and translations.
This category also includes ‘related projects’, which is different from the ‘com-
parison with related projects’ in category ‘Why’ due to the lack of an explicit
comparison. Our final category is ‘Contribution’, which includes information
about how to fork or clone the repository, as well as details on how to con-
tribute to the project. Our manual analysis indicated that some repositories
include separate CONTRIBUTING.md files which contain instructions on how to
get involved with the project. We do not consider CONTRIBUTING.md files in
this study. In addition, we included a category called ‘Other’ which is used for
sections that do not belong to any of the aforementioned seven categories.

3.4 Manual annotation

We initially used two annotators to code the dataset. One of the annotators
was a PhD candidate specializing in Software Engineering while the other
one is an experienced Software Engineer working in industry. Neither of the
annotators is an author of this paper. Each annotator spent approximately
thirty hours to annotate the dataset. The task of an annotator is to read the
section headings and contents and assign a code based on the coding reference.
The annotators assign codes from the eight available codes (Table 2). Each
section of a README file can have one or more codes.

We measured the inter-rater agreement (i.e. Kappa) between the two an-
notators and obtained an agreement of 0.858. We used a third annotator to
rectify the sections which had no agreement. For this, two authors of the
paper (Software Engineering academics) co-annotated the remaining sections
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Table 2 README section coding reference

# Category Example section headings

1 What Introduction, project background

2 Why
Advantages of the project,
comparison with related work

3 How

Getting started/quick start, how to run,
installation, how to update, configuration,
setup, requirements, dependencies,
languages, platforms, demo,
downloads, errors and bugs

4 When
Project status, versions,
project plans, roadmap

5 Who
Project team, community,
mailing list, contact, acknowledgement,
licence, code of conduct

6 References
API documentation, getting support,
feedback, more information,
translations, related projects

7 Contribution Contributing guidelines

8 Other

that had no agreement. For all cases, we then used a majority vote to deter-
mine the final set of codes for each section, i.e., all codes that had been used
by at least two annotators for a section were added to the final set of codes
for that section.13 In very few cases, there was still no agreement on any set
of codes after considering the codes from three annotators. These cases were
manually resolved by discussion between two authors of this paper.

We manually examined the instances where the annotators disagree. Anno-
tators were likely confused when the README file includes ‘Table Of Contents
(TOC)’ as they have provided inconsistent codes in these instances. Since TOC
is included at the beginning of the file, one annotator considers it as category
‘What’ while the other one placed it in the references. However, the third anno-
tator categorized TOC into ‘Other’, which is what we used in the final version
of the annotated dataset. Another common confusion occurred when catego-
rizing ‘community-related’ content. Our coding reference (Table 2) suggests
that community-related information should be placed in the ‘Who’ category.
However, one annotator identified it in the ‘Contribution’ category. We gen-
erally resolved ‘community-related’ disagreements by placing them into the
‘Who’ category, in accordance with our coding guide.

We also noticed that our annotators are reluctant to place content into the
‘Other’ category. Instead, they attempted to classify README contents into
the other seven categories. Further, one of the main reasons for disagreement

13 In cases where there was perfect agreement between the two annotators, the majority
vote rule simply yields the codes that both annotators agreed on.
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was the inclusion of external links as section titles or contents. For example,
one README file listed the middleware available to use with their project as
section titles. However, these section titles include “Apache” and “Nginx”.14

One annotator categorized these sections into ‘How’ while the other placed
them in additional resources (code ‘References’) since they have external links.
There can be multiple headings which depend on this decision. For instance,
one README file contained 36 headings about configurations. They are cat-
egorized into ‘How’ by one annotator while the other one placed them in ad-
ditional resources since they have URLs. Resolving this disagreement affected
many sections at once.

Further, some README files include screenshots or diagrams to provide
an overview or demonstrations. These are expected to be classified in ‘Other’.
However, annotators have occasionally assigned codes such as ‘What’, ‘How’,
and ‘References’ to image contents. Another challenging decision occurs when
repositories include all the content under a single heading. This causes the
annotators to assign multiple codes which possibly do not overlap between
annotators. In addition, we sometimes found misleading headings such as ‘how
to contribute’ where the heading would suggest that the content belongs to
category ‘Contribution’. However, in a few cases, the content of this section
included information on ‘how to use the project’ (i.e., download, install, and
build).

4 The content of GitHub README files

Table 3 demonstrates the distribution of categories based on the human anno-
tation (column 3 on ‘sections’) and the README files in our sample (column
4 on ‘files’). Based on manually annotated sections, the most frequent category
is ‘How’ (58.4%), while the least frequent was ‘Other’ (1.4%). As mentioned
previously, as part of the coding, our annotators also excluded non-English
content that had not been detected by our automated filters (code ‘-’). The
same applies to parts of README files that had been incorrectly detected as
sections by our automated tooling.

Based on the consideration of files in our sample (fourth column of Ta-
ble 3), 97% of the files contain at least one section describing the ‘What’ of
the repository and 88.5% offer some ‘How’ content. Other categories, such as
‘Contribution’, ‘Why’, and ‘Who’, are much less common.

The last five columns of Table 3 demonstrate the distribution of codes
across various file types (e.g., end-user applications, libraries). The most com-
mon code among all file types is ‘How’ while ‘What’ and ‘References’ are
common in all file types except README files related to ‘user interfaces’.
Further, learning related resources such as assignments and tutorials rarely
contain information related to ‘When’ and ‘Contribution’.

Further, we report the distribution of number of codes across the sections
of GitHub README files in our sample (Table 4). The sections that are anno-

14 https://github.com/microlv/prerender

https://github.com/microlv/prerender


12 Gede Artha Azriadi Prana et al.

Table 3 Distribution of README categories; App: end-user applications; Lib: libraries;
Frame: frameworks; Learn: learning resources, UI: user interfaces

# Category # Sections # Files App Lib Frame Learn UI
(%) (%) (%) (%) (%) (%) (%)

1 What 707 381 14.0 14.2 12.3 22.6 9.6
(16.7%) (97.0%)

2 Why 116 101 2.6 2.4 3.2 2.6 0.3
(2.7%) (25.7%)

3 How 2,467 348 49.5 45.0 52.9 52.9 65.6
(58.4%) (88.5%)

4 When 180 84 5.8 2.5 4.4 0.6 1.3
(4.3%) (21.4%)

5 Who 322 208 6.6 9.5 5.9 3.7 6.3
(7.6%) (52.9%)

6 References 858 239 18.4 22.2 17.2 13.5 10.3
(20.3%) (60.8%)

7 Contribution 122 109 2.4 2.7 3.2 1.6 2.6
(2.9%) (27.8%)

8 Other 58 27 0.5 1.4 0.7 2.3 3.9
(1.4%) (6.9%)

- Exclusion 696

Table 4 Quantity of codes per section

# Codes # Sections

5 2
4 6
3 40
2 498
1 3,680

Total 4,226

tated using four or five codes mostly stem from README files that only con-
tain a single section. Interestingly, the majority of these files include ‘What’,
‘Who’, and ‘References’. Also, 92% of the sections which are annotated using
three codes include ‘What’. Unsurprisingly, the most popular combination of
two codes was ‘How’ and ‘References’, enabling access to additional informa-
tion when learning ‘how to use the project’. These relationships are further
explored in the following section.

4.1 Relations between codes

As with any qualitative coding schema, there may be some overlap between
the different types of sections outlined in our coding reference (cf. Table 2).
For example, API documentation, which the coding reference shows as an
example for ‘References’ is often also related to ‘How’ or could be related
to ‘Contribution’. To systematically investigate the overlap between different
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Table 5 Association rules at section level

Rule Support Confidence

{Why, How} ⇒ {What} 0.002 1.00
{Why, References} ⇒ {What} 0.003 0.93

Table 6 Association rules at file level

Rule Support Confidence

{Who} ⇒ {What} 0.52 0.98
{How, References} ⇒ {What} 0.54 0.98
{References} ⇒ {What} 0.59 0.97
{How} ⇒ {What} 0.86 0.97
{References} ⇒ {How} 0.55 0.91
{What, References} ⇒ {How} 0.54 0.91
{What} ⇒ {How} 0.86 0.89

section types based on the manually annotated data, we applied association
rule learning [2] to our data using the arules package in R. To find interesting
rules, we grouped the data both by sections (i.e., each section is a transaction)
and by files (i.e., each file is a transaction).

Table 5 shows the extracted rules at section level. We only consider rules
with a support of at least 0.0013 (i.e., the rule must apply to at least five
sections) and a confidence of at least 0.8. Due to the small number of sections
for which we assigned more than one code, only two rules were extracted:
Sections that discuss the ‘Why’ and ‘How’ are likely to also contain information
on the ‘What’. Similarly, sections that discuss the ‘Why’ of a project and
contain ‘References’ are also likely to contain information on the ‘What’.

At file level, we were able to find more rules, see Table 6. For these rules,
we used a minimum support of 0.5 and a minimum confidence of 0.8. We chose
a minimum support of 0.5 to limit the number of rules to the most prevalent
ones which are supported at least by half of the README files in our dataset.
The rules extracted with these parameters all imply ‘What’ or ‘How’ content
to be present in a README file. For example, we have a 98% confidence that
a file that contains information about ‘Who’ also contains information about
the ‘What’ of a project. This rule is supported by 52% of the README files
in our dataset.

4.2 Examples

In this section, we present an example for each of the categories to illustrate
the different codes.

What. The leading section of the GitHub README file of the ParallelGit

repository15 by GitHub user jmilleralpine is a simple example of a section

15 https://github.com/jmilleralpine/ParallelGit

https://github.com/jmilleralpine/ParallelGit
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that we would categorize into the ‘What’ category. The section header simply
restates the project name (“ParallelGit”) and is followed by this brief descrip-
tion: “A high performance Java JDK 7 nio in-memory filesystem for Git.”
Since this is an introduction to the project, we assign the code ‘What’.

Why. The README file of the same repository (ParallelGit) also contains a
section with the heading “Project purpose explained” which we categorize into
the ‘Why’ category. This section starts with a list of four bullet points outlining
useful features of Git, followed by a brief discussion of the “lack of high level
API to efficiently communicate with a Git repository”. The README file then
goes on to explain that “ParallelGit is a layer between application logic and
Git. It abstracts away Git’s low level object manipulation details and provides
a friendly interface which extends the Java 7 NIO filesystem API.” Since this
section describes the purpose of the project and motivates the need for it, we
assign the code ‘Why’.

How. The same README file also contains a section with the heading “Basic
usages”, which we classify into the ‘How’ category. It provides two short code
snippets of seven and eight lines, respectively, which illustrate the use cases of
“Copy a file from repository to hard drive” and “Copy a file to repository and
commit”. We assign the code ‘How’ because this section explains how to run
the software.

When. An example of a section discussing the ‘When’ aspect of a project is
given by the section with the heading “Caveats” of the Sandstorm repository16

by GitHub user solomance. The project is a self-hostable web app platform.
In its “Caveats” section, the README file states “Sandstorm is in early beta.
Lots of features are not done yet, and more review needs to be done before
relying on it for mission-critical tasks. That said, we use it ourselves to get
work done every day, and we hope you’ll find it useful as well.” Since this
section describes the project status, we assign the code ‘When’.

Who. Going back to the README file of the ParallelGit repository, it con-
cludes with a section with the heading “License” and the following text: “This
project is licensed under Apache License, Version 2.0.” A link to the license
text is also included. We categorized this section under ‘Who’ since it contains
licence information (see Table 2).

References. The previously mentioned README file of the Sandstorm reposi-
tory also contains sections that we categorized as ‘References’, e.g., the section
with the heading “Using Sandstorm”. This section only contains the state-
ment “See the overview in the Sandstorm documentation” which links to more
comprehensive documentation hosted on https://docs.sandstorm.io/. We
assign the code ‘References’ since the section does not contain any useful

16 https://github.com/solomance/sandstorm

https://docs.sandstorm.io/
https://github.com/solomance/sandstorm
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content apart from the link to more information. This section showcases one
of the challenges of classifying the content of sections contained in GitHub
README files: While the section header suggests that the section contains
‘How’ information, the body of the section reveals that it simply contains a
link.

Contribution. The README file of Sandstorm also contains a section with
the heading “Contribute” which we categorized under ‘Contribution’. The sec-
tion states “Want to help? See our community page or get on our discus-
sion group and let us know!” and contains links to a community page hosted
on https://sandstorm.io/ as well as a discussion group hosted on Google
Groups.17 We assign the code ‘Contribution’ rather than ‘References’ since
this section contains information other than links, i.e., the different ways in
which contributions can be made. Arguably, this is a corner case in which the
code ‘References’ would also be justifiable.

Other. An example of a section that we were not able to categorize using any
of the previous seven categories is the last section in the README file of the
Blackjack repository18 by GitHub user ChadLactaoen. The section does not
contain any content and simply consists of the section heading “Have fun!” In
this case, the section feature of GitHub markdown was used for highlighting
rather than for structuring the content of the README file. We therefore
categorized the section as ‘Other’.

RQ1: Section content of GitHub README files can be categorized
into eight types, with the ‘What’ and ‘How’ content types being very
common and information on project status being rare.

5 A GitHub README Content Classifier

In this section, we describe our automated classification approach for classi-
fying GitHub README content. We first describe the overall framework of
our approach and then explain each of its steps. For the development of this
classifier, we use the set of sections associated with one of 8 classes along with
sections labeled ‘Exclusion’, and split the dataset into two, a development set
comprising 25% of the data, and an evaluation set comprising 75% of the data.
We analyze and use the development set to design features for the classifier,
such as heuristics based on language patterns (see Section 5.2.2). The evalua-
tion set is the hold out set that is used for evaluation of the classifier through
ten-fold cross-validation. A similar process of dividing a dataset into two –
one for manual analysis for feature identification, and another for evaluation

17 https://groups.google.com/
18 https://github.com/ChadLactaoen/Blackjack

https://sandstorm.io/
https://groups.google.com/
https://github.com/ChadLactaoen/Blackjack
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– has been done in prior studies (e.g., [53]) to improve reliability of reported
results. Our code, dataset, along with scripts for the experiments as well as
a README file containing information on how to use them are available at
https://github.com/gprana/READMEClassifier

5.1 Overall Framework

Feature Extraction
Classifier 
Learning

Validation

Statistical Features

Heuristic Features

1) 2) 3)

Annotated README

Fig. 3 The overall framework of our automated GitHub README content classifier.

We present the overall framework of our automated classification approach
in Figure 3. The framework consists of the following steps:

1. Feature Extraction: From each section of the annotated GitHub
README files, we extract meaningful features that can identify categories
of a section’s content. We extract statistical and heuristic features. These
features are output to the next step for learning.

2. Classifier Learning: Using features from the previous step, we learn a
classifier that can identify the categories that the content of each section
belongs to. Since each section can belong to many categories, we use a
multi-label classifier, which can output several categories for each section.

3. Validation: To choose our classifier setting, we need to validate our clas-
sifier performance on a hold out set. We experiment with different settings
and pick the classifier that performs the best on the hold out set.

We explain details of the above steps in the next subsections.

https://github.com/gprana/READMEClassifier
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5.2 Feature Extraction

From the content of each section, we extract two sets of features: statistical
features and heuristic features.

5.2.1 Statistical Features

These features compute word statistics of a README section. These features
are constructed from combination of both heading and content of the section.
To construct these features, the section’s content and heading are first pre-
processed. We perform two preprocessings: content abstraction and tokeniza-
tion. Content abstraction abstracts contents to their types. We abstract the
following types of section content: mailto link, hyperlink, code block, image,
and numbers. Each type is abstracted into a different string (@abstr mailto,
@abstr hyperlink, @abstr code section, @abstr image and @abstr number, re-
spectively). Such abstraction is performed since for classification, we are more
interested in existence of those types in a section than its actual content. For
example, existence of a source code block in a section may indicate that the
section demonstrates usage of the project, regardless of the source code. With
abstraction, all source code blocks are converted to the same string, and sub-
sequently, into the same statistical feature. This abstraction is followed by
tokenization, which converts a section into its constituent words, and English
stop word removal. For the stop word removal, we use the stop words provided
by scikit-learn [57].

After preprocessing, we count the number of times a word appears in each
section. This is called the Term Frequency (TF) of a word in a section. If there
are n words that appear in the set of sections used for training the classifier
(after preprocessing), we would have n statistical features for each section. If
a word does not appear in a section, then its TF is zero. We also compute
the Inverse Document Frequency (IDF) of a word. IDF of a word is defined
as the reciprocal of the number of sections in which the word appears. We
use a multiplication of TF and IDF as an information retrieval feature for a
particular word.

5.2.2 Heuristic Features

There has been work such as Panichella et al. [53] which exploits recurrent
linguistic patterns within a category of sentences to derive heuristics that can
aid classification. Given this, we manually inspected the content of various
sections in the development set to try to identify patterns that may be useful
to distinguish each category. The following are the resulting heuristic features
that we use for the classifier.

1. Linguistic Patterns: This is a binary feature that indicates whether a
particular linguistic pattern exists in a section. We discover linguistic pat-
terns by looking at words/phrases that either appear significantly more in
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one particular category or are relatively unique to a particular category. A
linguistic pattern is tied to either a section’s heading or content. A pattern
for heading is matched only to the section’s heading. Similarly, a pattern
for content is matched only to the section’s content. There are 55 linguistic
patterns that we identified.19

2. Single-Word Non-English Heading: This is a binary feature that in-
dicates whether a section’s heading is a single word non-English heading.
An example is a method name, which may be used as heading in a section
describing the method and usually belongs to the ‘How’ category. This
check is performed by checking the word against the wordlist corpora from
NLTK [6].

3. Repository Name: This is a binary feature that indicates whether any
word in the repository name is used in a section’s heading. This is based
on the observation that the README section that provides an overview
of the project likely contains common words from the project name. For
example, a repository of a project called ‘X’ will contain ‘X’ in its name,
and the README section providing an overview of the project may be
given a heading along the lines of ‘About X’, ‘Overview of X’, or ‘Why X’.
This is different, for example, from README sections containing licence
information or additional resources.

4. Non-ASCII Content Text: This is a binary feature that indicates
whether a section contains any non-ASCII character. It is based on the
observation that README sections containing text written in non-ASCII
characters tend to be categorized as ‘Exclusion’, although they often also
contain parts (e.g., technical terms or numbers) written in ASCII charac-
ters.

5.3 Classifier Learning

Given the set of features from the previous step, we construct a multi-label
classifier that can automatically categorize new README sections. We use a
binary relevance method for multi-label classification [41]. This method trans-
forms the problem of multi-label classification into a set of binary classifica-
tions, with each binary classification performed for one label independently
from the other labels. Due to the small number of entries in the ‘Why’ cate-
gory, combined with the fact that a large proportion of content in this cate-
gory is also assigned to the ‘What’ category, we combined the two categories.
We therefore ended up with eight categories including ‘Exclusion’, and subse-
quently created eight binary classifiers, each for a particular category.

A binary classifier for a particular label considers an instance that contains
the label as a positive instance, otherwise it is a negative instance. As such, the
training set for the binary classifier is often imbalanced. Thus, we balance the
training set by performing oversampling. In this oversampling, we duplicate

19 The linguistic patterns are available in https://github.com/gprana/

READMEClassifier/blob/master/doc/Patterns.ods.

https://github.com/gprana/READMEClassifier/blob/master/doc/Patterns.ods
https://github.com/gprana/READMEClassifier/blob/master/doc/Patterns.ods
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instances of minority classes and make sure that each instance is duplicated
roughly until we have the same number of positive and negative instances in
the set.

5.4 Validation

In this step, we determine the classifier setting by performing ten-fold cross
validation. The setting that leads to the highest classifier performance is se-
lected as final setting.

6 Evaluation of the Classifier

We conduct experiments with our SVM-based classifier on the dataset an-
notated in Section 4. We evaluate the classifier on the evaluation set using
ten-fold cross validation. We follow our framework in Section 5 to construct
our classifier. For evaluation, the TF-IDF vocabulary is constructed from the
evaluation set, and is not shared with the development set. The size of this
vocabulary created from the evaluation set is 14,248. We experiment with
the following classification algorithms: Support Vector Machine (SVM), Ran-
dom Forest (RF), Logistic Regression (LR), Naive Bayes (NB), and k-Nearest
Neighbors (kNN). We use implementations of the classification algorithms from
scikit-learn [57]. To evaluate the usefulness of the classification, we used the
automatically determined classes to label sections in GitHub README files
using badges and showed files with and without these badges to twenty soft-
ware professionals.

6.1 Evaluation metric

We measure the classification performance in terms of F1 score. F1 score for
multi-label classification is defined below.

F1 =

∑
l∈L wl × F1l

|L|

F1l =
2× Precisionl ×Recalll
Precisionl + Recalll

where wl is the proportion of the actual label l in all predicted data. F1l
is the F1 score for label l, L is the set of labels, Precisionl is precision for
label l, and Recalll is the recall for label l. When computing precision/recall
for label l, an instance having label l is considered as a positive instance,
otherwise it is a negative instance. Precision is the proportion of predicted
positive instances that are actually positive while recall is the proportion of
actual positive instances that are predicted as positive.
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Table 7 Results for Different Classifiers

Classifier F1

SVM 0.746
RF 0.696
NB 0.518
LR 0.739
kNN 0.588

Table 8 Effectiveness of Our SVM-based Classifier

Category F1 Precision Recall

What and Why 0.615 0.627 0.604
How 0.861 0.849 0.874
When 0.676 0.669 0.683
Who 0.758 0.810 0.711
References 0.605 0.606 0.603
Contribution 0.814 0.857 0.774
Other 0.303 0.212 0.537
Exclusion 0.674 0.596 0.775

Overall 0.746 0.742 0.759

For this work we consider both precision and recall as equally important.
Taking into account that each section can have a different mix of content, our
goal is to maximize completeness of the label set assigned to a section while
avoiding clutter that can result from assigning less relevant labels.

6.2 Evaluation results

The results of our evaluation are shown in Table 7. Our experimental results
show that our SVM-based classifier can achieve an F1 score of 0.746 on the
evaluation set using ten-fold cross validation. We also experiment with using
SMOTE [11] on the best performing (SVM-based) classifier to compare its
effectiveness with the oversampling approach, and found that it resulted in a
lower F1 of 0.738.

The per category F1 obtained from the SVM-based classifier is shown in
Table 8.

In addition to F1, we measured the performance of our classification us-
ing Kappa [38], ROC AUC [20], and MCC [7]. Our classifier can achieve a
weighted average Kappa of 0.831, a weighted average ROC AUC of 0.957,
and a weighted average MCC of 0.844. As prior work (e.g., [40, 59, 62, 75])
consider F-measure and/or AUC of 0.7 or higher to be reasonable, we believe
the evaluation result demonstrates that the SVM-based classifier design has
sufficiently good performance.
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Table 9 Contribution of Different Sets of Features

Set of Features Used F1

Only Heuristic 0.584
Only Statistical 0.706

RQ2: We can automatically classify content of sections in GitHub
README files with F1 of 0.746

6.3 Speed

We evaluate the speed of the best performing SVM-based classifier using a
test machine with the following specifications: Intel Core i7-4710HQ 2.50 GHz
CPU, 16 GB RAM laptop with SSD storage and Windows 10 64-bit. For this
part of the evaluation, input data comprise the combined set README files
from development and evaluation sets. We find that training of the classifier on
this combined set takes 181 seconds. Afterwards, the classifier is able to label
sections in a given input README file in less than a second. This indicates
that the classifier is fast enough for practical use.

6.4 Multi-category sections vs. single-category sections

We expect that classifying multi-category sections is harder than classify-
ing single-category sections. To confirm this, we exclude sections that belong
to more than one category. We perform a similar experiment using ten-fold
cross validation. Our experimental results show that our SVM-based classifier
achieves an F1 score of 0.773, which confirms that classifying single-category
sections is indeed easier, although not by a significant margin.

6.5 Usefulness of statistical vs. heuristic features

To investigate the value of a set of features, we remove the set and observe
the classifier performance after such removal. Table 9 shows the classifier per-
formance when we remove different sets of features. We observe performance
reduction when removing any set of features. Thus, all sets of features are
valuable for classifying README sections. Among the sets of features, the
statistical features are more important since their removal reduces F1 far more
as compared to removing heuristic features.
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6.6 Usefulness of particular features

We are also interested in identifying which particular feature is more useful
when predicting different categories. Using an SVM classifier, usefulness of a
feature can be estimated based on the weight that the classifier assigns to
the feature. For each category in the testing data, we consider an instance
belonging to the category as a positive instance, otherwise it is a negative
instance. We learn an SVM classifier to get the weight of each feature. To
capture significantly important features, we perform the Scott-Knott ESD
(Effect Size Difference) test [69]. For the purpose of this test, we perform ten
times ten-fold cross validation where each cross validation generates different
sets. Thus, for each category and feature pair, we have 100 weight samples.
We average the weights and run Scott-Knott ESD test on the top-5 features’
weights. We present the result for each category in Figure 4. Features grouped
by the same color are considered to have a negligible difference and thus have
the same importance.

Based on the observation, heuristics based on sections’ headings appear to
be useful in predicting categories. For example, heur h k 012 (check whether
a lower cased heading contains the string ‘objective’) is the second most use-
ful features for predicting the ‘What and Why’ category, while heur h k 006
(check whether a lower cased heading contains the string ‘contrib’) is the third
most useful feature for predicting the ‘Contribution’ category. For the ‘Who’
category, heur h k 007 (check whether a lower cased heading contains ‘credit’)
is the fifth most useful feature for prediction. Abstraction also appears to be
useful, with @abstr number being the fifth ranking feature for predicting the
‘When’ category. A possible reason is that the ‘When’ category covers ver-
sion history, project plans, and project roadmap, which often contain version
number, year, or other numbers.

RQ3: Overall, statistical features are more useful than heuristics, but
heuristics based on section headings are useful to predict certain cate-
gories

6.7 Perceived usefulness of automatically labeling sections in GitHub
README files

A potential use case for our work is to automatically label sections in GitHub
README files. To evaluate the perceived usefulness of such an effort, we
conducted a survey with 20 professional software developers (19 indicated to
develop software as part of their job, 1 indicated to be an IT support spe-
cialist). We recruited participants using Amazon Mechanical Turk, specifying
“Employment Industry - Software & IT Services” as required qualification.

As part of the survey, we showed each participant two versions of a ran-
domly selected GitHub README file which we sampled using the criteria
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Fig. 4 Top Features for Each Category. Features starting with heur refer to heuristic
features while the remaining features refer to statistical features (see Section 4.2).
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Table 10 Questions asked in the survey to determine perceived usefulness of automatically
generated section labels

1 Is developing software part of your job?
2 What is your job title?
3 For how many years have you been developing software?
4 What is your area of software development?
5 Do you have a GitHub account?
6 Approximately how many repositories have you contributed to on GitHub?
7 Have you ever contributed to the GitHub README file for a repository?
8 What content do you expect to find in the README file of a GitHub repository?
9 What single piece of information would you consider most important to be included

in a GitHub README file?
10 Is your decision to use or contribute to a GitHub project influenced by the avail-

ability of README files?
11 Please take a look at the following two README files. Which one makes it easier

to discover relevant information, in your opinion? Note that only the badges next
to sections titles are different.

12 Please justify your answer
13 Do you have any further comments about GitHub README files or this survey?

Table 11 Survey results about the perceived usefulness of automatically labeled GitHub
README sections

prefer labeled file 12
neutral 6
prefer unlabeled file 2

sum 20

listed in Table 1. Note that the README files used for the survey were ‘un-
seen’ files, i.e., files that had not been used as part of the previously introduced
development or evaluation sets. We prepared two README files that we se-
lected using this sampling strategy by producing two versions of each file: one
version was the original README file, the other version used badges [74] next
to each section header to indicate the labels that our classifier had automati-
cally assigned to the section. Table 10 shows the questions asked in the survey
and examples of our prepared README files are available in Figure 5 and
online.20

All participants indicated to have been developing software for several
years, with a median of five years development experience (minimum: 2 years).
All but two participants indicated having a GitHub account and having con-
tributed to more than 20 repositories on average. Only 4 of the 20 participants
indicated to have never contributed to a GitHub README file.

Table 11 shows the results we obtained about the perceived usefulness of the
automated labeling of sections. The majority of participants (60%) indicated
that the files with our labels made it easier to discover relevant information,

20 Original: https://github.com/readmes/alt-blog.github.io/blob/master/README1.

md, Modified: https://github.com/readmes/alt-blog.github.io/blob/master/README2.

md

https://github.com/readmes/alt-blog.github.io/blob/master/README1.md
https://github.com/readmes/alt-blog.github.io/blob/master/README1.md
https://github.com/readmes/alt-blog.github.io/blob/master/README2.md
https://github.com/readmes/alt-blog.github.io/blob/master/README2.md
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Fig. 5 An excerpt from a GitHub README file with visual labels, original version at
https://github.com/alt-blog/alt-blog.github.io

some participants did not have a preference, and only 2 participants preferred
the unlabeled file. In general participants liked the labels, e.g., one participant
wrote “I really like the Who, what, where, and why tags. It makes it easier
to find relevant information when I only need to look for a certain section.”
Similarly another participant noted: “The what/when/how labels allow easier
access to the information I am looking for.” On the negative side, a minority
of participants thought that the labels were not necessary: “the extra buttons
aren’t really needed”.

RQ4: The majority of participants perceives the automated labeling of
sections based on our classifier to ease information discovery in GitHub
README files

https://github.com/alt-blog/alt-blog.github.io
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7 Implications

The ultimate goal of our work is to enable the owners of software repositories
on sites such as GitHub to improve the quality of their documentation, and
to make it easier for the users of the software held in these repositories to find
the information they need.

The eight categories of GitHub README file content that emerged from
our qualitative analysis build a point of reference for the content of such
README files. These categories can help repository owners understand what
content is typically included in a README file, i.e., what readers of a
README file will expect to find. In this way, the categories can serve as
a guideline for a README file, both for developers who are starting a new
project (or who are starting the documentation for an existing project) and
developers who want to evaluate the quality of their README file. Even if
all the content is in place, our coding reference provides a guide on how to
organize a README file.

In addition, the categories along with their frequency information that we
report in this paper highlight opportunities for repository owners to stand out
among a large crowd of similar repositories. For example, we found that only
about a quarter of the README files in our sample contain information on
the ‘Why’ of a repository. Thus, including information on the purpose of a
project is a way for repository owners to differentiate their work from that of
others. It is interesting to note that out of all the kinds of content that GitHub
recommends to include in a README file (cf. Introduction), ‘Why’ is the one
that is the least represented in the README files of the repositories in our
sample.

In a similar way, README content that refers to the ‘When’ of a project,
i.e., the project’s current status, is rare in our sample. In order to instill con-
fidence in its users that they are dealing with a mature software project and
to possibly attract users to contribute to a project, this information is impor-
tant. However, our qualitative analysis found that less than a quarter of the
repositories in our random sample included ‘When’ information.

The ratio of repositories containing information about how to contribute
was slightly higher (109/393), yet surprisingly low given that all of the repos-
itories in our sample make their source code available to the public. Given
recent research on the barriers experienced by developers interested in joining
open source projects [68], our findings provide another piece of evidence that
software projects have room for improvement when it comes to making a good
first impression [21] and explaining how developers can contribute.

The classifier we have developed can automate the task of analyzing the
content of a README file according to our coding reference, a task that would
otherwise be tedious and time-consuming. Our classifier can take any GitHub
README file as input and classify its content according to our codes with
reasonable precision and recall.

In addition to automatically classifying the content, our classifier could en-
able semi-structured access to the often unstructured information contained in
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a GitHub README file. For example, users particularly interested in finding
mature projects could automatically be brought to the ‘When’ sections of a
README file, and developers looking to contribute to open source could be
shown the ‘Contribution’ guidelines of a repository.

The results from our survey show evidence which indicates that visually
labeling sections using the labels predicted by our classifier can make it easier
to find information in GitHub README files: The majority of participants
perceived the automated labeling of sections based on our classifier to ease
information discovery. Visually labeling sections is only one use case of the
classifier: Our classifier could also easily be used to help organize README
files, e.g., by imposing a certain order in which sections should appear in a
README file. README sections that have been detected as discussing the
‘What’ and ‘Why’ of a project could automatically be moved to the beginning
of a README file, followed by sections discussing the ‘How’.

Our analysis of the usefulness of features for predicting the categories of
a section implies that heuristic features on the sections’ headings are useful,
and are better suited than heuristic features on the sections’ contents. This is
apparent from the fact that none of the heuristic features for sections’ contents
are ranked among the top-5 most useful features for any of the categories.
This suggests that the vocabulary commonly used in section headings is more
uniform than that used in section content. However, we note that the 4,226
sections in our dataset use 3,080 distinct headings, i.e., only few of the sections
share the same heading.

8 Threats to Validity

Similar to other empirical studies, there are several threats to the validity of
our results.

Threats to the construct validity correspond to the appropriateness of the
evaluation metrics. We use F1 as our evaluation metric. F1 has been used in
many software engineering tasks that require classification [33, 61, 49, 9, 60].
Thus, we believe threats to construct validity are minimal. In our survey, we
measured perceived usefulness of the visual labels added to GitHub README
files, which may not correspond to actual usefulness in a software development
task. Future work will have to investigate this in more detail.

Threats to the internal validity compromise our confidence in establishing
a relationship between the independent and dependent variables. It is possible
that we introduced bias during the manual annotation of sections from GitHub
README files. We tried to mitigate this threat by using two annotators, and
by manually resolving all cases in which the two annotators disagreed. We did
however notice a small number of cases where annotators mistakenly treated
non-sections (e.g., content that had been commented out) as sections.

Threats to external validity correspond to the ability to generalize our
results. While our sample of 393 GitHub README files is statistically repre-
sentative, it is plausible that a different sample of files would have generated
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different results. We can also not claim generalizability to any other format
of software documentation. We excluded README files that were small (less
than 2 KB in size), README files that belonged to repositories not used for
software development, and README files not in English. Different filtering
criteria might have led to different results. Our findings may also have been
impacted by our decision to divide README files into sections. A different
way of dividing README files (e.g., by paragraphs or sentences) might also
have produced different results. Our survey was answered by twenty software
professionals. We cannot claim that we have captured all possible opinions
regarding the usefulness of the visual labels. All survey participants were ulti-
mately self-selected individuals within our target populations, and individuals
who did not respond to our invitations may have different views on some of the
questions that we asked. Also, creating visual labels is only one use case of our
classifier, and we cannot make claims of the usefulness of other applications
based on our survey results.

9 Related Work

Efforts related to our work can be divided into research on categories of soft-
ware development knowledge, classifiers of textual content related to software
engineering, and studies on the information needs of software developers.

9.1 Categorizing software development knowledge

Knowledge-based approaches have been extensively used in software develop-
ment for decades [17], and many research efforts have been undertaken since
the 1990s to categorize the kinds of knowledge relevant to software develop-
ers [19, 28, 48].

More recently, Maalej and Robillard identified 12 types of knowledge con-
tained in API documentation, with functionality and structure being the most
prevalent [42]. Because the authors focused on API documentation, the types
of knowledge they identified are more technical than ours (e.g., containing
API-specific concepts such as directives), however, there is some overlap with
our categorization of GitHub README files (e.g., in categories such as ‘Ref-
erences’). Similar taxonomies have been developed by Monperrus et al. [46]
and Jeong et al. [30]. Some of the guidelines identified by Jeong et al. apply to
our work as well (e.g., “include ‘how to use’ documentation”) whereas other
guidelines are specific to the domain of API documentation or to the user in-
terface through which documentation is presented (e.g., “Effective Search”).
Documentation in GitHub README files is broader than API documentation,
and the documentation format and its presentation is at least partly specified
by the GitHub markdown format.

In addition to API documentation, researchers have investigated the cat-
egories of knowledge contained in development blogs [52, 54, 55, 70] and on
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Stack Overflow [4, 50, 72]. However, these formats serve different purposes
compared to GitHub README files, and thus lead to different categories of
software development knowledge.

9.2 Classifying software development text

The work most closely related to ours in terms of classifying the content of
software documentation is OntoCat by Kumar and Devanbu [36]. Using Maalej
and Robillard’s taxonomy of knowledge patterns in API documentation [42],
they developed a domain independent technique to extract knowledge types
from API reference documentation. Their system, OntoCat, uses nine different
features and their semantic and statistical combinations to classify different
knowledge types. Testing OntoCat on Python API documentation, the au-
thors showed the effectiveness of their system. As described above, one major
difference between work focused on API documentation and work on GitHub
README files is that API documentation tends to be more technical. Similar
to our work, Kumar and Devanbu also employed keyphrases for the classifica-
tion, among other features. The F1 scores they report are in a similar range
to the ones achieved by our classifier: Their weakest performance was for the
categories of Non-Info (0.29) and Control Flow (0.31), while their strongest
performance was for the categories of Code Examples (0.83) and Functionality
and Behaviour (0.77). In our case, the lowest F1 scores were for the categories
of ‘Other’ (0.303) and ‘Reference’ (0.605) while the highest scores were for
‘How’ (0.861) and ‘Contribution’ (0.814).

In other work focusing on automatically classifying the content of software
documentation, Treude and Robillard developed a machine learning classifier
that determines whether a sentence on Stack Overflow provides insight for
a given API type [71]. Similarly, classifying content on Stack Overflow was
the target of Campos et al. [8] and de Souza et al.’s work [67]. Following on
from Nasehi et al.’s categorization [50], they developed classifiers to identify
questions belonging to different categories, such as ‘How-to-do-it’. Also using
data from Stack Overflow, Correa and Sureka introduced a classifier to predict
deleted questions [14].

Researchers have also applied text classification to bug reports and devel-
opment issues. For example, Chaparro et al. presented an approach to detect
the absence of expected behaviour and steps to reproduce in bug descriptions,
aiming to improve bug description quality by alerting reporters about missing
information at reporting time [10]. Text classification has also been employed
with the goal of automated generation of release notes: Moreno et al. devel-
oped a system which extracts changes from source code, summarizes them, and
integrates them with information from versioning systems and issue trackers
to produce release notes [47]. Abebe et al. used machine learning techniques
to automatically suggest issues to be included in release notes [1].

Text classification has also been applied to the information captured in
other artifacts created by software developers, including change requests [3],
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development emails [66], code comments [56], requirements specifications [44],
and app reviews [12, 24, 37, 43].

9.3 Information needs of software developers

Although there has not been much work on the information needs of software
developers around GitHub repositories, there has been work on information
needs of software developers in general. Early work focused mostly on program
comprehension [18, 31]. Nykaza et al. investigated what learning support pro-
grammers need to successfully use a software development kit (SDK) [51], and
they catalogued the content that was seen as necessary by their interviewees,
including installation instructions and documentation of system requirements.
There is some overlap with the codes that emerged from our analysis, but
some of Nykaza et al.’s content suggestions are SDK-specific, such as “types
of applications that can be developed with the SDK”.

Other studies on the information needs of software developers have ana-
lyzed newsgroup questions [29], questions in collocated development teams [35,
73], questions during software evolution tasks [64, 65], questions that focus on
issues that occur within a project [22], questions that are hard to answer [39],
and information needs in software ecosystems [25]. Information needs related
to bug reports have also attracted the attention of the research community:
Zimmermann et al. conducted a survey to find out what makes a good bug
report and revealed an information mismatch between what developers need
and what users supply [77]. Davies and Roper investigated what information
users actually provide in bug reports, how and when users provide the infor-
mation, and how this affects the outcome of the bug [15]. They found that
sources deemed highly useful by developers and tools such as stack traces and
test cases appeared very infrequently.

The goal of Kirk et al.’s study was understanding problems that occur
during framework reuse, and they identified four problems: understanding the
functionality of framework components, understanding the interactions be-
tween framework components, understanding the mapping from the problem
domain to the framework implementation, and understanding the architec-
tural assumptions in the framework design [34]. These problems will arguably
apply to frameworks hosted on GitHub, but not necessarily to other GitHub
projects. Our categorization is broader by analyzing the content of GitHub
README files for any type of software project. Future work might investi-
gate README files that belong to particular kinds of projects.

10 Conclusions and Future Work

A README file is often the first document that a user sees when they en-
counter a new software repository. README files are essential in shaping the
first impression of a repository and in documenting a software project. De-
spite their important role, we lack a systematic understanding of the content
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of README files as well as tools that can automate the discovery of relevant
information contained in them.

In this paper, we have reported on a qualitative study which involved the
manual annotation of 4,226 sections from 393 README files for repositories
hosted on GitHub. We identified eight different kinds of content, and found
that information regarding the ‘What’ and ‘How’ of a repository is common
while information on the status of a project is rare. We then designed a clas-
sifier and a set of features to automatically predict the categories of sections
in README files. Our classifier achieved an F1 score of 0.746 and we found
that the most useful features for classifying the content of README files
were often related to particular keywords. To evaluate the usefulness of the
classification, we used the automatically determined classes to label sections
in GitHub README files using badges and showed files with and without
these badges to twenty software professionals. The majority of participants
perceived the automated labeling of sections based on our classifier to ease
information discovery.

Our findings provide a point of reference for repository owners against
which they can model and evaluate their README files, ultimately leading
to an improvement in the quality of software documentation. Our classifier
will help automate these tasks and make it easier for users and owners of
repositories to discover relevant information.

In addition to improving the precision and recall of our classifier, our future
work lies in exploring the potential of the classifier to enable a more structured
approach to searching and navigating GitHub README files. In particular, we
plan to employ the classifier in a search interface for GitHub repositories and
we will explore the feasibility of automatically reorganizing the documentation
contained in GitHub README files using the structure that emerged from
our qualitative analysis.
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