1906.11456v1 [cs.SE] 27 Jun 2019

arxXiv

Enhancing Python Compiler Error Messages
via Stack Overflow

Emillie Thiselton and Christoph Treude
School of Computer Science
University of Adelaide
emillie.thiselton @gmail.com, christoph.treude @adelaide.edu.au

Abstract—Background: Compilers tend to produce cryptic and
uninformative error messages, leaving programmers confused
and requiring them to spend precious time to resolve the
underlying error. To find help, programmers often take to online
question-and-answer forums such as Stack Overflow to start
discussion threads about the errors they encountered.

Aims: We conjecture that information from Stack Overflow
threads which discuss compiler errors can be automatically
collected and repackaged to provide programmers with enhanced
compiler error messages, thus saving programmers’ time and
energy.

Method: We present Pycee, a plugin integrated with the
popular Sublime Text IDE to provide enhanced compiler error
messages for the Python programming language. Pycee auto-
matically queries Stack Overflow to provide customised and
summarised information within the IDE. We evaluated two Pycee
variants through a think-aloud user study during which 16
programmers completed Python programming tasks while using
Pycee.

Results: The majority of participants agreed that Pycee was
helpful while completing the study tasks. When compared to a
baseline relying on the official Python documentation to enhance
compiler error messages, participants generally preferred Pycee
in terms of helpfulness, citing concrete suggestions for fixes and
example code as major benefits.

Conclusions: Our results confirm that data from online sources
such as Stack Overflow can be successfully used to automatically
enhance compiler error messages. Our work opens up venues for
future work to further enhance compiler error messages as well
as to automatically reuse content from Stack Overflow for other
aspects of programming.

Index Terms—Compiler errors, Stack Overflow, think-aloud

I. INTRODUCTION

In Richard L. Wexelblat’s 1976 paper “Maxims for
malfeasant designers, or how to design languages to make
programming as difficult as possible” [1], published at the
second International Conference on Software Engineering,
the author facetiously proposes “cryptic diagnostics” as one
way of maximising difficulty for the user, arguing that a
useless compiler error message should only state the effect
of an error instead of its cause. Unfortunately, the reality
is often not far from this tongue-in-cheek proposal, and not
much has changed in terms of the helpfulness of compiler
error messages in the meantime: Programmers often encounter
cryptic compiler error messages that are difficult to understand

and thus difficult to resolve [2], compiler error messages
are cryptic, uninformative, terse, and misleading and pose
a significant barrier to progress [3], and they fail to convey
information accurately [4].

When faced with cryptic error messages, Wexelblat sug-
gested that “at best, the programmer can get more information
from a manual. More often, there is no help available”.
This aspect has changed significantly since the mid-70s with
the availability of software documentation from a multitude
of sources on the Internet. For example, on the question-
and-answer forum Stack Overflow,! almost 15,000 questions
have been tagged with compiler—error,” with many more
questions requesting help in understanding and addressing a
compiler error without the explicit tag—a simple search for
compiler error on Stack Overflow returns more than 350,000
results.’ Past work has found that questions which include a
specific error message are the fourth most common question
type on the site [5] and that debug-corrective questions are
common [6], [7].

Following work on automatically combining data from mul-
tiple sources related to software development with the ultimate
goal of making programmers more productive (e.g., [8]-[11]),
in this paper, we introduce PYCEE (Python Compiler Error
Enhancer), a plugin for the popular Sublime Text IDE* which
automatically augments Python compiler error messages with
data from the question-and-answer website Stack Overflow to
provide programmers with additional information in concise
and summarised form and to offer concrete suggestions for
error resolution. We chose to target Python since it is the
fastest-growing major programming language today, edging
out Java according to the recently published results of the
2019 Stack Overflow Developer Survey.’ In addition, other
programming languages, such as Java [12], have already been
the target of research to enhance compiler error messages,
while we are not aware of any similar effort for Python.

Our plugin PYCEE parses a Python compiler error message
automatically as soon as a programmer encounters an error.
PYCEE then constructs a Stack Overflow query and uses query
expansion and reformulation depending on the error type, e.g.,

Uhttps://stackoverflow.com/
Zhttps://stackoverflow.com/questions/tagged/compiler-errors
3https://stackoverflow.com/search?q=compiler+error
“https://www.sublimetext.com/
Shttps://insights.stackoverflow.com/survey/2019

https://stackoverflow.com/
https://stackoverflow.com/questions/tagged/compiler-errors
https://stackoverflow.com/search?q=compiler+error
https://www.sublimetext.com/
https://insights.stackoverflow.com/survey/2019

def game(turnPlayerA, turnPlayerB):
turnPlayerA "rock" turnPlayerB
print("PlayerA wins")

turnPlayerA "scissors" turnPlayerB

"scissors":

"paper":

File "/Users/emilliethiselton/Documents/Uni/2018/Adv Topics Enhancement/Testing/Questions/3-8.py",

print("PlayerA wins")

turnPlayerA "paper"
print("PlayerA wins")

turnPlayerB

"rock":

File "/Users/emilliethiselton/Documents/Uni/2018/Adv Topics Enhancement/Testing/Questions/3-8.py", line 16
else if turnPlayerA == "scissors" and turnPlayerB == "paper":

SyntaxError: invalid syntax

In python "else if" is spelled "elif".
Also, you need a colon after the elif and the else.

I had the same problem, when I first started (in the last couple of weeks).

def function(a):
if a == "1":
print('1a')
elif a == '2":
print('2a')

Fig. 1. Screenshot of PYCEE. The first few lines on white background show the original compiler error message produced by Python, the additional lines
show the enhanced error message produced by PYCEE. The message provided by PYCEE is a summary of Stack Overflow answer 2395167. Note that in the

screenshot, the offending line has already been corrected.

by adding related verbs and syntax from other programming
languages to the query. After selecting an answer from Stack
Overflow, PYCEE produces a customised summary of the text
and code fragments in the answer and displays the resulting
enhanced compiler error message in the Sublime Text IDE.

We evaluated PYCEE through a think-aloud user study
during which 16 participants—fourteen professionals and two
students—completed programming tasks while using two vari-
ants of PYCEE: the original PYCEE which retrieves its data
from Stack Overflow and PYCEEDOC which retrieves its data
from the official Python documentation. In total, our partici-
pants encountered 115 compiler errors during the study. The
majority of our participants agreed that PYCEE was helpful
while completing the study tasks, citing concrete suggestions
for fixes and example code as major benefits. PYCEE generally
outperformed PYCEEDOC in terms of perceived helpfulness.
Our findings confirm that external knowledge sources, such as
Stack Overflow, are not only helpful as reference documents,
but they can also be harvested automatically to enhance
compiler error messages inside an IDE. PYCEE is available
as an open-source project on GitHub.®

II. MOTIVATING EXAMPLES

In this section, we present two examples of PYCEE in action,
taken from our user study (cf. Section IV).

a) Invalid syntax: Figure 1 shows a screenshot of one
of our study participants using PYCEE. As shown in the
Figure, the participant was not familiar with Python syntax and
wrote else if instead of elif in a conditional statement aimed

Shttps://github.com/EmillieT/Pycee

at implementing Rock-paper-scissors.” The Python compiler
responded with SyntaxError: invalid syntax (first four lines
on white background in Figure 1), but did not provide any
concrete help on how to solve the error. The remaining
lines on white background in Figure 1 show PYCEE’s out-
put in this scenario, clearly stating how to fix the error
(In python "else if" is spelled "elif") and providing a code
fragment as example. The output produced by PYCEE is a
summary of Stack Overflow answer 2395167,% containing a
subset of the answer’s sentences as well as a part of the
answer’s code fragment.

b) ‘list’ object is not callable: The following two code
fragments show another example of a compiler error encoun-
tered by one of our participants who was working on a func-
tion to deduplicate lists. The compiler detected a TypeError,
explaining that ’1list’ object is not callable.

list = [3, 3, 5, 7, 7, 9, 11, 11]

new_list = list(dict. fromkeys(list))

print(new_list)

Running python —u "/Users/.../2—14.py"
From compiler:
Traceback (most recent call last):
File "/Users/.../2—14.py", line 18, in <module>
new_list = list(dict.fromkeys(list))
"list’

TypeError: object is not callable

"Note that the else if instance in line 16 had already been corrected by
the time the screenshot was taken—Iline 19 shows an uncorrected one.
8https://stackoverflow.com/a/2395167

https://github.com/EmillieT/Pycee
https://stackoverflow.com/a/2395167

PYCEE used text and code from Stack Overflow answer
12836173° to enhance this message, recommending to not
use tuple, list or other special names as a variable name,
along with an example where list had been replaced with 1:

It should work fine.
Don’t use tuple, list or other special names as
a variable name.

It’s probably what’s causing your problem.

>> 1 = [4,5,6]
>>> tuple(l)
4, 5, 6)

In this case, PYCEE did not summarise the answer since
it contains fewer than five sentences. In the next section, we
describe how PYCEE works.

III. PYCEE

PYCEE works in two phases: In the first phase, the Python
compiler error message is parsed and used to construct a query
for Stack Overflow. In the second phase, an answer from
Stack Overflow is selected, customised, and summarised. We
describe the details of this process in this section.

A. Compiler Error Message Parsing and Query Construction

As soon as the user encounters a Python compiler error
while working in the Sublime Text IDE, PYCEE parses the
corresponding compiler error message and determines the
name of the affected Python file as well as the libraries which
the user had imported, the error type (e.g., SyntaxError), and
whether the compiler returned a specific error message (e.g.,
EOL while scanning string literal). PYCEE then constructs a
Stack Overflow query, with the exact content of the query
depending on the type of compiler error. The following settings
were used in the final evaluation described in Section IV,
and they are the result of extensive experimentation and a
preliminary evaluation with student participants. Note that
the current implementation of PYCEE queries Stack Overflow
every time an error is raised. Caching responses to common
errors is part of our future work.

AttributeError, NameError. In the case of an
AttributeError or a NameError, PYCEE uses ideas from
query reformulation [13] and query expansion [14]

to construct a suitable Stack Overflow query. PYCEE
first extracts the word(s) identified by the compiler as
problematic, i.e., the ones surrounded by single quotation
marks (e.g., and Number in the error message
‘module’ object has no attribute ‘Number’). Following Stefik
and Siebert’s conjecture that syntactical variations of
programming language constructs might affect accuracy
among programmers [15], PYCEE then looks up each word
in an online resource cataloguing syntax across programming
languages.! PYCEE attempts to locate each word in one
of the tables in this resource, and if successful, replaces

module

“https://stackoverflow.com/a/12836173
10http://rigaux.org/language- study/syntax-across-languages.html

the word with the most frequently occurring word in the
same table while removing any non-letters. Adopting the
insights of related work with regard to the importance of
tasks (e.g., [16])—programmers are usually not interested
in a concept by itself, but work with the concept as part
of an action or task—PYCEE then attempts to find actions
associated with each word. We use task phrases extracted by
TaskNav [17], [18] from the titles of the one million most
recent Stack Overflow threads tagged with python as input
data, and determine the verb most commonly associated with
each word. In addition, the following Python data types are
replaced by their English equivalent (e.g., str — String)
during query construction: int, bool, str, and dict.'! Words
are replaced with their most common domain-specific
synonym, using the SEWordSim database [19]. The final
search query is then expanded to contain the error type, the
words, and the associated verbs.

SyntaxError. In the case of a SyntaxError, PYCEE first
determines whether the error might stem from a common
Python programming mistake [20], i.e., mismatched quotes,
mismatched brackets, or incorrect syntax for for-loops, while-
loops, and conditionals. In these cases, PYCEE adds the
terms quotation marks, bracket meanings, for loop, while loop,
and else if syntax to the query, respectively. Using a cat-
alogue of Python keywords and builtins, PYCEE attempts
to fix typos if the word similarity is at least 0.6 us-
ing Python’s get_close_matches function.'? If the error was
not caused by a common mistake, the search query is
SyntaxError: invalid syntax.

TypeError. In the case of a TypeError, PYCEE uses the
phrase must have first callable argument as Stack Overflow
query if the compiler error message contains the words
the first argument must be callable, and it removes the error
type from the query if the compiler error message contains the
phrase not all arguments converted during string formatting.
These two exceptions were added as a result of our preliminary
user study. In all other cases, the original error message is used
for the query, including error type and description.
IndentationError, TabError. In the case of an
IndentationError Or a TabError, PYCEE performs a Stack
Overflow query with the error description only, i.e., not
including the error type.

KeyError. In the case of a KeyError, PYCEE queries Stack
Overflow using only the error type, but not its description.
All other cases. For all other cases, PYCEE queries Stack
Overflow using the error type and its description.

We do not include code fragments as part of the Stack
Overflow queries since past work has shown that the Stack
Overflow search does not handle code fragments well [21].
We encourage readers to inspect PYCEE’s source code® for
additional details.

"Note that the names of other datatypes which can be retrieved using the
dir(__builtins__) command, such as tuple, are already English words.
2https://docs.python.org/2/library/difflib.html#difflib.get_close_matches

https://stackoverflow.com/a/12836173
http://rigaux.org/language-study/syntax-across-languages.html
https://docs.python.org/2/library/difflib.html#difflib.get_close_matches

B. Answer Selection, Customisation, and Summarisation

The Stack Overflow query is configured to only return
threads tagged with python which contain at least one answer,
sorted by relevance according to the Stack Overflow search
algorithm.'®> PYCEE considers the first page of search results,
i.e., up to ten Stack Overflow threads, and selects the first
accepted answer in these ten threads for further processing.
If no answer has been accepted, the answer with the highest
score is selected, provided its score is greater than zero. If no
such answer is available, PYCEE does not produce an enhanced
compiler error message.

The selected answer is customised and summarised as
follows:

Customisation. PYCEE locates error messages in the answer’s
code fragments, identifies the line which caused the error,
and replaces any error message in the answer’s code with the
compiler error message encountered by the user to better fit the
code to the user’s situation. If the error is a SyntaxError, PYCEE
uses the arrow (+) position in the compiler error message to
verify that the compiler has identified the correct error line. If
that is not the case and if the Stack Overflow answer mentions
an offending line (the erroneous line), PYCEE replaces this line
with the selected line from the answer.

Summarisation. PYCEE summarises the selected answer us-
ing Luhn’s summarisation algorithm [22] to at most four
sentences, following the advice of Nienaltowski et al. [23]
who reported that longer error messages do not benefit pro-
grammers. We experimented with different summarisation
algorithms, aiming to maximise the quality criteria of un-
derstandability, completeness, and efficiency [24], and found
Luhn’s algorithms to work best on our data. Special characters
are converted into a more user-friendly format (e.g., > — >),
and unnecessary formatting and padding are removed from the
summary. Note that while the goal of the summarisation is to
extract parts of posts which are most relevant to an error, there
is of course no guarantee that the summary will only contain
relevant content.

PYCEE then returns the result and displays it below the
original compiler error message in the Sublime Text IDE,
cf. Figure 1.

1V. EVALUATION METHODOLOGY

In this section, we outline our evaluation methodology for
PYCEE in terms of research questions and data collection and
analysis.

A. Research Questions

While some researchers have identified common problems
with compiler error messages (e.g., [2]-[4], [12]), not much of
this work has focused on the Python programming language,
with Guo’s work [20] as a notable exception. However, the
focus of Guo’s work is not on programmer perceptions of

Bhttps://meta.stackoverflow.com/questions/355532/
how-does-sort-by-relevance-work

compiler error messages. Therefore, and to establish a baseline
for PYCEE, with our first research questions, we ask:

RQ1 How do programmers perceive Python compiler error
messages?

After establishing this baseline, our next research question
analogously investigates the compiler error messages produced
by PYCEE:

RQ2 How do programmers perceive working with PYCEE?

One of the key features of PYCEE is its reliance on
Stack Overflow as a data source for enhancing compiler
error messages. To investigate the impact of this feature, we
compare PYCEE to a baseline with similar functionality but
with the official Python documentation as data source. We
conduct this comparison in terms of perceived helpfulness,
perceived potential time savings, and programmer preferences,
as captured by our last research question:

RQ3 How do programmers perceive the two PYCEE variants?

RQ3.1 How do programmers perceive the helpfulness of
the PYCEE variants?

RQ3.2 How do programmers perceive the potential time
savings of the PYCEE variants?

RQ3.3 Which PYCEE variant do programmers prefer and
why?

B. Data Collection

To answer our research questions, we conducted a think-
aloud user study during which 16 participants—fourteen pro-
fessional programmers and two students—used two PYCEE
variants while completing programming tasks in Python. In
the following, we characterise the study protocol, tasks, and
participants, and we introduce the baseline tool PYCEEDOC.

1) Study Protocol: Table 1 shows the questions that we
asked each participant before, during, and after the study. To
ensure that all participants had the same experience and used
the same versions of Sublime Text and Python as well as
the same set of pre-installed libraries, all participants used
the Sublime Text IDE plugins PYCEE and PYCEEDOC by
remotely connecting to the first author’s machine using the
TeamViewer remote access software.'*

All studies started with questions aimed at collecting demo-
graphic information regarding programming experience, pro-
gramming job, preferred code editor, and Python experience,
followed by questions aimed at answering our first research
question about programmers’ perceptions of Python compiler
error messages and their usual debugging processes.

Participants were then given at least one Python task (see
below for task selection) to solve with each variant of PYCEE
enabled, with the order in which the variants were chosen
alternating between participants. Participants were generally
limited to 20 minutes per task, however, if they were willing
to spend more than one hour for the overall study session, they
were allowed to spend more time on each individual task. If
a participant had not written any code five minutes into a

https://www.teamviewer.com/en/

https://meta.stackoverflow.com/questions/355532/how-does-sort-by-relevance-work
https://meta.stackoverflow.com/questions/355532/how-does-sort-by-relevance-work
https://www.teamviewer.com/en/

TABLE I
QUESTIONS ASKED DURING THE USER STUDY

question answer
How many years programming experience do you have? int
Do you use programming for your job? If so, what do you do? description

© How much experience do you have with Python? int, description
qg Do you believe Python compiler error messages provide enough information? yes/no, description
m What resources do you usually reference when debugging code? description
Do you believe the information in these resources usually assists you in solving your problem? yes/no, description
What do you usually use to edit code? list
What are you doing / thinking now? (prompt if required) extended answer
Overall, do you believe the plugin was helpful? agreement scale
o0 Why? extended answer
& Opverall, do you believe the plugin saved time? agreement scale
g Why? extended answer
Overall, were you satisfied with the information provided by the plugin? agreement scale
Why? extended answer
What did you like and/or dislike about the plugin? extended answer
Which plugin did you prefer? PYCEE/PYCEEDOC
.. Why did you prefer this plugin? extended answer
ﬁ What could make this plugin better? extended answer

What would the ideal debugging plugin/tool do?
Any other comments?

extended answer
extended answer

task or verbally expressed that they had no idea what the task
was asking them to do or how to solve it, they were offered
another task. If a participant did not encounter any compiler
error while completing a task, they were given another task
until they encountered a compiler error to ensure that both
PYCEE variants were used by all participants. Depending on
how long participants took per task, they were given the choice
of another task or a chance to improve their existing solution
until the end of the session.

To best replicate a real programming setting, participants
were explicitly given permission to execute code and to refer to
the Internet while completing the study tasks. We clarified that
the purpose of the study was not to assess their programming
ability and we encouraged them to think aloud during the
study. To not bias participants with leading questions or hints,
we only prompted them by asking the pre-defined questions
“What are you doing / thinking now?” during their work if
needed.

After participants had used a PYCEE variant, we inquired
about its perceived helpfulness, time savings, satisfaction, and
preferences along with the corresponding reasons. To ensure
that responses to these questions were unbiased, participants
were told no information about the PYCEE variants other than
they provide “enhanced error messages”. At the end of each
study session, we asked which PYCEE variant they preferred
and how the tool could be further improved.

All study sessions were video and audio recorded, and ex-
tensive notes were taken during each session. PYCEE recorded
all compiler errors encountered during a session and stored
information regarding the error type and description. Note that
we cannot make raw data available to protect our participants’
privacy.

2) Study Tasks: To use objective criteria for the creation of
study tasks to the extent possible and not bias the tasks toward

TABLE 11
ASSIGNMENT OF TASKS TO PARTICIPANTS, STARS INDICATE DIFFICULTY.
Pg AND P7 SKIPPED ONE TASK EACH. P13 SKIPPED TWO TASKS AND
PREFERRED TO EXECUTE CODE FOR THEIR OWN TASK FOR PYCEEDOC.

PYCEE

Decode A Web Page™****
Decode A Web Page Two™****
Decode A Web Page™***
Decode A Web Page Two™****
Decode A Web Page™***
Password Generator****
Decode A Web Page™****
Rock Paper Scissors®**
Reverse Word Order***

Tic Tac Toe Game***

Cows And Bulls***

Password Generator™****

PYCEEDOC

P; Password Generator****
Py Password Generator

P3 Password Generator****
Py Decode A Web Page™****
Ps Tic Tac Toe Game™***

Ps Check Primality Functions***
P7; Check Primality Functions***
Pgs Guessing Game One***
Py Guessing Game One***

P1o Rock Paper Scissors*** Guessing Game One***
Pj1 Tic Tac Toe Game®*** Guessing Game One***
P12 Guessing Game Two*** Cows And Bulls***
P13 Own Guessing Game One***
P14 List Overlap Comprehensions** Fibonacci**

List Remove Duplicates**
Pi5 Tic Tac Toe Game*** Cows And Bulls***
P16 List Comprehensions** String Lists**

PYCEE, we chose study tasks from the Practice Python web-
site, a resource aimed at providing small, short, and relevant
introductory Python programming exercises for beginners.!>
The site contains 25 Python tasks after merging sub-tasks
which are part of a larger task and excluding tasks not suitable
for the study, categorised by their difficulty into four categories
(from one chilli up to four chillies, with increasing difficulty).
We eventually excluded two tasks which required stable and
fast Internet access (decoding a web page, parts one and
two) after we noticed that the Internet connection speed of
participants varied. We also excluded one task that required

Shttps://www.practicepython.org/

https://www.practicepython.org/

programming

Pyhon| ——[[] o o

é

Fig. 2. Participant experience in years (log scale)

TABLE III
RESOURCES USED WHEN DEBUGGING CODE

resource participants
Stack Overflow 13
Google 10
Official Documentation 6
Compiler 1

graphing of data, which did not work in our setup with
Sublime Text. To ensure that participants did not find the tasks
too trivial and to give us a realistic chance at encountering
compiler errors, tasks were allocated to participants according
to their difficulty rating: For participants who indicated at most
half a year of Python experience, we allocated two-chilli tasks,
and for participants who indicated at least half a year of Python
experience, we allocated three- and four-chilli tasks. Within
these constraints, tasks were assigned randomly to participants.
Table II shows the assignment.

3) Study Participants: We advertised our study on social
media and through professional contacts and we recruited
participants through the freelancing website Upwork,'¢ result-
ing in a total of 16 participants. The majority of participants
(14/16 = 88%) were professional programmers who use
programming as part of their job, the remaining two were
students. Job titles ranged from software developer and project
manager to CTO and big data engineer. Figure 2 shows the
experience of participants in years. Participants had a median
of five years of programming experience, with a minimum of
two years and a maximum of 52 years, and they had a median
of three years of Python experience, with a minimum of four
months and a maximum of 20 years.

As shown in Table III, the majority of participants in-
dicated to resort to Stack Overflow (13/16 = 81%) and
Google (19/16 = 63%) when debugging code. Other resources
mentioned included colleagues, textbooks, tutorial sites, and
discussion forums. Table IV shows the code editors usually
used by participants, with Sublime Text (7/16 = 44%) and
PyCharm (6/16 = 38%) being the most common. Other editors
mentioned included Eclipse, IntelliJ, Atom, and Vi.

16https://www.upwork.com/

TABLE IV
CODE EDITORS USUALLY USED BY PARTICIPANTS

resource participants
Sublime Text 7
PyCharm 6
Visual Studio 4
Vim 2

4) PYCEEDoOC: To be able to assess the helpfulness of us-
ing content from Stack Overflow to enhance Python compiler
error messages, we implemented a baseline called PYCEEDOC
which accesses the official Python documentation for each
compiler error instead of Stack Overflow. When encountering
a compiler error, PYCEEDOC reproduces the corresponding
content from the Exceptions page of the Python API'7 in
the Sublime Text IDE. Note that PYCEEDOC does not make
use of the description of compiler error messages, but only
uses the error type since there is only exactly one explanation
available in the official documentation for each error type. To
be compatible with the Sublime Text IDE, we removed links
from the documentation as well as any version changes. As an
example, the documentation for IndentationError states: “Base
class for syntax errors related to incorrect indentation. This is

a subclass of SyntaxError”.!8

C. Data Analysis

In this section, we describe how we analysed the collected
data to answer each of our research questions.

1) RQI: Programmer perceptions of Python compiler error
messages: To answer our first research question, we analysed
participant responses about general perceptions of Python
error messages and the resources typically referenced when
debugging (cf. Table I). We conducted open coding following
the definition of Strauss and Corbin [25], i.e., generating
categories and considering their variations response by re-
sponse [26]. The coding was done by the second author
using NVivio [27] and verified by the first author. Where
applicable, we quote participants when presenting findings to
increase traceability to raw data. We show a subset of codes
in the following text in italics, and we indicate how many
participants mentioned the particular code in superscript. Note
that these numbers only indicate how much evidence the data
analysis yielded for each code, they do not necessarily indicate
the importance of a code since we did not explicitly ask all
participants about each code specifically.

2) RQ2: Programmer perceptions while using PYCEE: To
answer our second research question, we analysed the notes we
took and the screen and audio recordings of participants using
PYCEE during the think-aloud part of the study. Since these
notes were taken separately for each of the compiler errors
encountered by participants during the study, we analysed the
notes compiler error by compiler error during open coding.
The coding was conducted again by the second author and
verified by the first author.

3) RQ3: Programmer perceptions of PYCEE variants: To
answer our last research question, we analysed the partici-
pants’ responses regarding helpfulness, time savings, satisfac-
tion, and preference of each PYCEE variant. In addition to
reporting the responses on the Likert scales, we qualitatively
analysed the reasons that participants gave for their opinions,
using the previously described qualitative analysis process.

17https://docs.python.org/3/library/exceptions.html
Bhttps://docs.python.org/3/library/exceptions.html#IndentationError

https://www.upwork.com/
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html#IndentationError

V. FINDINGS

In this section, we describe our findings for each research
question.

A. RQI: Programmer perceptions of Python compiler error
messages

Most participants indicated that Python compiler error
messages had room for improvement, citing issues when
encountering complex problems and the need to look at
other resources. One of the codes which emerged from our
qualitative analysis of participants’ responses regarding their
perception of Python compiler error messages was that they
are bad for beginners®. For example, when asked whether
Python compiler error messages provide sufficient information,
P, explained that “Only to people who are familiar with the
error” and Py answered “Generally no but yes after years of
experience”.

The majority of participants (12/16 = 75%) indicated that
information in other resources, such as Stack Overflow, usually
assists them in solving their problems. However, looking up
information in external resources is not trivial, as explained
by Pi5: “Most of the time but can be consuming for unique
cases”. These results support our initial motivation in building
PYCEE to bridge the gap between Python compiler errors and
documentation found in external resources.

SUMMARY RQ1

The majority of participants perceived Python compiler
error messages to have room for improvement, in par-
ticular for beginners. External resources could usually
assist participants when encountering a compiler error,
but this might be time-consuming.

B. RQ2: Programmer perceptions while using PYCEE

Table V shows the compiler errors encountered by our
study participants while using PYCEE and its baseline variant
PyYCEEDoOC. In total, participants encountered 115 compiler
errors, 62 while working with PYCEE and 53 while work-
ing with PYCEEDOC. The most common error type was
SyntaxError followed by NameError. All participants encoun-
tered at least one compiler error per PYCEE variant with a me-
dian number of two and a half errors while using PYCEEDOC
and four errors while using PYCEE. Error messages which
only differed in their variable names have been grouped and
errors caused by Sublime Text or PYCEE, such as connection
errors, have been filtered out.

When using the baseline tool PYCEEDOC, several partici-
pants criticised that the enhanced compiler error message—
directly copied from the Python API documentation—
contained foo much information'®. Py for example encoun-
tered a TypeError and did not bother to read all information
provided by the tool, stating “It’s a bit too long”. Another
common complaint was that the output of PYCEEDOC was
too generic'®, e.g., P;: “It did not tell me what I should be
doing”. Participants also noted that the documentation was too

PYCEEDOC -

PYCEE| o© — H

strongly disagree strongly agree

Fig. 3. Perceived helpfulness of PYCEE variants

formal(3), e.g., P3 noted “This is not clear at all, I want plain
English” after encountering an IndentationError. There was a
general feeling among participants that a tool for enhancing
compiler error messages should focus on common errors, as
stated by P5: “You should use common (basic) errors as test
cases when testing this plugin”.

When using PYCEE, participants commended the tool for
suggesting a fix or giving an example!®) in various scenarios.
For example, Py4, after encountering a SyntaxError, stated “It’s
helpful and suggests how to fix the problem” and P;s, also
after encountering a SyntaxError, added “I like the language
and the code examples”. These comments show that at least
in some scenarios, PYCEE was able to address the main
weaknesses participants perceived when working with the
baseline tool: a lack of specificity, formal language, and too
much information. Participants further noted the additional
context provided by PYCEE, as expressed by Pj: “I liked the
context and that it explains the specific location”. To some
extent, the success of PYCEE depended on the type of error®,
as noted by P5: “It has useful information but not for this
case [a TypeError]”. In some cases, the information provided
by PYCEE was incorrect’®. For example, P; encountered
a NameError and stated: “It provided me with the wrong
information, it was a global variable but I was told to look
in local variables”.

SUMMARY RQ2

During the think-aloud part of the study, participants
encountered a total of 115 enhanced compiler error
messages. Common perceptions about the compiler error
messages generated by the baseline tool PYCEEDOC
were that these messages contained too much infor-
mation and were too generic. Compiler error messages
generated by PYCEE were commended for including
suggestions for fixes and examples, but were not per-
ceived to be correct in all cases.

C. RQ3: Programmer perceptions of PYCEE variants

After completing the think-aloud portion of the study,
we asked participants about their perceptions of the PYCEE
variants in terms of helpfulness, time savings, and satisfaction,
along with their preference for one variant over the other.

Figure 3 shows the results for helpfulness on a 5-point
Likert scale. All but three participants (i.e., 13/16 = 81%)
agreed or strongly agreed with PYCEE’s helpfulness. The
number for the baseline tool PYCEEDOC is slightly lower at
11/16 = 69%. For PYCEE, participants explained their rating
with successful instances® where the tool had worked well,
e.g., Pig stated: “I liked how the NameError message showed

TABLE V
COMPILER ERRORS ENCOUNTERED BY STUDY PARTICIPANTS

PYCEEDOC PYCEE
type description occurrences by type | occurrences by type
AttributeError ‘X’ object has no attribute ‘Y’ 4 4 ‘ 6 6
ImportError cannot import name ‘X’ 1 4 - 2
No module named ‘X’ 3 2
IndentationError expected an indented block 1 3 8 10
unindent does not match any outer indentation level 2 2
IndexError list index out of range - 3 2 2
‘X’ index out of range 3 -
KeyError ‘class’ - - 1 1
NameError global name ‘X’ is not defined 1 11 1 13
name ‘X’ is not defined 10 12
SyntaxError EOL while scanning string literal 1 19 1 21
invalid syntax 18 20
TypeError can only concatenate list (not “str”) to list 1 7 - 5
cannot concatenate ‘str’ and ‘int’ objects 1 1
‘int’ object is not iterable 1 2
‘list” object is not callable - 1
‘NoneType’ object is not callable 2 -
unsupported operand type(s) for +: ‘X’ and ‘Y’ 1 -
‘X’ takes exactly ‘Y’ arguments (‘Z’ given) 1 1
ValueError invalid literal for int() with base 10: ‘X’ | - - 1 1
ZeroDivisionError integer division or modulo by zero ‘ 2 2 ‘ 1 1
sum | 53 53 | 62 62
Pyceedoc| L [} | [—

Prcee| o b }— |

strongly disagree strongly agree

Fig. 4. Perceived time savings of PYCEE variants

how to check for the error”. For PYCEEDOC, participants
pointed at novices as a target audience'¥, e.g., P, explained:
“It wasn’t helpful for me but it would be for novices”.

As shown in Figure 4, there were no discernible differences
in the distributions of participant perceptions regarding the
potential for time savings between the two PYCEE variants.
10/16 = 63% participants for PYCEE and 6/16 = 38%
participants for PYCEEDOC agreed or strongly agreed with
the statement that the tool saved time. Note that these results
might be biased against the PYCEE variants due to slow
Internet connection of some participants as a result of the
remote study setup. The reasons which participants mentioned
for their perceptions did not differ much between the PYCEE
variants: Some participants found that they did not have to look
for information elsewhere™®, such as Pg who stated “Yes, I
could skip using the browser”. In other cases where PYCEE
was not helpful, participants still needed to search elsewhere,
e.g., Pi5: “I still need to search how to fix the problem”.

In terms of user satisfaction, both PYCEE variants scored
equally well as shown in Figure 5. In both cases, 9/16 = 56%
agreed or strongly agreed with the statement that they were
satisfied with the tool. For PYCEE, participants justified their

I
PYCEEDoOC - ©
PYCEE |- °

strongly disagree strongly agree

Fig. 5. User satisfaction for PYCEE variants

answers by referring to the style of the enhanced error mes-
sages'®) and the presence of code examples'®). For example,
P, explained: “I liked the code examples and full sentences in
normal English, written for humans”. On the other hand, one
of the disadvantages of PYCEE is that it relies on information
from Stack Overflow which may or may not be correct. Several
participants mentioned this trade-off, e.g., Py: “The additional
information is helpful and saves time but the information was
not always correct and then you lose time”. For PYCEEDOC,
participants commended the additional context®) added in the
enhanced compiler error message, e.g., P, stated “Some of it
expands the information and provides context ... and focuses
on the problem”. However, participants complained about a
lack of direction® in fixing errors, e.g., Py3: “It says what
has happened but not how to fix it”.

Finally, we asked participants which PYCEE variant they
preferred. As shown in Table VI, there is a preference toward
PYCEE, with an equally large number of participants not
having a preference. Among those who preferred PYCEE, i.e.,
the variant relying on Stack Overflow, participants mentioned
reasons such as “It felt more personal” (P,) and the presence
of examples™®, e.g., Py: “Both seemed the same, the examples

TABLE VI
PREFERRED PYCEE VARIANT

variant participants
PYCEE 7
PYCEEDOC 2
no preference 7

from the plugin were the best part”. Note that all examples
came from Stack Overflow and were therefore only available
in PYCEE.

SUMMARY RQ3

The majority of participants agreed that PYCEE is help-
ful and that it saves time. When compared to the baseline
PYCEEDOC, participants generally preferred PYCEE in
terms of helpfulness, referring to concrete suggestions
on how to fix compiler errors and code examples as
strong points.

VI. DISCUSSION AND OPEN RESEARCH CHALLENGES

Our work has provided evidence that it is indeed possible
to use data from online sources such as Stack Overflow to
automatically enhance compiler error messages. The majority
of participants agreed that PYCEE is helpful and that it
saves time, primarily thanks to the inclusion of code exam-
ples and concrete suggestions on how to fix errors in the
automatically generated compiler error messages. A trade-
off we encountered as part of this work is the potentially
low quality of content on Stack Overflow (see for example
Ragkhitwetsagul et al.’s recent work on toxic code snippets
on Stack Overflow [28]). While Stack Overflow likely contains
information on most errors, not all of it is correct or relevant.
In one case, P; had misspelled the Python print command
as pint. PYCEE provided advice on how to check for the
existence of a local variable, using the variable name myVar in
a code example, which led to additional confusion. In another
case, Pi3 attempted to concatenate a string and an integer
using the + symbol. PYCEE produced a code snippet with a
call to Python’s lambda function which had no relevance to
the solution (a call Python’s str function). We will continue
to explore these challenges in future work, e.g., by trying to
identify minimal working examples on Stack Overflow.

With one of the last questions in our study, we asked
participants to describe their hypothetical ideal debugging tool.
While P;;’s response sums up the general sentiment well:
“It would solve the error for me so I don’t have to do any
work”, other participants had more concrete suggestions, such
as, a good debugging tool should be helpful in fixing common
mistakes (Pi3: “I would like to see common examples of
how the error is thrown and suggested usage of the solution
or the function that caused the error”). Current compiler
error messages—much like API documentation [29]—focus
on covering all possible cases instead of covering the common
ones well. Past work has shown that Stack Overflow works the
other way around: The crowd is capable of generating a rich

source of content with code examples and discussion that is
actively viewed and used by many more developers, but does
not usually achieve perfect coverage [30].

Context awareness [31] was mentioned as an important fea-
ture of the ideal debugging tool by many participants. Context
can refer to relevant links to external resources (P;1: “Links to
relevant Stack Overflow posts and additional information™) as
well as to the user’s code base (P;2: “Integration of the user’s
code into the plugin would be great”). We tried to improve
PYCEE’s context awareness by replacing error messages in the
Stack Overflow answer’s code with the compiler error message
encountered by the user to better fit code examples to the user’s
situation (cf. Section III), but more work is needed to achieve
better context awareness in debugging tools.

Many of our participants discussed the visual appearance
of compiler error messages, suggesting that error messages
should favour visual content over textual content (Ps: “It
should have little text and be visual”), exist in a separate
layer on top of the source code (Ps: “A pop up window
with information would be good or when you mouseover the
code a message box appears”), be accessible similar to other
code elements (Pg: “I want it to be more invisible and to
be usable with keyboard shortcuts™), and be interactive (Pj:
“It should be teachable, the user should be able to interact
with it””). Not much related work has focused on the human-
computer interaction aspect of how to present compiler errors
to users (with Barik et al. [32] and Prather et al. [33] as notable
exceptions). Our participant responses suggest that more work
is required in this area.

VII. THREATS TO VALIDITY

Similar to other empirical studies, there are threats which
may affect the validity of our results.

Threats to the construct validity correspond to the ap-
propriateness of the evaluation metrics. We evaluated the
PYCEE variants in terms of their perceived helpfulness, their
perceived potential for time saving, and the user satisfaction.
Similar metrics have been used in many other studies be-
fore (e.g., [34]) and these metrics reflect our goals behind
developing PYCEE. The data on participant experience in
Python which we used to allocate programming tasks to
participants was derived from participant responses, and we
cannot guarantee that these responses accurately reflect each
participant’s experience.

Threats to the internal validity compromise our confidence
in establishing a relationship between the independent and de-
pendent variables. Participants were not informed what sources
each of the PYCEE variants used to ensure that responses
would not be biased toward or against one variant. While
participants were given the opportunity to use both PYCEE
variants for at least 20 minutes each, some only encountered
as little as one compiler error per variant. These participants
would have only experienced a small subset of PYCEE’s
functionality, missing out on PYCEE’s handling of specific
error types. In addition, participants did not encounter the
same compiler errors while working with the PYCEE variants

since they solved different tasks with each variant. This would
likely have been reflected in their answers. During the study,
we noticed that some participants had a tendency to discuss
what programmers of other skill levels might think of PYCEE
instead of focusing on their own programming task. This
might have affected their answers, but did likely not affect one
variant of PYCEE more than the other. One or two participants
correctly guessed the sources used by the PYCEE variants. We
did not confirm their guesses until after the study, but this
might still have influenced their answers. Some participants
encountered errors which they already knew how to solve,
which may have affected the way they perceived the PYCEE
variants. Since the study was conducted remotely, we cannot
guarantee that participants did not search for solutions outside
of the study setup.

Threats to external validity correspond to the ability to
generalise our results. We cannot claim generalisability beyond
the Python programming language or the particular imple-
mentations of PYCEE and PYCEEDOC used in our study.
Recruiting more or different programmers to participate in the
study and asking them to work on different tasks may have led
to different results. Note that we decided to give participants
freedom in terms of how they tackled their programming tasks
to create as realistic a scenario as possible—an alternative
design in which participants would have been asked to fix a
set of given compiler errors would have been more contrived.
Some participants were hesitant to write Python code as they
felt their programming abilities were being judged. A small
number of participants introduced errors to their code on
purpose out of curiosity to trigger PYCEE and see its result.
These issues might reduce the extent to which our study
sessions reflect an actual programming setting.

VIII. RELATED WORK

Work related to PYCEE can be grouped into three categories:
compiler error message enhancement, use of Stack Overflow
content in IDEs, and summarisation in software engineering.

a) Compiler Error Message Enhancement: Becker [3]
suggested that providing enhanced error messages to novices
can reduce the future number of error messages received.
While the majority of research uses Java compiler errors,
Becker et al. [12] discussed the rising popularity of Python as
an introductory programming language, suggesting the need
for more research. Nienaltowski et al. [23] found that longer
error messages do not necessarily benefit students, and that
the additional information provided (e.g., error code) may be
a cause for additional confusion. Hristova et al. [35] developed
an approach to provide enhanced error messages for Java,
focused on enhancing the function of a compiler so that the
enhanced message heavily references the users’ code.

b) Use of Stack Overflow Content in the IDE: Seahawk
by Ponzanelli et al. [36] is an Eclipse plugin which auto-
matically formulates queries from the current source code
context and presents a ranked and interactive list of Stack
Overflow results to the user. A related tool called Prompter was
later proposed by the same research group [37]. Cordeiro et

al. [38] developed a tool which integrates the recommendations
of question-and-answer web resources related to stack traces
into the Eclipse IDE. AutoComment by Wong et al. [39]
extracts code-description mappings from Stack Overflow and
leverages this information to automatically generate descrip-
tive comments for similar code. NLP2Code by Campbell and
Treude [40] and Bing Developer Assistant by Zhang et al. [41]
provide code snippets in the IDE via natural language queries,
while Treude and Robillard [42] found that less than half
of Stack Overflow code snippets are considered to be self-
explanatory.

c) Summarisation in Software Engineering: Haiduc et
al. [43] found that a combination of text summarisation
techniques is most appropriate for source code summarisation.
Moreno et al. [24] developed an approach to summarise Java
classes, McBurney et al. [44] analysed method calls and
leveraged the PageRank algorithm to generate a description
of the behaviour of a Java method, and Alqgaimi et al. [45]
summarised Java lambda expressions. Ying and Robillard [46]
developed an approach for the automated summarisation of
code fragments, and Buse et al. [47] developed an approach
to automatically summarise the conditions of Java excep-
tions. Rastkar et al. [48] introduced an automated approach
which produces a natural language summary describing cross-
cutting concerns and how they are implemented. The same
research group [49], [50] investigated whether it is possible
to summarise bug reports automatically and effectively so that
developers can consult summaries instead of entire bug reports.

IX. CONCLUSIONS AND FUTURE WORK

Motivated by the tendency of compilers to produce cryptic
and uninformative error messages and the plethora of Stack
Overflow threads discussing compiler errors, we have pre-
sented PYCEE, a plugin integrated with the Sublime Text IDE
to provide enhanced compiler error messages for the Python
programming language. PYCEE automatically queries Stack
Overflow to provide customised and summarised information
about compiler errors within the IDE. Our evaluation through
a think-aloud study, during which 16 programmers completed
programming tasks while using two PYCEE variants and
encountering a total of 115 compiler errors for which PYCEE
produced an enhanced compiler error message, showed that
the majority of participants agreed that PYCEE was helpful
while completing the study tasks. Participants primarily cited
the concrete suggestions for fixes and code examples included
in the enhanced compiler error messages as major benefits of
PYCEE. Our results confirm that data from online sources such
as Stack Overflow can be successfully used to automatically
enhance compiler error messages.

In addition to improving PYCEE, in particular in terms of
its context awareness and its handling of common mistakes,
our future work lies in investigating suitable user interfaces
for communicating compiler errors to programmers in order
to transform error messages from Wexelblat’s foreboding
“cryptic diagnostics” [1] into tools which can reliably help
programmers solve compiler errors.

ACKNOWLEDGEMENTS

The authors would like to thank Greg Wilson for suggesting
to build PYCEE and all study participants for their participa-
tion. This work was inspired by the International Workshop
series on Dynamic Software Documentation, held at McGill’s
Bellairs Research Institute in February 2017 and February
2018. This work has been supported by the Australian Re-
search Council’s Discovery Early Career Researcher Award
(DECRA) funding scheme (DE180100153).

[1]

[5

=

[6]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

R. L. Wexelblat, “Maxims for malfeasant designers, or how to design
languages to make programming as difficult as possible,” in Proceedings
of the International Conference on Software Engineering, 1976, pp. 331—
336.

V. J. Traver, “On compiler error messages: What they say and what
they mean,” Advances in Human-Computer Interaction, vol. 2010, pp.
3:1-3:26, 2010.

B. A. Becker, “An effective approach to enhancing compiler error
messages,” in Proceedings of the Technical Symposium on Computing
Science Education, 2016, pp. 126-131.

G. Marceau, K. Fisler, and S. Krishnamurthi, “Mind your language: On
novices’ interactions with error messages,” in Proceedings of the Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming
and Software, 2011, pp. 3-18.

C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web? (NIER track),” in Proceedings of the
International Conference on Software Engineering, 2011, pp. 804-807.
L. B. L. de Souza, E. C. Campos, and M. de Almeida Maia, “Ranking
crowd knowledge to assist software development,” in Proceedings of the
International Conference on Program Comprehension, 2014, pp. 72-82.
S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
Proceedings of the International Conference on Software Maintenance,
2012, pp. 25-34.

F. M. Delfim, K. V. R. Paixdo, D. Cassou, and M. de Almeida Maia,
“Redocumenting APIs with crowd knowledge: a coverage analysis based
on question types,” Journal of the Brazilian Computer Society, vol. 22,
no. 1, 2016.

P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and
N. A. Kraft, “What information about code snippets is available in differ-
ent software-related documents? An exploratory study,” in Proceedings
of the International Conference on Software Analysis, Evolution and
Reengineering, 2017, pp. 382-386.

L. Ponzanelli, “Holistic recommender systems for software engineering,”
in Companion Proceedings of the International Conference on Software
Engineering, 2014, pp. 686—689.

C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from Stack Overflow,” in Proceedings of the International
Conference on Software Engineering, 2016, pp. 392—403.

B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and
C. Mooney, “Effective compiler error message enhancement for novice
programming students,” Computer Science Education, vol. 26, no. 2-3,
pp. 148-175, 2016.

S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in soft-
ware engineering,” in Proceedings of the International Conference on
Software Engineering, 2013, pp. 842-851.

M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion via
WordNet for effective code search,” in Proceedings of the International
Conference on Software Analysis, Evolution, and Reengineering, 2015,
pp. 545-549.

A. Stefik and S. Siebert, “An empirical investigation into programming
language syntax,” ACM Transactions on Computing Education, vol. 13,
no. 4, pp. 19:1-19:40, 2013.

M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the International Symposium
on Foundations of Software Engineering, 2006, pp. 1-11.

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

C. Treude, M. P. Robillard, and B. Dagenais, “Extracting development
tasks to navigate software documentation,” IEEE Transactions on Soft-
ware Engineering, vol. 41, no. 6, pp. 565-581, 2015.

C. Treude, M. Sicard, M. Klocke, and M. P. Robillard, “Tasknav: Task-
based navigation of software documentation,” in Proceedings of the
International Conference on Software Engineering - Volume 2, 2015,
pp. 649-652.

Y. Tian, D. Lo, and J. Lawall, “Sewordsim: Software-specific word
similarity database,” in Companion Proceedings of the International
Conference on Software Engineering, 2014, pp. 568-571.

P. J. Guo, “Online python tutor: Embeddable web-based program visu-
alization for CS education,” in Proceeding of the Technical Symposium
on Computer Science Education, 2013, pp. 579-584.

M. Monperrus and A. Maia, “Debugging with the crowd: a debug
recommendation system based on Stackoverflow,” Université Lille 1 -
Sciences et Technologies, Tech. Rep. hal-00987395, 2014.

H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of Research and Development, vol. 2, no. 2, pp. 159-165, 1958.
M.-H. Nienaltowski, M. Pedroni, and B. Meyer, “Compiler error
messages: What can help novices?” in Proceedings of the Technical
Symposium on Computer Science Education, 2008, pp. 168—172.

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for Java
classes,” in Proceedings of the International Conference on Program
Comprehension, 2013, pp. 23-32.

A. Strauss and J. Corbin, Basics of qualitative research: Techniques and
procedures for developing grounded theory, 2nd ed. Sage Publications,
Inc., 1998.

K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: A critical review and guidelines,” in Proceedings
of the International Conference on Software Engineering, 2016, pp. 120—
131.

P. Bazeley and K. Jackson, Qualitative data analysis with NVivo.
Publications Limited, 2013.

C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on Stack Overflow,” IEEE Transactions on Soft-
ware Engineering, 2019, to appear.

'W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264-1282, 2013.

C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
Stack Overflow,” Georgia Institute of Technology, Tech. Rep., 2012.

P. Antunes, V. Herskovic, S. F. Ochoa, and J. A. Pino, “Reviewing the
quality of awareness support in collaborative applications,” Journal of
Systems and Software, vol. 89, no. C, pp. 146-169, 2014.

T. Barik, J. Witschey, B. Johnson, and E. Murphy-Hill, “Compiler
error notifications revisited: An interaction-first approach for helping
developers more effectively comprehend and resolve error notifications,”
in Companion Proceedings of the International Conference on Software
Engineering, 2014, pp. 536-539.

J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer, N. Simone,
and M. Cohen, “On novices’ interaction with compiler error messages:
A human factors approach,” in Proceedings of the Conference on
International Computing Education Research, 2017, pp. 74-82.

A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, “Usability
measurement and metrics: A consolidated model,” Software Quality
Journal, vol. 14, no. 2, pp. 159-178, 2006.

M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and
correcting Java programming errors for introductory computer science
students,” in Proceedings of the Technical Symposium on Computer
Science Education, 2003, pp. 153-156.

L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack Overflow
in the IDE,” in Proceedings of the International Conference on Software
Engineering, 2013, pp. 1295-1298.

L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining StackOverflow to turn the IDE into a self-confident program-
ming prompter,” in Proceedings of the Working Conference on Mining
Software Repositories, 2014, pp. 102-111.

J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recommendation
to support problem solving in software development,” in Proceedings of
the International Workshop on Recommendation Systems for Software
Engineering, 2012, pp. 85-89.

Sage

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and
answer sites for automatic comment generation,” in Proceedings of the
International Conference on Automated Software Engineering, 2013, pp.
562-567.

B. A. Campbell and C. Treude, “NLP2Code: Code snippet content
assist via natural language tasks,” in Proceedings of the International
Conference on Software Maintenance and Evolution, 2017, pp. 628—632.
H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu,
“Bing developer assistant: Improving developer productivity by recom-
mending sample code,” in Proceedings of the International Symposium
on Foundations of Software Engineering, 2016, pp. 956-961.

C. Treude and M. P. Robillard, “Understanding Stack Overflow code
fragments,” in Proceedings of the International Conference on Software
Maintenance and Evolution, 2017, pp. 509-513.

S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in Proceedings of the Working Conference on Reverse Engineering,
2010, pp. 35-44.

P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for Java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103-119, 2016.

A. Algaimi, P. Thongtanunam, and C. Treude, “Automatically generating
documentation for lambda expressions in Java,” in Proceedings of the
International Conference on Mining Software Repositories, 2019, pp.
310-320.

A. T. T. Ying and M. P. Robillard, “Code fragment summarization,” in
Proceedings of the Joint Meeting on Foundations of Software Engineer-
ing, 2013, pp. 655-658.

R. P. Buse and W. R. Weimer, “Automatic documentation inference for
exceptions,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2008, pp. 273-282.

S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating natural
language summaries for crosscutting source code concerns,” in Proceed-
ings of the International Conference on Software Maintenance, 2011, pp.
103-112.

S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software arti-
facts: A case study of bug reports,” in Proceedings of the International
Conference on Software Engineering - Volume 1, 2010, pp. 505-514.
——, “Automatic summarization of bug reports,” IEEE Transactions on
Software Engineering, vol. 40, no. 4, pp. 366-380, 2014.

