
Automatically Generating Documentation for
Lambda Expressions in Java

Anwar Alqaimi∗, Patanamon Thongtanunam† and Christoph Treude∗
∗School of Computer Science

University of Adelaide
anwaribrahim.alqaimi@student.adelaide.edu.au, christoph.treude@adelaide.edu.au

†School of Computing and Information Systems
University of Melbourne

patanamon.thongtanunam@unimelb.edu.au

Abstract—When lambda expressions were introduced to the
Java programming language as part of the release of Java
8 in 2014, they were the language’s first step into functional
programming. Since lambda expressions are still relatively new,
not all developers use or understand them. In this paper, we
first present the results of an empirical study to determine how
frequently developers of GitHub repositories make use of lambda
expressions and how they are documented. We find that 11%
of Java GitHub repositories use lambda expressions, and that
only 6% of the lambda expressions are accompanied by source
code comments. We then present a tool called LAMBDADOC
which can automatically detect lambda expressions in a Java
repository and generate natural language documentation for
them. Our evaluation of LAMBDADOC with 23 professional
developers shows that they perceive the generated documentation
to be complete, concise, and expressive, while the majority of the
documentation produced by our participants without tool support
was inadequate. Our contribution builds an important step
towards automatically generating documentation for functional
programming constructs in an object-oriented language.

Index Terms—Documentation generation, Lambda expressions

I. INTRODUCTION AND MOTIVATION

Modern programming languages enhance existing features
and add new ones on a regular basis. For example, as part
of the release of Java 8 in 2014, several new features and
enhancements were introduced, ranging from improved type
inference and method parameter reflection to the introduc-
tion of lambda expressions. According to Oracle,1 lambda
expressions “enable you to treat functionality as a method
argument, or code as data. Lambda expressions let you express
instances of single-method interfaces (referred to as functional
interfaces) more compactly.”

The introduction of lambda expressions to Java was moti-
vated by the suitability of functional programming for syn-
chronised, parallel, and event-driven programming. Other pro-
gramming languages, including Groovy, Scala, and Python,
already supported functional programming. Lambda expres-
sions are useful since they are shorter than anonymous classes
and can result in a similar outcome.

1https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.
html, last accessed 5 Jan 2019.

The word lambda is derived from the Greek letter lambda
(λ) to represent a function of the abstract [1]. Lambda ex-
pressions in Java can be defined as nameless code blocks of
functions that contain a collection of formal parameters and a
body that is joined by an arrow (->). Listing 1 shows examples
of lambda expressions in Java [1]. A lambda expression that
declares its parameters types is called an explicit lambda
expression and a lambda expression that does not declare its
parameters types is called an implicit lambda expression [1].

Listing 1. Examples of lambda expressions
/ / Ex1 : E x p l i c i t lambda e x p r e s s i o n
/ / Takes an i n t e g e r parame te r and r e t u r n s
/ / t h e parame te r v a l u e i n c r e m e n t e d by 1
(i n t x) −> x + 1

/ / Ex2 : I m p l i c i t lambda e x p r e s s i o n
/ / Takes two i n t e g e r p a r a m e t e r s and r e t u r n s
/ / t h e maximum o f t h e two
(x , y) −>
{ i n t max = x > y ? x : y ;
re turn max ;}

One of the primary objectives of using lambda expressions
is to maintain a short syntax and to allow the compiler
to deduce the details. However, along with the compiler,
developers are also often left to deduce the details on their
own. Understanding lambda expressions is not trivial, and
good software documentation has long been known to be
rare [2]. To make lambda expressions more accessible to
developers, we follow in a long line of work on automatically
documenting particular parts of source code (e.g., test cases [3]
and database code [4]) to develop a novel approach called
LAMBDADOC to automatically document lambda expressions
in Java. To the best of our knowledge, LAMBDADOC is the
first tool of its nature.

In this paper, we contribute:

• An empirical study of how lambda expressions are used in
435 engineered software repositories hosted on GitHub.

• An empirical study of the documentation of lambda
expressions in GitHub repositories via source
code comments.

https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

• LAMBDADOC, a novel approach to automatically docu-
ment lambda expressions in Java, along with an evalua-
tion with 23 professional developers.

The remainder of this paper is structured as follows. We
introduce our research questions as well as our methods for
data collection and analysis in Section II. LAMBDADOC is
described in detail in Section III and our findings are reported
in Section IV, separately for each of our research questions.
We discuss threats to validity in Section V and related work in
Section VI, before we conclude the paper and outline future
work in Section VII.

II. RESEARCH METHOD

In this section, we outline our research questions as well as
the data collection and analysis methods used to answer them.

A. Research Questions

To study how lambda expressions are used by Java devel-
opers, we first needed to devise an approach for detecting
lambda expressions in non-compilable code and code snippets
in commits. We chose not to rely on existing static analysis
approaches (e.g., PMD [5]) since these approaches often
require compilable code to identify lambda expressions. To
evaluate our custom-built lambda expression detector, we first
addressed the following research question:
RQ1 How accurate is our approach for detecting lambda

expressions?
Since lambda expressions have been recently introduced in

Java, little is known about the prevalence of lambda expression
usage in Java projects. Hence, we aimed to establish how
frequently lambda expressions are used by Java developers.
In addition, we investigated the kind of lambda expressions
that are commonly used:
RQ2 How are lambda expressions used?

RQ2.1 How many repositories use lambda expressions,
and what is the amount of lambda expressions per
repository?

RQ2.2 Are the same lambda expressions used in mul-
tiple repositories?

In addition to establishing how Java developers are making
use of lambda expressions, a goal of our work was the
automated generation of documentation for these expressions.
To inspire our work on documentation generation, we next
asked how lambda expressions are currently documented in
the form of source code comments:
RQ3 How are lambda expressions documented?

RQ3.1 How many lambda expressions are accompanied
by comments?

RQ3.2 What kind of comments accompany lambda
expressions?

Finally, to evaluate our documentation generation
approach for lambda expressions LAMBDADOC, we asked
professional developers to evaluate the automatically
generated documentation:

RQ4 How well can LAMBDADOC document lambda expres-
sions?
RQ4.1 How do developers document lambda expres-

sions when asked to provide comments?
RQ4.2 How is the documentation generated using

LAMBDADOC perceived by developers?

B. Data Collection

1) Repositories: Motivated by previous work on the perils
of mining GitHub [6], e.g., a large portion of repositories
on GitHub are not for software development, we used the
RepoReaper framework developed by Munaiah et al. [7] to
select repositories for our work. RepoReaper was developed
to address the difficulty to differentiate between repositories
with engineered software projects and those with assignments
and noise. The ratio of unwanted repositories in a stochastic
sample could distort research and cause illogical and possibly
incorrect conclusions. RepoReaper contains repositories clas-
sified as organisation and utility.

To select repositories for our study, we first obtained all
51,392 Java repositories which had been classified as con-
taining engineered software projects by the Random Forest
classification of RepoReaper. We then randomly sampled from
these 51,392 repositories in batches of 1,000 until we had
obtained at least 400 repositories which contained at least one
lambda expression detected by our lambda expression detector
(see Section II-B2). This way, we were able to ensure that
our conclusions concerning the ratio of repositories with a
specific characteristic would generalise to the entire population
of engineered Java repositories on GitHub containing lambda
expressions with a confidence level of 95% and a confidence
interval of 5.2 After cloning and analysing 4,000 repositories
(i.e., four batches of 1,000, the number it took to find at least
400 repositories containing at least one lambda expression),
we had retrieved a total of 435 repositories containing lambda
expressions, i.e., 11%. These 435 repositories are a statistically
representative sample of all engineered Java repositories con-
taining lambda expressions. They contained a total of 497,108
Java files, out of which 9,933 contained at least one lambda
expression. In total, we collected 54,071 lambda expressions
across the 435 Java repositories.

2) Detection of Lambda Expressions: We developed an ap-
proach to detect lambda expressions and collect their metadata,
i.e., start line number, start character position, end line number,
end character position, number of lines, number of parameters,
and type (explicit vs. implicit).

To identify lambda expressions in the source code of each
Java file, our lambda expression detector first reads source
code line-by-line until encountering a lambda arrow (->)
that is not part of a comment or a string. The detector then
checks whether the lambda expression covers multiple lines—
a multi-line lambda expression starts with an open-parenthesis
or an open-bracket and ends with the corresponding closing
symbol while a single-line lambda expression ends with a

2https://www.surveysystem.com/sscalc.htm, last accessed 5 Jan 2019.

https://www.surveysystem.com/sscalc.htm

0–1 1–2 2–4 4–6 6+
0
2
4
6
8

software development experience in years

pa
rt

ic
ip

an
ts

Fig. 1. Software development experience of survey participants

semicolon or a parenthesis. The detector then determines if the
lambda expression is explicit or implicit by checking whether
the parameter list contains parameter types. For example, in
Listing 1, the lambda expression Ex1 is identified as a single-
line lambda expression that has an implicit type, while the
lambda expression Ex2 is identified as a multi-line lambda
expression that has an explicit type. Finally, our lambda
expression detector extracts source code comments written
directly above the lambda expression. For multi-line lambda
expressions, our detector also extracts source code comments
written within the lambda expression.

3) Practitioner Survey: To evaluate the documentation gen-
erated by our automated approach, we employed a practitioner
survey which followed a similar structure used by Linares-
Vásquez et al. [4]. We recruited participants through Amazon
Mechanical Turk3 and the required qualification was “Employ-
ment Industry – Software & IT Services”. This methodology
has been successfully used by previous work [8].

Table I shows our survey questions as well as the answer
options for each one. The first section of the survey (Questions
1–8) collected demographic information and established the
participants’ experience with software development, Java, and
reading and writing lambda expressions. Then, Questions 9–12
were used to evaluate our generated documentation for each of
the five lambda expressions that were randomly sampled from
all detected lambda expressions of this work (see Table II).
Question 9 asked participants to write a summary of what
the lambda expression shown in the question does. Then,
Questions 10–12 asked participants to evaluate our generated
documentation for the lambda expression shown in Question
9. The generated documentation was evaluated in terms of
completeness, conciseness, and expressiveness. Note that par-
ticipants were not able to see our generated documentation
until they had answered Question 9. Table II shows the lambda
expressions and our generated documentations that we used
for our evaluation. The last section of the survey provided
participants with a link to a web application of LAMBDADOC
where users could submit a lambda expression and have
documentation generated for it. Finally, Questions 13–17 asked
participants about the usefulness of our tool.

We obtained responses from 23 participants. Only one
participant indicated that developing software was not part
of their job. The job titles of participants varied from “Data
administrator” to “Junior software engineer”, but all titles were

3https://www.mturk.com/, last accessed 22 Jan 2019.

0–1 1–2 2–4 4–6 6+
0
2
4
6
8

Java experience in years

pa
rt

ic
ip

an
ts

Fig. 2. Java experience of survey participants

related to software development or information technology.
Most participants specified either web development (8/23 =
35%) or backend/systems development (7/23 = 30%) as their
area of software development, with other answers indicating
various areas from computer vision to databases. The majority
of participants had considerable software development and
Java experience, as shown in Figures 1 and 2, i.e., 70% and
52% of participants had software development and Java expe-
rience of at least 2 years, respectively. Participants considered
their expertise in Java to either be at the level of beginners
(10/23 = 43%) or intermediate (11/23 = 48%), with only 2 experts
(9%). Table III shows that a considerable group of participants
considered themselves fairly confident in both reading and
writing lambda expressions (8/23 = 35%), with other answers
varying between slightly and somewhat confident. None of
the participants indicated to be completely confident in their
abilities to either read or write lambda expressions, further
motivating our work. Only 2 participants (9%) considered
themselves not confident at all.

C. Data Analysis

In this section, we outline the data analysis methods used
to answer our research questions.

1) Accuracy of lambda expression detection: To evaluate
the accuracy of our tooling to detect lambda expressions in
source code files and commits (i.e., lambda expression detec-
tor), two authors of this paper who were not involved in the
implementation of the lambda expression detector manually
annotated a sample of lines from source code files and commits
which contained an arrow (->) to indicate whether the arrow
marked the beginning of a lambda expression or served some
other function (e.g., as part of a source comment or string).
We hypothesise that detecting lambda expressions in commits
is harder than in source code files since a developer might only
commit part of a lambda expression, e.g., for those expressions
which span multiple lines.

The two authors independently annotated 100 such ran-
domly sampled lines from source code files and 100 such
randomly sampled lines from commits. They achieved perfect
agreement (100%), and one of them further annotated 300
lines from each set. Based on the annotation of a total of 400
lines from source code files and 400 lines from commits, our
conclusions regarding the accuracy of the lambda expression
detection generalise to the population of all lines containing
arrows with a confidence interval of 5 at a confidence level

https://www.mturk.com/

TABLE I
SURVEY QUESTIONS. EACH HORIZONTAL LIKE INDICATES A PAGE BREAK OF THE SURVEY. NOTE THAT QUESTIONS 9–12 WERE REPEATED FIVE TIMES

FOR EACH OF THE LAMBDA EXPRESSIONS AND CORRESPONDING DOCUMENTATION SHOWN IN TABLE II.

Question Answer options

1 Is developing software part of your job? Yes / No
2 What is your job title? Open-ended
3 For how many years have you been developing software? Less than one year / 1–2 years / 2–4 years / 4–6 years / More than 6

years
4 How many years of experience do you have in Java development? Less than one year / 1–2 years / 2–4 years / 4–6 years / More than 6

years
5 How would you rate your expertise in Java? Beginner / Intermediate / Expert
6 How confident are you in your ability to WRITE lambda expressions in

Java?
Not confident at all / Slightly confident / Somewhat confident / Fairly
confident / Completely confident

7 How confident are you in your ability to READ lambda expressions in
Java?

Not confident at all / Slightly confident / Somewhat confident / Fairly
confident / Completely confident

8 What is your area of software development? (e.g., web, systems, em-
bedded)

Open-ended

9 Consider the following lambda expression in Java. Could you please
write a one-sentence summary of what this lambda expression does?

Open-ended

10 Consider now the following sentence which aims to describe the lambda
expression. Only focusing on the content of the sentence without
considering the way it has been presented, do you think the description
is COMPLETE?

The sentence is considered to be complete / The sentence misses
some important information to understand the lambda expression / The
sentence misses the majority of the important information to understand
the lambda expression

11 Consider the same lambda expression and sentence. Only focusing on
the content of the sentence without considering the way it has been
presented, do you think the sentence is CONCISE?

The sentence is considered to be concise / The sentence contains
some redundant/useless information / The sentence contains a lot of
redundant/useless information

12 Consider the same lambda expression and sentence. Only focusing on
the content of the sentence without considering the completeness and
conciseness, do you think the sentence is EXPRESSIVE?

The sentence is easy to read and understand / The sentence is some-
what readable and understandable / The sentence is hard to read and
understand

13 Please try LAMBDADOC for any lambda expressions of your choice at
<link to LAMBDADOC web application>. Please provide feedback on
LAMBDADOC here.

Open-ended

14 How likely is it that you would recommend this tool to a friend or
colleague?

5-point Likert scale from “not likely at all” to “extremely likely”

15 How would you prefer this tool to be implemented? As an Eclipse plugin / As a GUI Application / As a website/web service
/ Other (multiple-choice)

16 Which of the following software engineering tasks would you use this
type of documentation of lambda expressions in Java for?

Implementation / Testing / Documentation / Maintenance / Other
(multiple-choice)

17 Do you have any further comments about lambda expressions or this
survey?

Open-ended

TABLE II
LAMBDA EXPRESSIONS AND CORRESPONDING DOCUMENTATION GENERATED BY LAMBDADOC

Lambda expression Generated documentation

c a l l I n C o n t e x t (REPO USER 2 , repo2 . g e t I d () ,
MASTER BRANCH, () −> c r e a t e N o d e (
NodePath .ROOT, ” repo2Node ”)) ;

This lambda expression does not take any parameter and returns the result of
the execution of the “create Node” method with two parameters “NodePath
ROOT and “repo2Node” ”.

(I n t e g e r t , I n t e g e r t 1) −> Double . compare (
s p l i t E v a l u a t i o n [t] , s p l i t E v a l u a t i o n [t 1])

This lambda expression takes 2 parameters Integer t and Integer t1 and
returns the result of the execution of Double’s “compared to” method with
two parameters element of “split Evaluation” array t and element of “split
Evaluation” array t1.

. peek (ba tch−>co un t3 = co un t3 + b a t c h . s i z e ()) This lambda expression takes 1 parameter batch and returns count3 equal
count3 plus the result of the execution of the “size” method on it.

. b e f o r e R e s o l v e d (Execu tab leComponent . c l a s s , ec
−> ec . s e t (” c ”))

This lambda expression takes 1 parameter ec and returns the result of the
execution of the “set” method on it with parameter “c”.

re turn s t r e a m . f l a t M a p (t −> Stream . o f (va lue , t
))

This lambda expression takes 1 parameter t and returns the result of the
execution of Stream’s “of” method with two parameters “value and t”.

TABLE III
PARTICIPANT CONFIDENCE IN READING AND WRITING LAMBDA

EXPRESSIONS

Confidence in reading Confidence in writing Count

Not confident at all Not confident at all 2
Slightly confident Slightly confident 2
Fairly confident Slightly confident 2
Slightly confident Somewhat confident 4
Somewhat confident Somewhat confident 3
Somewhat confident Fairly confident 2
Fairly confident Fairly confident 8

of 95%.4 We then compared the manual annotation with the
results from our lambda expression detector.

2) Lambda expression usage: To analyse the frequency
with which lambda expressions are used in GitHub reposi-
tories, we analysed descriptive statistics of our data set. To
investigate whether there are lambda expressions which are
used in multiple repositories, we examined the number of
unique lambda expressions. Note that lambda expressions were
normalised by removing white space before analysing unique
lambda expressions and that we compared lambda expressions
textually. Furthermore, we investigated the characteristics of
lambda expressions by analysing their metadata, e.g., the
number of parameters and types.

3) Documentation of lambda expressions: To investigate
the extent to which lambda expressions are already docu-
mented in GitHub repositories, we quantitatively analysed
how many of the lambda expressions were accompanied by
a comment either directly above the expression (i.e., above
comments) or within the expression (i.e., within comments).
We then qualitatively analysed a statistically representative
sample of the comments we found in order to determine
whether the comments actually described the functionality
of the lambda expressions. For the qualitative annotation,
one of the authors established a coding scheme based on a
preliminary analysis of 100 comments. Another author then
used this coding schema on the same data, allowing us to
calculate inter-rater agreement. Two authors then applied this
coding schema to annotate a total of 200 above comments and
200 within comments.

4) LAMBDADOC evaluation: To explore how develop-
ers document lambda expressions, we qualitatively analysed
the responses to Question 9 of our survey (cf. Table I).
Since the goal of this analysis was to establish the level
of detail with which developers document lambda expres-
sions, we used the pre-defined categories “adequate”, “in-
complete”, and “inadequate” for the annotation. One author
annotated all 115 documentation attempts (23 participants ×
5 documentation attempts).

Finally, to understand the perceptions of developers regard-
ing our tool LAMBDADOC, we quantitatively analysed the
responses to survey Questions 10–16 (cf. Table I).

Algorithm 1 LAMBDADOC(lambdaExpression)
1: doc← ∅
2: intro← “This lambda expression”
3: exp← lambdaExpression.split(“− >”)
4: pc← numberOfParameters(exp[0])
5: if pc == 0 then
6: pText← “does not take any parameter”
7: else
8: if pc == 1 then
9: p← parameterName(exp[0])

10: pText← “takes 1 parameter” + p
11: else
12: if pc > 1 then
13: ps← parameterNames(exp[0])
14: pText← “takes” + pc + “parameters” + ps
15: end if
16: end if
17: end if
18: if exp[1].contains(“.”) then
19: i← 0
20: mText← ∅
21: for i < exp[1].length() do
22: if exp[1].charAt(i) == operator then
23: mText← mText + operatorToWord(operator)
24: i ++
25: end if
26: if exp[1].charAt(i) == “.” then
27: dot← i
28: while exp[1].charAt(i)! = “(” do
29: mText← mText + exp[1].charAt(i)
30: i ++
31: end while
32: j← dot
33: oText← ∅
34: for j > 0 do
35: while exp[1].charAt(j).isDigitOrNum do
36: oText← oText + exp[1].charAt(j)
37: j−−
38: end while
39: oText← reverseString(oText)
40: mText← camelCaseSplit(mText)
41: rText← oText + “’s” + mText)
42: end for
43: end if
44: end for
45: doc← intro + pText + “and returns” + rText
46: else
47: while exp[1].contains(operator) do
48: rText← operatorToWord(rText)
49: end while
50: doc← intro + pText + “and returns” + rText
51: end if
52: return doc

III. LAMBDADOC

In this section, we present our LAMBDADOC approach to
generate documentation for a lambda expression. The docu-
mentation generated by LAMBDADOC starts with the phrase
“This lambda expression”, followed by details of parameters
and body of the lambda expressions. Table II shows examples
of the documentation generated by LAMBDADOC.

Algorithm 1 shows the algorithm of LAMBDADOC in
pseudocode. The first step of the algorithm is to identify
the parameters and the body of a lambda expression by
dividing the expression at the arrow (->) and to determine
the number of parameters. If there are no parameters, the text
“does not take any parameter” is added to the documentation.
Otherwise, the names of the parameters are determined, and
a sentence fragment is generated which indicates the number
of parameters along with their names.

The body is analysed to determine if it contains at least one
method call based on the presence of a dot (.) not followed
by a digit. If the body contains a method, its object, name,
and parameters are identified. The method name is split based
on camel case. Then object, method name, and parameters
are concatenated in the documentation. Operators (e.g., +) are
replaced with a word representing them (e.g., “plus”).

Note that LAMBDADOC is designed to generate documenta-
tion for lambda expressions which contain a single statement.

IV. FINDINGS

In this section, we report the findings for our
research questions.

A. Accuracy of lambda expression detection

Out of the 400 lines from source code files which contained
an arrow (->), our manual annotation revealed that 258 (65%)
of the lines contained the start of a lambda expression while
the remaining 142 (35%) lines contained arrows for other
reasons, mostly as part of strings or in source code comments.
Using the same set of source code lines, we used our lambda
expression detector to identify whether the lines contained a
lambda expression or not. We found that our lambda expres-
sion detector achieved a recall of 1, i.e., all of the 258 lines
containing lambda expressions from the manual annotation
result were identified as containing lambda expressions by
the lambda expression detector. Furthermore, our lambda
expression detector achieved a precision of 1, i.e., all of the
lines that were identified as containing lambda expressions by
our lambda expression detector are those 258 lines containing
lambda expressions from the manual annotation.

Similarly, our manual annotation of the 400 lines from
commits which contained an arrow identified 269 (67%) lines
in which the arrow belonged to a lambda expression and
131 (33%) lines where the arrow was not part of a lambda
expression. Based on this manual annotation result, our lambda
expression detector achieved a recall and precision of 1. Note
that this result could be impacted by lambda expressions which

4https://www.surveysystem.com/sscalc.htm, last accessed 5 Jan 2019.

1

10

100

1000

10000

repositories

la
m

bd
a

ex
pr

es
si

on
s

(l
og

sc
al

e)

Fig. 3. Number of lambda expressions per repository, considering only the
subset of repositories which use lambda expressions (log scale)

1

10

100

lambda expressions

lin
es

(l
og

sc
al

e)

Fig. 4. Number of lines per lambda expression (log scale)

do not contain subsequent characters indicating arrows (->);
however, we are not aware of such expressions.

Summary: Our approach for detecting lambda ex-
pressions is able to identify lambda expressions in
source code files and commits with perfect precision
and recall.

B. Lambda expression use

As reported in Section II-B, 11% (435/4,000) of the Java
repositories in our sample made use of lambda expressions
at least once. For these 435 repositories, Figure 3 shows
the number of lambda expressions that are contained in
each repository. The distribution has a long tail—a few the
repositories extensively use lambda expressions (e.g., 10%
of the repositories contain more than 100 expressions) while
the majority of the repositories sometimes uses them. In
our sample, aol/simple-react5 and elastic/elasticsearch6 are the
most prolific users of lambda expressions, with 18,754 and
11,886 expressions, respectively.

Out of the 54,071 lambda expressions in our data set,
33,916 were unique (after removing white space). Table IV

5https://github.com/aol/cyclops, last accessed 19 Jan 2019.
6https://github.com/elastic/elasticsearch, last accessed 19 Jan 2019.

https://www.surveysystem.com/sscalc.htm
https://github.com/aol/cyclops
https://github.com/elastic/elasticsearch

0

2

4

6

8

lambda expressions

pa
ra

m
et

er
s

Fig. 5. Number of parameters per lambda expression

TABLE IV
LAMBDA EXPRESSIONS USED ACROSS REPOSITORIES

Lambda expression Repositories

re turn () −> { t r y { re turn t a s k .
c a l l () ; } ca tch (E x c e p t i o n e) {

h a n d l e (e) ; throw e ; } } ;

7

re turn () −> { t r y { t a s k . run () ; }
catch (E x c e p t i o n e) { h a n d l e (e

) ; } } ;

7

. map (u s e r −> new R e s p o n s e E n t i t y <>(
u se r , H t t p S t a t u s .OK))

7

shows the three lambda expressions which were used in the
largest number of the studied Java repositories. As shown
in the table, lambda expressions can play an important role
in exception handling. An additional analysis of the 33,916
unique lambda expressions showed that 4,920 (15%) contain
the string “exception”.

We now report common characteristics of lambda expres-
sions in our data set. Figure 4 shows that 70% of the lambda
expressions are single-line, while there are outliers with up
to more than 300 lines per one lambda expression. Figure 5
shows that the majority of the lambda expressions (57%) have
exactly one parameter while a sizeable minority of lambda
expressions (27%) does not have any parameters. The other
lambda expressions have two to eight parameters. We also
found that 98% of the lambda expressions were implicit, i.e.,
they do not declare their parameter types.

Summary: 11% of Java GitHub repositories use
lambda expressions at least once. Exception handling
is a common purpose of using lambda expressions.
Lambda expressions are usually implicit, single-line,
and have one parameter.

C. Documentation of lambda expressions

Out of the 54,071 lambda expressions in our data set, the
vast majority (50,984 = 94%) was not accompanied by any
documentation, neither right above the expression nor within
the expression. We found 1,531 (3%) lambda expressions
with a comment right above, 1,298 (2%) lambda expressions

with a comment within, and an additional 258 (0.5%) lambda
expressions with a comment above and a comment within.

To understand whether the comments which accompany
lambda expressions actually document the expression, we
manually annotated a randomly sampled set of 200 com-
ments from above a lambda expression and another 200
comments from within a lambda expression. One author an-
notated 50 comments from each set to establish the following
coding schema:

• high-level documentation: the comment describes the
lambda expression, but at a very high level. An example
is the comment “// start bottom-up” above a
53-line lambda expression—while it captures the core
purpose of the expression, it does not explain how this
purpose was achieved.

• reasonably detailed explanation: the comment appears
to explain the lambda expression reasonably well.
An example is the comment “// Increment the
number of connections for this node by
one” above a one-line expression with an increment
statement.

• documentation of a detail: the comment seems relevant,
but does not capture the lambda expression as a
whole. An example is the comment “// this
exception should cause the link chain
to explode” within a 7-line lambda expression next
to a throw statement—while the comment explains this
statement, it does not explain the lambda expression as
a whole.

• source code fragment: the comment looks like source
code (or pseudocode).

• other: comments that do not fit into any of the above cat-
egories, e.g., TODO comments or comments describing
expected output.

Another author then used this coding schema to anno-
tate the same 100 comments independently, achieving an
agreement of 46/50 for comments above lambda expressions
and 44/50 for comments within lambda expressions (weighted
kappa [9] with five categories: 0.906,7 i.e., almost perfect
agreement [10]). Most of the inconsistent annotations were
about “source code fragment” vs. “other” in cases where the
comment indicated values.

Given the almost perfect agreement, one author then an-
notated the remaining 150 comments from each group, for a
total of 400 annotated source code comments. Table V shows
the result of the annotation. The majority of comments above
lambda expressions describe the expression, but only at a high
level. The majority of comments within lambda expressions
document a detail, but cannot be considered as documentation
of the entire expression.

This observation encouraged us to employ a rule-based ap-
proach for the generation of documentation by LAMBDADOC.
Given the low quality of existing comments, a machine learn-

7https://www.graphpad.com/quickcalcs/kappa1/?K=5, last accessed 22 Jan
2019.

https://www.graphpad.com/quickcalcs/kappa1/?K=5

TABLE V
FREQUENCY OF DIFFERENT KINDS OF SOURCE CODE COMMENTS

ACCOMPANYING LAMBDA EXPRESSIONS

Location Type Frequency

above high-level documentation 123 (62%)
above reasonably detailed explanation 22 (11%)
above documentation of a detail 5 (3%)
above source code fragment 11 (6%)
above other 39 (20%)

within high-level documentation 0 (0%)
within reasonably detailed explanation 27 (14%)
within documentation of a detail 129 (65%)
within source code fragment 17 (9%)
within other 27 (14%)

ing approach appeared infeasible, although future work should
confirm this assumption.

Summary: Only 6% of the lambda expressions in our
data set are accompanied by source code comments.
Most of these comments describe the lambda expres-
sion at a high level or document a detail within the
expression.

D. LAMBDADOC evaluation

Our manual analysis of the 115 lambda expression doc-
umentation attempts produced by the survey participants (5
lambda expressions × 23 participants) confirmed our conjec-
ture that many developers do not know how to read lambda
expressions, which motivated our work on LAMBDADOC
in the first place. 57 (50%) of the documentation attempts
were inadequate, e.g., “calculations” and “It can be passed
around as if it was an object and executed on demand”.
Another 39 (34%) were incomplete, e.g., “it does compare the
variables declared” and “This expression takes two parameters
and return[s] the result after execution of function”. Only
19 (17%) of the lambda expression documentation attempts
produced by our participants could be considered adequate.
Such positive examples include “compares two integers using
splitEvaluation” (for the second lambda expression in Table II)
and “call set with “c” for the given ExecutableComponent”
(for the fourth lambda expression in Table II).

After asking our participants to produce their own doc-
umentation, we asked them to assess the documentation
generated by LAMBDADOC in terms of its completeness,
conciseness, and expressiveness (cf. Table I). For our analysis,
we distinguished participants based on their self-assessed con-
fidence with regard to reading lambda expressions (cf. Table I,
Question 7).

Figure 6 shows the results for completeness. The non-
filled part of each bar represents responses by participants
who declared themselves to be at least fairly confident in
reading lambda expressions. The most positive responses are
shown in green, medium responses are shown in yellow, and
negative responses are shown in red. As the figure shows,

complete misses some

lambda1 lambda2 lambda3 lambda4 lambda5
0

5

10

15

pa
rt

ic
ip

an
ts

misses most

Fig. 6. Completeness ratings. Green: The sentence is considered to be com-
plete; Yellow: The sentence misses some important information to understand
the lambda expression; Red: The sentence misses the majority of the important
information to understand the lambda expression; Solid: Not confident in
reading lambda expressions.

concise some redundancy

lambda1 lambda2 lambda3 lambda4 lambda5
0

5

10

15

20

pa
rt

ic
ip

an
ts

a lot of redundancy

Fig. 7. Conciseness ratings. Green: The sentence is considered to be concise;
Yellow: The sentence contains some redundant/useless information; Red: The
sentence contains a lot of redundant/useless information; Solid: Not confident
in reading lambda expressions.

participants generally agreed that the documentation produced
by LAMBDADOC is complete—the response “The sentence
is considered to be complete” received the highest number of
responses for all but one of the lambda expressions. Responses
from participants who considered themselves not confident
were slightly more positive—suggesting that LAMBDADOC
might be especially helpful to newcomers to functional pro-
gramming in Java.

Figure 7 shows the participant responses with regard to
conciseness. For most of the lambda expressions, the pos-
itive answer “The sentence is considered to be concise”
was selected most often, while the documentation generated
for the third and fifth expression was considered to contain
some redundant/useless information. As the documentation
in Table II shows, we opted for LAMBDADOC to produce
precise and detailed documentation—future work should ex-
plore whether there exists a better balance between precision
and conciseness. Very few participants indicated that LAMB-
DADOC produces a lot of redundant/useless information.

easy to read somewhat readable

lambda1 lambda2 lambda3 lambda4 lambda5
0

5

10

15
pa

rt
ic

ip
an

ts
hard to read

Fig. 8. Expressiveness ratings. Green: The sentence is easy to read and
understand; Yellow: The sentence is somewhat readable and understandable;
Red: The sentence is hard to read and understand; Solid: Not confident in
reading lambda expressions.

1 2 3 4 5
0
2
4
6

rating on Likert scale

pa
rt

ic
ip

an
ts

Fig. 9. Survey responses to “How likely is it that you would recommend this
tool to a friend or colleague?”. 1 – “not likely at all”; 5 – “extremely likely”.

The answer “The sentence is easy to read and understand”
was selected most often in response to our question about the
expressiveness of the content generated by LAMBDADOC, as
shown in Figure 8. Only our treatment of array indices which
affected the documentation of the second lambda expres-
sion (cf. Table II) prompted an equal number of “somewhat
readable and understandable” ratings. As with the previous
questions, the differences between participants confident in
reading lambda expressions and those who indicated not be
confident appear negligible.

Participants also left positive feedback after trying the online
version of our tool, e.g., “Very helpful in adapting to a new
way of writing code”. Figure 9 shows the participants’ re-
sponses to our survey question “How likely is it that you would
recommend this tool to a friend or colleague?” on a 5-point
Likert scale. The majority of participants were positive about
issuing such a recommendation. Finally, responses as to how
participants would like to have LAMBDADOC implemented
varied from GUI application (11) and website / web service
(10) to Eclipse plugin (9, multiple answers possible). Similarly,
participants could see themselves using LAMBDADOC for
documentation (13), testing (10), implementation (8), and
maintenance (4).

Summary: When asked to document lambda expres-
sions, most of the responses produced by our partici-
pants were inadequate. In contrast, the documentation
produced by LAMBDADOC was largely perceived to be
complete, concise, and easy to read and understand.

V. THREATS TO VALIDITY

As with all empirical studies, there are a number of threats
that may affect the validity of our results.

Threats to construct validity concern the suitability of our
evaluation metrics. Following the work of Linares-Vásquez et
al. [4] and others, we evaluated the documentation generated
by LAMBDADOC in terms of its perceived completeness,
conciseness, and expressiveness, using survey questions very
similar to those used in previous work. Future work should
explore other dimensions of the generated documentation, e.g.,
helpfulness. Our algorithm for detecting lambda expressions
could potentially lead to inaccuracies. However, the findings
from our first research question show that in a statistically
representative sample, all lambda expressions were correctly
identified. It is also possible that another group of researchers
would have identified different kinds of documentation in the
source code comments which accompanies lambda expres-
sions. However, our inter-rater agreement was almost perfect,
increasing the confidence in our findings.

Threats to external validity affect the generalisability of our
findings. We cannot claim that our findings generalise beyond
the particular data set we have considered in this work. Our
work may not generalise to other programming languages or
other functional programming constructs. The number of study
participants and the number of lambda expressions used in
the evaluation of LAMBDADOC are also necessarily limited.
Asking different participants about their perceptions of LAMB-
DADOC might have resulted in different findings. All lambda
expressions used in the evaluation (cf. Table II) were single-
line expressions. While we found that single-line lambda
expressions are in the majority on GitHub (cf. Figure 4),
future work should investigate the perceived completeness,
conciseness, and expressiveness of documentation generated
for multi-line lambda expressions.

Threats to internal validity relate to errors or inaccuracies in
our implementation. Our current implementation is unable to
detect embedded lambda expressions if both arrows are on the
same line. Apart from this issue, we have double-checked our
source code and fixed all errors we found. Still, there could
be additional errors which we did not notice.

VI. RELATED WORK

After the introduction of lambda expressions, prior work
started to investigate the use of lambda expressions and its
impact. Uesbeck et al. found that using lambda expressions
in C++ has a negative impact on programming speed of inex-
perienced users [11]. To encourage developers to adopt new
language features, Khatchadourian and Masuhara submitted

pull requests introducing language features to open source
projects [12]. Mazinanian et al. investigated the adoption of
lambda expressions in 241 Java open source projects and found
that projects migrate to lambda expressions by converting
classes to lambda expressions, replacing loops/conditionals
with streams, and enhancing functionality by wrapping ex-
isting code to lambda expressions [13]. Complementing the
prior work, in this work, we found that exception handling is
a common purpose of using lambda expressions in Java and
that lambda expressions are usually implicit, single-line, and
have one parameter.

While software documentation makes it easier for de-
velopers to comprehend software artefacts, manually-written
documentation becomes a tedious task for developers. Several
studies empirically investigate the essentials of software doc-
umentation. De Souza et al. showed that developers perceived
that source code comments are the second most important
software artefact in Agile software development [14]. Lin et
al. found that developers spent effort on maintaining API
documentation, e.g., literal polishes [15]. Fluri et al. found
that newly added code was rarely documented and a source
code comment was often changed along with the associated
source code [16]. Li et al. reported that while developers need
documentation to understand unit test cases, a large proportion
of C# projects on GitHub lacked comments for unit test
cases [3]. Moreover, Ibrahim et al. found that neglecting to
update a comment increases the probability of having future
defects in a software system [17]. In this paper, we empirically
investigated the source code comments accompanying lambda
expressions and found that only 6% of the lambda expressions
have corresponding source code comments.

Several researchers have developed approaches to automat-
ically summarise Java source code. For example, Moreno
et al. developed an approach to summarise the information
and details of Java classes [18]. McBurney et al. analysed
the method calls and leveraged the PageRank algorithm to
generate a description of the behaviour of a Java method [19].
Ying and Robillard developed an approach for the automated
summarisation of code fragments [20]. Buse et al. devel-
oped an approach to automatically summarise conditions of
Java exceptions [21]. Furthermore, automated documentation
generation has been developed for other software artefacts.
Prior work developed an approach to automatically summarise
unit test cases [3] and test failures [22]. To help developers
understand database schemata when writing database-related
code, Linares-Vásquez et al. developed an approach to anal-
yse database schemata and SQL statements to automatically
describe database usage at the source code method level [4].
Racchetti et al. proposed an approach to automatically gener-
ate documentation for Programmable Logic Controller (PLC)
code [23]. Hassan and Hill presented a technique towards au-
tomatically generating comments for Java statements suitable
for novice programmers [24]. Moreover, prior studies proposed
an approach to summarise individual code changes [25] and
the software evolution based on code changes [26]. Recently,
Robillard et al. outlined a research agenda for generating

developer documentation on-demand [27]. In this work, we
are the first to develop an approach to automatically generate
documentation for lambda expressions in Java.

VII. CONCLUSIONS AND FUTURE WORK

The lines between functional programming languages and
object-oriented programming languages have become blurred
with the addition of functional programming constructs to
non-functional programming languages. One example is the
introduction of lambda expressions to Java as part of the
release of Java 8 in 2014. If used correctly, lambda expressions
can reduce the amount of code required for certain tasks, and
they allow for greater efficiency through sequential and parallel
execution support. However, since lambda expressions are still
a relatively new language feature, not all developers use or
understand them.

To help developers read lambda expressions and understand
how they are used, we have presented LAMBDADOC which
automatically detects lambda expressions in a Java repository
and can generate natural language documentation for them. We
evaluated LAMBDADOC with 23 professional developers and
found that the generated documentation was perceived to be
complete, concise, and expressive. In contrast, when asked to
document lambda expressions, most of the responses produced
by our participants were inadequate.

We augmented the introduction and evaluation of LAMB-
DADOC with the results of an empirical study which found
that 11% of Java GitHub repositories make use of lambda
expressions and that exception handling is a common purpose
of using the construct. We also found that only 6% of the
lambda expressions in our data set were accompanied by a
source code comment.

In our future work, we will extend our empirical study to
take the evolution of lambda expression use into account.
We plan to deploy LAMBDADOC as a web service which
integrates with GitHub, to make it available to more developers
and further evaluate the tool. We will also design improve-
ments to the documentation generated by LAMBDADOC, to
make the documentation more concise and to resolve types
using call graph analysis. In addition, we will explore the
integration of LAMBDADOC with source code summarisation
approaches (e.g., McBurney and McMillan [19]) to generate
concise documentation for multi-line lambda expressions. We
hope that these efforts will further increase the adoption of
functional programming constructs in Java, enabling devel-
opers to take advantage of the potential performance and
readability improvements which originally motivated Java’s
foray into the realm of functional programming.

ACKNOWLEDGEMENTS

We thank all participants for their feedback on LAMB-
DADOC. We thank the Government of Saudi Arabia for sup-
porting the first author’s studies. This work has been supported
by the Australian Research Council’s Discovery Early Career
Researcher Award (DECRA) funding scheme (DE180100153).

REFERENCES

[1] K. Sharan, Beginning Java 8 Language Features: Lambda Expressions,
Inner Classes, Threads, I/O, Collections, and Streams, 1st ed. Berkeley,
CA, USA: Apress, 2014.

[2] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE Software, vol. 20,
no. 6, pp. 35–39, 2003.

[3] B. Li, C. Vendome, M. Linares-Vsquez, D. Poshyvanyk, and N. A.
Kraft, “Automatically documenting unit test cases,” in Proceedings
of the International Conference on Software Testing, Verification and
Validation, 2016, pp. 341–352.

[4] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “Docu-
menting database usages and schema constraints in database-centric ap-
plications,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2016, pp. 270–281.

[5] P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp.
58–61, 2006.

[6] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the Working Conference on Mining Software Repositories, 2014, pp.
92–101.

[7] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[8] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Cat-
egorizing the content of GitHub README files,” Empirical Software
Engineering, 2019, to appear.

[9] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[10] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, pp. 159–174, 1977.

[11] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden,
“An empirical study on the impact of c++ lambdas and programmer
experience,” in Proceedings of the International Conference on Software
Engineering, 2016, pp. 760–771.

[12] R. Khatchadourian and H. Masuhara, “Proactive empirical assessment
of new language feature adoption via automated refactoring: The case
of java 8 default methods,” Programming Journal, vol. 2, no. 3, pp.
6:1–6:30, 2018.

[13] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding
the use of lambda expressions in java,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, pp. 85:1–85:31, 2017.

[14] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proceedings
of the Annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information, 2005, pp. 68–75.

[15] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolution
of api documentation,” in Fundamental Approaches to Software Engi-
neering, D. Giannakopoulou and F. Orejas, Eds., 2011, pp. 416–431.

[16] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
Proceedings of the Working Conference on Reverse Engineering, 2007,
pp. 70–79.

[17] W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan, “On
the relationship between comment update practices and software bugs,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2293–2304, 2012.

[18] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in Proceedings of the International Conference on Program
Comprehension, 2013, pp. 23–32.

[19] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[20] A. T. T. Ying and M. P. Robillard, “Code fragment summarization,” in
Proceedings of the Joint Meeting on Foundations of Software Engineer-
ing, 2013, pp. 655–658.

[21] R. P. Buse and W. Weimer, “Automatic documentation inference for
exceptions,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2008, pp. 273–282.

[22] S. Zhang, C. Zhang, and M. D. Ernst, “Automated documentation
inference to explain failed tests,” in Proceedings of the International
Conference on Automated Software Engineering, 2011, pp. 63–72.

[23] L. Racchetti, L. Tacconi, and C. Fantuzzi, “Generating automatically
the documentation from plc code by d4t3 to improve the usability and
life cycle management of software in automation,” in Proceedings of
the International Conference on Automation Science and Engineering,
2015, pp. 168–173.

[24] M. Hassan and E. Hill, “Toward automatic summarization of arbitrary
java statements for novice programmers,” in Proceedings of the Inter-
national Conference on Software Maintenance and Evolution, 2018, pp.
539–543.

[25] R. P. Buse and W. Weimer, “Automatically documenting program
changes,” in Proceedings of the International Conference on Automated
Software Engineering, 2010, pp. 33–42.

[26] M. Kim, D. Notkin, D. Grossman, and G. Wilson, “Identifying and sum-
marizing systematic code changes via rule inference,” IEEE Transactions
on Software Engineering, vol. 39, no. 1, pp. 45–62, 2013.

[27] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vsquez, G. C.
Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-demand developer
documentation,” in Proceedings of the International Conference on
Software Maintenance and Evolution, 2017, pp. 479–483.

