
179
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_16

CHAPTER 16

Software Engineering
Dashboards: Types,
Risks, and Future
Margaret-Anne Storey, University of Victoria, Canada

Christoph Treude, University of Adelaide, Australia

�Introduction
The large number of artifacts created or modified in a software project and the flood of

information exchanged in the process of creating a software product call for tools that

aggregate this data to communicate higher-level insights to all stakeholders involved. In

many projects—in software engineering as well as in other domains—dashboards are

used to communicate information that may bring insights on the productivity of project

activities and other aspects. Stephen Few defines a dashboard as “a visual display of the

most important information needed to achieve one or more objectives which fits entirely

on a single computer screen so it can be monitored at a glance” [4].

Dashboards are cognitive awareness and communication tools designed to help

people visually identify trends, patterns and anomalies, reason about what they see,

and help guide them toward effective decisions [3]. Their real value and one of the

main reasons for their popularity is their ability to “replace hunt-and-peck data-

gathering techniques with a tireless, adaptable, information flow mechanism” [9].

The goal of dashboards is to transform the raw data contained in an organization’s

repositories into consumable information. In software engineering, dashboards are

used to provide information related to questions such as “Is this project on schedule?”

https://doi.org/10.1007/978-1-4842-4221-6_16

180

and “What are the current bottlenecks?” and “What is the progress of other teams?” [7].

In this chapter, we review the different types of dashboards that are commonly used in

software engineering and the risks that are associated with their use. We conclude with

an overview of current trends in software engineering dashboards.

The link between productivity and dashboards becomes apparent when investigating

one of the dimensions that Few proposes for the categorization of dashboards: type of

measures. While not always intended this way, much of the quantitative data presented

in developer dashboards can also be interpreted as a measure of developer productivity

(discussed in more detail in Chapter 15). For example, a bar chart that shows open issues

grouped by team can easily be interpreted as a chart highlighting the most productive

team (i.e., the team with the least open issues). The relationship between productivity of

a development team and the number of open issues is obviously much more complex,

as one of our interviewees in a study on developer dashboards confirmed: “Just because

one team has a lot more defects than another that doesn’t necessarily mean that the

quality of that component is any worse” [7]. Instead, a component might have more

defects because it is more complex, because it has a user-facing role, or because it is a

technically more central component that other components depend on, exposing it to

more unexpected conditions.

Few also proposes a categorization of dashboards based on their role, in particular

discussing dashboards in terms of their strategic, analytical, and operational purposes.

In software projects, the use of dashboards for operational purposes is the most

common. Such dashboards are dynamic and based on real-time data, supporting

drilling down to specific artifacts such as critical bugs in a software project. Dashboards

for strategic purposes (so called “executive dashboards”) tend to avoid interactive

elements and focus on snapshots rather than real-time data.

Software developers produce many textual artifacts, ranging from source code

and documentation to bug reports and code reviews. Therefore, it is unsurprising

that dashboards used in software projects often combine different types of data, i.e.,

qualitative and quantitative data. A bar graph showing the number of open issues

grouped by team would be a simple example of quantitative data, whereas a tag cloud of

the most common words used in bug reports is a simple representation of some of the

qualitative data present in a software repository.

Another important dimension highlighted by Few is the span of data. When creating

a dashboard for a software project, many considerations have to be taken into account;

e.g., should the dashboard feature enterprise-wide data or just data from a single project

(bearing in mind that projects tend not to be independent)? Should each developer have

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

https://doi.org/10.1007/978-1-4842-4221-6_15

181

their own personalized dashboard, or do all dashboards from a project look the same? In

addition, dashboards can cover different timespans, such as the entire lifetime of a project,

the current release, or the last week. In software projects, one week is not necessarily like

any other. For example, development activity during feature or code freeze is expected to

be different from the activity when starting to work on features for a new release.

�Dashboards in Software Engineering
Within software engineering, dashboards are used to provide information and metrics

on the product under development, as well as to display information or to support

the analysis of the development process. Typically, they are designed with a specific

stakeholder and goal in mind, and many of these goals relate directly or implicitly to

some aspect of productivity, including the product quality, work velocity, or stakeholder

satisfaction (see Chapter 5).

In the following text, we present some high-level categories of dashboards (those

that support individual developers, teams, projects, and communities), alluding to the

stakeholders who use the dashboard and to the kinds of tasks they support within each

category, as well as where those dashboards tend to be hosted.

We do not aim to be exhaustive but rather to illustrate the myriad of dashboards

that are used to support software engineering productivity. Most software engineering

dashboards support operational or analytical tasks, while fewer support strategic

tasks. Many of these dashboards are static, but more and more, software dashboards

are becoming interactive as they play an increasingly important role in how software

productivity is understood, measured, and managed.

�Developer Activity
Dashboards may be used to display individual developer activity and performance,

such as how coding time is spent (authoring, debugging, testing, searching, etc.), how

much focus time the developers have in a given time frame, the number and nature of

interruptions they may face, time spent using other ancillary tools, coding behaviors

(e.g., speed of correcting syntactical errors), and metrics indicating how many lines

of code or features they contributed to a repository. This information, when used by

the developers themselves, can assist in personal performance monitoring, as well

as personal productivity improvements especially when the dashboards allow the

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

https://doi.org/10.1007/978-1-4842-4221-6_5

182

comparison of such information over time. Such dashboards also help developers reveal

bottlenecks from the project code itself (which areas they spend much of their coding

time on) or from their own development process (see Chapter 22 for another example of

a dashboard to increase developers’ awareness about their work and productivity).

Codealike is one example of a dashboard service that integrates with a developer’s

IDE and supports developers in visualizing their own activities showing time spent

navigating the Web (if they opt to use an additional web browser plugin), focus and

interruption time, coding behavior over time, and coding effort on specific areas of the

project code. WakaTime similarly produces dashboards to show metrics and insights

on programming activity (such as programming language usage) and supports private

leaderboards to allow developers to compete with other developers if they wish (in

an effort to be more productive). RescueTime offers interactive features that allow

developers to set personal goals and to alert them when they may go off track (e.g., if they

spend more than two hours on Facebook, they receive an alert).

In addition to presenting personal productivity information in dashboards, many

of these services go beyond that and will also send information on a regular basis to

the developers (or other stakeholders) in an e-mail; they may even produce a metric

to represent a productivity score (see RescueTime for an example that allows the

developers to customize the productivity score), or they may further block web sites in

an attempt to improve personal productivity. The primary feature of these services are

the dashboards they provide, but we also see that they start to offer more features that go

beyond the restrictive definition of dashboards given by Few.

�Team Performance
Although many dashboards are primarily designed for developers to gain insights on

their own activities and behaviors, many display or aggregate information across a team

for other stakeholders, such as team leads, managers, business analysts, or researchers.

This team-level information may be used to improve the working environment,

development process, or tools they use. Many services (such as Codealike) provide

specific-team level dashboards showing team metrics and even ranking information

across developers. Some services also provide support for teams to actively improve

their performance together. However, there is concern that information captured

about individual developer behaviors may be inaccurate at capturing all the activities

individual developers may do and that the information may be used inappropriately.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

https://doi.org/10.1007/978-1-4842-4221-6_22

183

Keeping track of and monitoring work at a team level is especially important for

distributed teams. The Atlassian tool suite offers dashboards that help not only the

individual developers but also the team (see https://www.atlassian.com/blog/

agile/jira-software-agile-dashboard) to maintain awareness across the team and

to regulate their work at both the individual and team levels [2]. GitHub also supports

many dashboards to present project information to teams (as we will discuss). Also, for

monitoring, development teams may use task boards for task tracking (such as Trello).

Although such task boards are not typically referred to as dashboards, they can be used

to give an overview of team performance and support team regulation.

Agile teams use many different tools for tracking project activities as they have to

deal with a lot of data to help them manage and reflect on their process, in particular

tracking their performance across sprints (e.g., see https://www.klipfolio.com/blog/

dashboards-agile-software-development). In agile teams, dashboards especially may

play an important role for managers. Managers, who are responsible for keeping track of

all things in flight during a sprint, may rely on dashboards that visualize all open issues

for a particular project to see who open issues are assigned to and what is the priority of

open issues. Burndown charts, shown in dashboards, may show how the team is tracking

against a predicted burndown line. Axosoft is another service to support agile teams in

visually tracking their progress so that they can plan more accurately.

Teams commonly use TV monitors for displaying dashboards so that the team and

managers can maintain awareness at a glance on how sprints are progressing in agile

projects, while dashboard services such as the one provided by Geckoboard can be used

to show project-level monitoring information on TV screens to help teams focus on key

performance metrics.

�Project Monitoring and Performance
For showing activity at a specific project level, GitHub, like other repository services,

extensively uses dashboards to provide insights to managers, project owners, and other

developers who may want to decide on the value of using, depending on or contributing

to particular projects (see https://help.github.com/categories/visualizng-

repository-data-with-graphs/). Grafana, used by the GitHub Stats monitoring

project, visualizes project forks, stars, number of issues, and other project metrics over

time. Bitergia also provides many dashboards for visualizing project and organization

information pulling data from many diverse tools and integrations.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

https://www.atlassian.com/blog/agile/jira-software-agile-dashboard
https://www.atlassian.com/blog/agile/jira-software-agile-dashboard
https://www.klipfolio.com/blog/dashboards-agile-software-development
https://www.klipfolio.com/blog/dashboards-agile-software-development
https://help.github.com/categories/visualizng-repository-data-with-graphs/
https://help.github.com/categories/visualizng-repository-data-with-graphs/

184

As many projects nowadays rely on continuous integration and deployment services,

many dashboards visualize how code is moving through the pipeline, especially as

new features are flighted in A/B testing experiments. Additional DevOps support may

be provided by visualizing the performance of running services, tracking outages, etc.

(see https://blog.takipi.com/the-top-5-devops-dashboards-every-engineer-

should-consider/, https://blog.newrelic.com/2017/01/18/dashboards-devops-

measurement/ and https://www.klipfolio.com/resources/dashboard-examples/

devops for some discussion on DevOps dashboards).

There are also project-level dashboards that focus particularly on customer

management. Zendesk dashboards visualize how customers use specific web

applications, as well as how they use their support channels for communicating with

the development team, and they visualize satisfaction levels of the end users. Similarly,

AppNeta creates dashboards that provide insights on end-user satisfaction with web

applications over time. UserVoice also provides dashboards but goes one step further

by helping to prioritize customer feedback in the form of a road map to guide future

development priorities.

�Community Health
Closely related to project-level dashboards, other dashboard services aim specifically at

visualizing data at a community or ecosystem level. For example, the CHAOSS web site

gathers and visualizes data to support the analytics of community health for open source

communities such as Linux. For Linux, the foundation defines interesting health metrics

such as number of licenses used among others (see https://github.com/chaoss/

metrics/blob/master/activity-metrics-list.md).

�Summary
As we can see, the landscape of dashboards that already exist (and could exist) for

visualizing software development information is extremely broad and varied. They

support a wide array of stakeholders and tasks and are hosted on different media.

We also see some dashboards stretching the definition of a dashboard by providing

additional features and services. However, we can also anticipate that the power they

provide in terms of analytics introduces some risks, which we discuss next.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

https://blog.takipi.com/the-top-5-devops-dashboards-every-engineer-should-consider/
https://blog.takipi.com/the-top-5-devops-dashboards-every-engineer-should-consider/
https://blog.newrelic.com/2017/01/18/dashboards-devops-measurement/
https://blog.newrelic.com/2017/01/18/dashboards-devops-measurement/
https://www.klipfolio.com/resources/dashboard-examples/devops
https://www.klipfolio.com/resources/dashboard-examples/devops
https://github.com/chaoss/metrics/blob/master/activity-metrics-list.md
https://github.com/chaoss/metrics/blob/master/activity-metrics-list.md

185

�Risks of Using Dashboards
Despite their usefulness to turn repository data into consumable information,

dashboards come with a number of risks. Indeed, just as others in our community are

rethinking productivity in software engineering, we suggest that how dashboards are

used should be reconsidered at the same time. In the following, we discuss these risks in

the context of software engineering projects and software developer productivity.

•	 Dashboards favor numbers over text: While many of the artifacts

that software developers work with are textual, such as requirement

specifications, commit messages, or bug reports, presenting the

content of these textual artifacts on a dashboard is not trivial.

Techniques that aggregate textual information—for example, topic

modeling or summarization algorithms—do not always produce

perfect results, and it is therefore often easier to present numbers

instead of text on a dashboard. As a result, a developer dashboard is

more likely to contain information on how many issues were closed

than information on which feature is the most mentioned in bug

reports. To address this challenge, further advances in text processing

research, especially applied to the heterogeneous artifact landscape

of a software project, are needed.

•	 Dashboards might not display relevant context: The aggregation of

information implies missing some of the details, which often means

that not all contextual information is available. A dashboard that

displays information about a critical bug fix might not contain all the

caveats of this bug fix, and a dashboard that compares time spent

in a browser to time spent in an IDE might not contain information

about which of the activities were related to software development. In

addition, no two software projects are alike. While the presentation of

aggregated information on dashboards might invite users to compare

between projects and companies, these comparisons are often

flawed since they miss important context. To some extent, this can be

addressed by making a dashboard interactive and allowing its users

to drill down to more complete information.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

186

•	 Dashboards often don’t explain: A dashboard might be able to show

that one team has fewer open issues than another team, that one

component has fewer bugs than another component, or that a

developer has spent more time in the IDE compared to the previous

month. However, many dashboards do not provide explanations for

such observations, and without explanations, this information might

not be actionable. For example, a team would not know what they

need to do to decrease the number of open issues they have, it might

not be obvious why one component has more issues than another,

and a developer might not know what they can do to improve their

productivity.

•	 You get what you measure: Goodhart’s law—usually cited as “When

a measure becomes a target, it ceases to be a good measure”—

describes another risk of the use of dashboards in software

development projects. For example, if a dashboard emphasizes the

number of open issues, developers will become more careful about

opening new issues, e.g., by combining several smaller issues into

one. Similarly, if a dashboard conceptualizes productivity as time

spent in the IDE, developers might become hesitant to look up

information outside of the IDE. In both examples, this was likely not

the intent of the dashboard, yet decades of research on gamification

have shown that humans tend to game such systems. As one of our

interviewees in a previous study [8] told us: “Developers are the most

capable people on Earth to game any system you create.”

•	 Dashboards can only be as good as the underlying data: Many

studies have found that data captured in software repositories does

not always accurately reflect the development reality. For example,

Aranda and Venolia [1] found that the coordination that happens

around software bugs cannot solely be extracted from software

repositories as it would lead to incomplete and often erroneous

accounts of coordination. In a study on GitHub, Kalliamvakou et al.

[5] found that almost 40 percent of all pull requests do not appear

as merged, even though they actually have been merged. These are

just two examples of cases where looking at repository data alone

provides an inaccurate account of different aspects of software

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

187

development. If a dashboard is based on such data, it is impossible

for this dashboard to display accurate information.

•	 Dashboards can only display data that has been tracked somewhere:

While today’s software repositories are able to capture many of the

actions taken by software developers, there are still many activities

that are not captured. For example, a repository would not be able to

capture the watercooler conversation between developers that might

have provided a crucial piece of coordination for fixing a particular

bug. Negotiations with clients taking place outside of the confines of

a developer office would be another example of critical information

that is often not appropriately captured in a software repository.

Information that does not exist in a repository cannot be displayed

in a dashboard, and users of dashboards have to be aware that a

dashboard might not always provide the complete picture.

•	 Performance-related data on dashboards can easily be misinterpreted as

productivity data: Many of the metrics that can be easily visualized on a

dashboard, such as number of open issues or number of lines of code, can

be interpreted as productivity measures, enabling comparisons between

developers, teams, or components that ignore the many complexities of

software development. As discussed in the previous chapter, developers

have many reservations about such productivity measures. As a result,

they will only accept dashboards that do not attempt to reduce the

complexity of a developer’s contribution to a single number. Stephen Few

notes that analytical dashboards need subtle performance measures—

until such performance measures have been established, they should not

be replaced with their nonsubtle counterparts.

•	 Dashboards often do not encode the actual goals well: There can be a

tension between the goals of a software development organization

and the items that are surfaced in a dashboard. While the goal of an

organization might be long-term value creation, dashboards often

use relatively short time spans. Values such as customer satisfaction

are not readily extractable from a software repository, even though

they might actually align with the organization’s goal much better

than the number of open issues in a project or time spent in the IDE.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

188

�Rethinking Dashboards in Software Engineering
As software engineering becomes more and more data driven and the tools for creating

dashboards become easier to use, we expect to see a growth in the role that dashboards

play in software engineering and an increase in the number of features they provide.

For individual developers, dashboards provide insights on personal productivity,

while teams and projects use them for monitoring performance, and managers and

community leaders use them for decision making.

We expect that artificial intelligence, natural language processing, and

software bots [6] will also impact dashboard design and the features they provide

in the next few years. There is certainly opportunity to automate the display of

more and more insights on data but also to improve how developers and other

stakeholders collaborate with one another through dashboards. Furthermore,

artificial intelligence and natural language processing could be used to gather

insights on how and when dashboards are used, on the impact they may have on

software projects, and on how their design could be improved over time.

We may also wonder if dashboards may even partially replace other modes

of information exchange (e.g., PowerPoint slides), and indeed we have observed

(informally) that this is the case at some large software companies. Once these

dashboards render relevant data, will some stakeholders interpret the view they show

as “truth” even though the underlying data or how it is analyzed and presented may be

inaccurate, biased or misleading? Do we have sufficient understanding on the significant

role they may play in software engineering projects and furthermore on the ethical

concerns they may introduce when they accentuate or reveal data that may be sensitive

to some stakeholders?

Dashboards and the technologies to create them are likely to become ubiquitous and

easier to use over time. Whether they will enhance or possibly harm and detract from

productivity or whether they may just give insights on productivity remains to be seen,

but care should be taken in how they are created and used. We hope this chapter brings

some insights on the diverse way they may be used as well as some awareness of some of

the risks as well as opportunities they may bring to our community.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

189

�Key Ideas
These are the key ideas from this chapter:

•	 The landscape of dashboards that exist for visualizing software

development information is extremely broad and varied.

•	 For individual developers, dashboards provide insights on personal

productivity, while teams and projects use them for monitoring

performance and managers and community leaders use them for

decision-making.

•	 The power that dashboards provide in terms of analytics introduces

risks such as the misinterpretation of productivity data and the

misalignment of goals.

�References

	 [1]	 Jorge Aranda and Gina Venolia. 2009. The secret life of bugs:

Going past the errors and omissions in software repositories. In

Proceedings of the 31st International Conference on Software

Engineering (ICSE ’09). IEEE Computer Society, Washington, DC,

USA, 298–308.

	 [2]	 Arciniegas-Mendez, M., Zagalsky, A., Storey, M. A., & Hadwin, A. F.

2017. Using the Model of Regulation to Understand Software

Development Collaboration Practices and Tool Support. In CSCW

(pp. 1049–1065).

	 [3]	 Brath, R. & Peters, M. (2004) Dashboard design: Why design is

important. DM Direct, October 2004. Google Scholar

	 [4]	 Few, Stephen. 2006. Information dashboard design: the effective

visual communication of data. Beijing: O’Reilly.

	 [5]	 Kalliamvakou, E., G. Gousios, K. Blincoe, L. Singer, D. M. German,

and D. Damian. 2014. The promises and perils of mining GitHub.

In Proceedings of the 11th Working Conference on Mining

Software Repositories (MSR 2014). ACM, New York, NY, USA,

92–101.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

190

	 [6]	 Storey, M. A., & Zagalsky, A. 2016. Disrupting developer

productivity one bot at a time. In Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of

Software Engineering (pp. 928–931). ACM.

	 [7]	 Treude, C. and M. A. Storey 2010, “Awareness 2.0: staying aware

of projects, developers and tasks using dashboards and feeds,”

2010 ACM/IEEE 32nd International Conference on Software

Engineering, Cape Town, 2010, pp. 365–374.

	 [8]	 Treude, C., F. Figueira Filho, and U. Kulesza. 2015. Summarizing

and measuring development activity. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering

(ESEC/FSE 2015). ACM, New York, NY, USA, 625–636.

	 [9]	 Gregory L. Hovis, “Stop Searching for InformationMonitor it with

Dashboard Technology,” DM Direct, February 2002.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 16 Software Engineering Dashboards: Types, Risks, and Future

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 16: Software Engineering Dashboards: Types, Risks, and Future
	Introduction
	Dashboards in Software Engineering
	Developer Activity
	Team Performance
	Project Monitoring and Performance
	Community Health
	Summary

	Risks of Using Dashboards
	Rethinking Dashboards in Software Engineering
	Key Ideas
	References

