
Understanding Wikipedia as a Resource for Opportunistic
Learning of Computing Concepts

Martin P. Robillard
martin@cs.mcgill.ca

School of Computer Science
McGill University

Montréal, QC, Canada

Christoph Treude
christoph.treude@adelaide.edu.au

School of Computer Science
University of Adelaide
Adelaide, SA, Australia

ABSTRACT
Posts on on-line forums where programmers look for information
often include links to Wikipedia when it can be assumed the reader
will not be familiar with the linked terms. A Wikipedia article will
thus often be the first exposure to a new computing concept for a
novice programmer. We conducted an exploratory study with 18
novice programmers by asking them to read a Wikipedia article
on a common computing concept that was new to them, while
using the think-aloud protocol. We performed a qualitative analysis
of the session transcripts to better understand the experience of
the novice programmer learning a new computing concept using
Wikipedia. We elicited five themes that capture this experience:
Concept Confusion, Need for Examples, New Terminology, Trivia
Clutter, and Unfamiliar Notation. We conclude that Wikipedia is
not well suited as a resource for the opportunistic learning of new
computing concepts, and we recommend adapting information
sharing practices in on-line programmer communities to better
account for the learning needs of the users.

CCS CONCEPTS
• Social and professional topics→ Informal education;Com-
puting literacy.

KEYWORDS
self-regulated learning; Wikipedia; computing concepts

ACM Reference Format:
Martin P. Robillard and Christoph Treude. 2020. Understanding Wikipedia
as a Resource for Opportunistic Learning of Computing Concepts. In The
51st ACM Technical Symposium on Computer Science Education (SIGCSE’20),
March 11–14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3328778.3366832

1 INTRODUCTION
Programmers are continually in situations where they must not
only acquire technical information, but also discover what they do
not know and learn new concepts. This problem is especially acute

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366832

for novice programmers working outside a structured learning
environment [21].

Helping novice programmers orient themselves in a knowledge
curriculum that is both enormous and in continual evolution is
challenging. Search tools can help, but their effectiveness depends
on the ability of the user to issue proper queries and to assess the
relevance and quality of the results [32]. Quality answers on on-line
forums such as Stack Overflow can help users become aware of
what they need to know to solve a programming task, but often
the answers will refer to unfamiliar concepts. The purpose of our
research is to help novice programmers learn computing concepts
related to their task.

Wikipedia is a well-known source of information that can be
used to opportunistically learn about new concepts, including com-
puting topics. With the term opportunistic, we refer to an informal
self-regulated learning context where a programmer attempts to
learn a new concept based on emergent information needs related
to a programming task [5]. As a resource for self-regulated learn-
ing, Wikipedia is controversial. Its own mission statement indicates
that “it is not a textbook” [33], and correspondingly its articles do
not typically satisfy pedagogical principles expected from learning
resources for programmers [18]. The quality of some Wikipedia
articles is also questioned [8]. Despite these obstacles, Wikipedia
remains a prominent learning resource in computing because of,
among others, the practice of linking to Wikipedia from on-line
forums where programmers look for information. By linking to
Wikipedia, entries on these forums, such as Stack Overflow or Red-
dit, “often use technical terms or acronyms and include a Wikipedia
link in lieu of defining these terms” [30]. We recently found that
an estimated one third of links to selected Wikipedia articles from
Stack Overflow were provided to support opportunistic learning
(see Section 2.1). Thus, a Wikipedia article will often be the first
exposure to a new computing concept for a novice programmer.
Our research question focuses on better understanding the experi-
ence of the novice programmer trying to learn a new computing
concept by reading a Wikipedia article.

We conducted an exploratory study with 18 novice programmers
by asking them to read a Wikipedia article on a common comput-
ing concept that was new to them. As target articles we used four
computing concepts commonly referenced on Stack Overflow. The
study participants were asked to think aloud during the study ses-
sion. We conducted thematic analysis on the transcribed sessions
and contribute a description and analysis of five major themes that
summarize the salient aspects of the participants’ experience.

https://doi.org/10.1145/3328778.3366832
https://doi.org/10.1145/3328778.3366832

2 BACKGROUND
Our study is framed by existing linking practices on Stack Overflow
and by prior work on self-regulated learning in computing and
documentation usability.

2.1 Linking to Wikipedia
We collected data on the practice of linking toWikipedia from Stack
Overflow by extracting all links with the root domain wikipedia.org
from questions and answers, using the SOTorrent dataset [2]. The
dataset contains data on 43 666 554 Stack Overflow posts, 362 447
(0.8%) of which contain at least one link to Wikipedia. In total, there
are 448 453 links to the online encyclopedia, pointing to 40 309
different link targets within Wikipedia. A similar ratio of links
to Wikipedia articles has been reported for the r/programming
community on Reddit [1].

We selected a sample of four articles for detailed study. We se-
lected these articles by considering entries in decreasing number
of links to the article from Stack Overflow, but manually exclud-
ing articles that are declarative (i.e., about a standard, convention,
protocol, etc.), too short (less than 600 words, or subjectively short
because mostly used for examples), only applicable within a narrow
technology context, non-technical (e.g., mostly about history), very
closely related to a topic already selected, requiring knowledge and
experience unrealistic for novice programmers (e.g., on distributed
software architectures), or about a software product (e.g., Android)
instead of a computing concept. We also excluded articles that had
been explicitly flagged by the Wikipedia community as exhibiting
a problem through a template message. In the end the four articles
we selected are all linked from Stack Overflow more than 1 000
times: Dependency Injection, Endianness, Levenshtein Distance, and
Regular Expression. The column Rank of Table 1 indicates the rank
of each in the list of most frequently linked articles.

To determine whether the links from Stack Overflow to the
Wikipedia articles corresponding to these four concepts were pro-
vided by the Stack Overflow user to support opportunistic learning,
we manually annotated a random sample of 100 link references
for each concept for a total of 400 link references. Both authors
coded 30 link references per concept in a joint coding session, and
the remaining 70 link references per concept were coded indepen-
dently and assessed for inter-rater agreement using Cohen’s kappa
metric. We established three codes: Yes (the reader is assumed to
need to learn about the concept), No (the reader is not assumed
to need to learn about the concept, or we cannot tell if the reader
needs or does not need to learn about the concept), and Other (an
unusual context prevents either Yes or No to be meaningful, e.g.,
for mislabelled links). If the concept represented by the link is also
explained in the text (e.g., “The Levenshtein distance, i.e. the minimum
number of single-character edits (insertions, deletions or substitutions) ...”)
or if there is an explicit phrase indicating to the reader that they
need to learn about the concept, we considered this as evidence
that the link was provided to support opportunistic learning. In
contrast, a mention of the concept in passing without additional
explanation (e.g., “Also, instead of using the Hamming distance, consider
the Levenshtein distance.”), was considered as evidence that the link
was not provided to support opportunistic learning.

Table 1 shows the results of this annotation. On average, we
found evidence that more than one third (37%) of links from

Table 1: Wikipedia articles studied

Wikipedia article Rank Yes No Other Kappa

Dependency Injection 10 42% 58% 0% 0.62
Endianness 19 37% 61% 2% 0.70
Levenshtein Distance 22 39% 59% 2% 0.57
Regular Expression 26 29% 68% 2% 0.62

Stack Overflow to selectedWikipedia articles were provided
to support opportunistic learning. Based on this observation,
we sought to characterize the suitability of Wikipedia as a resource
for opportunistic learning of computing concepts.

2.2 Related Work
The cognitive aspects of programming have been studied for
decades. Mayrhauser and Vans contribute a review of early cogni-
tive models of code understanding [31]. These help structure our
understanding of the programming task, and include a provision
for expert knowledge that takes into account general computing
concepts. However, the models do not include features of concept
acquisition or, more generally speaking, metacognition.

Metacognition relates to knowledge about one’s own knowl-
edge. Eteläpelto observes important differences in metacognitive
knowledge and task awareness between novice and expert pro-
grammers [10]; Murphy and Tenenberg [25] and Hauswirth and
Adamoli [15] focus on metacognitive calibration and argue about
the importance of adequately estimating one’s own level of knowl-
edge in computing. Parham et al. surface the use of metacognitive
strategies as part of the problem-solving process in programming
tasks [27], and Bergin et al. [3] assess the impact of metacognition
and other learning strategies on academic performance. Metacog-
nition plays an important role in the formulation of part of our
research goal, which is to help novice programmers become aware
of relevant computing concepts (as a prerequisite to learning them).
Recent work by Prather et al. also aims to increase metacognitive
awareness of novice programmers [28], in their case through the
use of an automated assessment tool.

Our research targets programmers who seek information and
learn on their own, an activity characterized as self-regulated
learning (SRL) [36], which takes place in a diversity of contexts
in the case of computing [24]. Falkner et al. describe SRL strate-
gies [12] and how they evolve [11] during students’ undergraduate
years. Their study focuses on traditional phases of the software
development process (coding, design, testing), and does not inte-
grate reflections on the use of documentation or the learning of
new concepts. A number of other studies of SRL directly motivate
our research goal. Boustedt et al. describe how students engaged
in informal learning are worried about missing important infor-
mation [4]; Isomp̈ttönen and Tirronen describe the “challenge of
supporting students’ theoretical synthesis of the topics” [16]; Loksa
and Ko argue that effective self-regulation must leverage existing
background knowledge [22]. Based on interviews with stakehold-
ers at companies, Zander et al. report that effective SRL strategies
are expected in the workplace [34], which stresses the importance
for novice programmers to develop effective information-seeking

habits early on. Brandt et al.’s studies [5] provide a vivid depiction
of what opportunistic learning involves when programming.

An important part of self-regulated, and in our case opportunistic,
learning is the discovery and use of learning resources. Gómez
et al. provide complementary evidence for the practice of linking
to Wikipedia on Stack Overflow [13], and Vincent et al. [30] con-
tribute an analysis of the potential impact of linking to Wikipedia
on Stack Overflow and Reddit. Studies of the content of learning
resources for programmers also inform this work, and in particu-
lar Wikipedia [8, 19, 23]. Pedagogical examples are a major factor
in the design of software documentation, so we note Trafton and
Reiser’s observation of the usefulness of examples [29], Novick
and Ward’s empirical confirmation that documentation users want
examples [26], as well as attempts to integrate more examples in
technology targeting novice programmers [35]. These are relevant
to one of the themes elicited in the study.

3 METHOD
We explored the experience of novice programmers reading a Wiki-
pedia article on computing concepts by conducting think-aloud
sessions with participants drawn from the target population and
analyzing the session transcripts using thematic analysis [6].

3.1 Participants
We recruited 18 participants through announcements disseminated
at the University of Adelaide. Table 2 synthesizes their background.
The participants are grouped by their target concept (see Sec-
tion 2.1). We assigned the concepts to participants at the time of
the study to ensure the assigned concepts were unknown to the
participant, and to distribute a given concept across participants
with different characteristics. We refer to the participants using a
pseudonym, with the gender of the pseudonyms randomly assigned
with the same 8/10 female/male ratio as in our set of participants.

The table synthesizes five factors which we considered, a priori,
might help better understand the experience of the participants
during the study sessions. We synthesized these factors by trian-
gulating the participants’ responses in the pre-study questionnaire
with the video recording of the study sessions.

Discipline describes the main program of study of a participant.
All participants were students at the University of Adelaide. Com-
puting refers to any program of study where a significant portion
of the course work is on computing topics. This includes core pro-
grams such as bachelor in computer science and software engi-
neering, but also joint programs such as bachelor of mathematics
and computer science. Engineering refers to all other engineering
programs, such as electrical engineering, computer engineering,
etc. Other refers to a non-technical program.

Stage captures how advanced a participant is in their program
of study. We discretized the participants’ background into three
levels: freshman or junior , sophomore or senior , and grad-
uate student . We use the same progression of symbols for the
levels of the following three characteristics, with a filled back circle
representing the highest level of fulfillment for a characteristic.

English Language Proficiency (Lang.) qualifies a participant’s
level of competence in English. The University of Adelaide is an
English-speaking institution and all participants were required to

Table 2: Characteristics of the study participants

Name Discipline Stage Lang. Prog. Forum

Dependency Injection

Adam Engineering
Ben Computing
Chris Computing
Dora Computing

Endianness

Eric Computing
Frank Computing
Gina Computing
Harry Engineering

Levenshtein distance

Iris Engineering
Julia Engineering
Ken Computing
Lucy Engineering
Mark Other

Regular Expression

Nicole Computing
Oscar Engineering
Paula Engineering
Quicy Computing
Rachel Computing

have basic competence in English to take part in the study. The
levels distinguish participants for whom communicating in Eng-
lish required noticeable effort, versus participants who could read
and communicate in English with only minor hesitation, versus
participants who were fluent.

Programming Experience (Prog.) qualifies a participant’s relative
level of programming experience. We distinguish between: Basic
(just getting started with programming); Intermediate (program-
ming for a fewmonths to a year); Advanced (programming regularly
for over a year).

Experience using Programming Forums (Forum) qualifies a par-
ticipant’s level of experience engaging with question and answer
programming forums such as Stack Overflow. We distinguish be-
tween: Basic (a participant had not used such forums); Intermediate
(a participant occasionally or regularly reads posts); Advanced (a
participant uses forums almost every time they program and may
have posted questions or answers).

As can be seen from the table, through our assignment proce-
dure we were able to achieve a high degree of diversity across
characteristics between concepts. In particular, all concepts group
participants in all three levels of English proficiency.

3.2 Data Collection
We conducted all 18 individual sessions at the University of Ade-
laide using a laptop computer running screen and audio recording

software. Before the session, the participant was asked to fill in a
pre-study questionnaire on their background and read a short de-
scription of the study. The instructions contained a specific request
to “comment out loud about your learning process...”. The first four
participants were requested to read a selected Wikipedia article
for 30min, after which we shortened the time to 20min because
we realized that we could complete the task and reach thematic
saturation within this time.1

All sessions were conducted by the first author. Each participant
was asked to “learn as much as possible about a given concept” and
allowed to use complementary Internet resources, such as trans-
lation services or other Wikipedia articles, to assist in their learn-
ing. During the session, the investigator reminded the participant
to think aloud when necessary, and elicited additional comments
through prompts and questions. At the end of the session, the in-
vestigator conducted a brief semi-structured debriefing.

The outcome of the data collection is a set of 18 videos of mean
length 31.2 minutes (SD=5.6).

3.3 Data Analysis
The videos show a wide range of behavior and sophistication in the
participant’s approach to learning, similarly to the range observed
by Kiili et al. in a study of students evaluating Internet sources [17].

We conducted a qualitative analysis of the videos collected. We
structured our analysis based on the thematic analysis framework
proposed by Braun and Clarke [6]. The numbers in the description
below map to the phase numbers in the source cited. The analysis
was conducted collaboratively by two investigators, referred to as
Investigator A and Investigator B.

1. Transcription. Two investigators transcribed the videos (A:
14 videos; B: 4 videos) to prepare them for analysis, but also to
gain familiarity with the raw data. For each video, the investigator
noted the main actions (e.g., clicking on links, rolling over terms
to extract definitions) and verbalizations of the participants, and
made general notes on what they were observing.

2. Initial Codes. Investigator A reviewed all transcripts and coded
all relevant data extracts using a flat structure of codes, with a num-
ber of iterations required before it was possible to elicit a stable
catalog of codes. A data extract corresponds to a cohesive unit of
action or verbalization by the participant, roughly equivalent to
few sentences in the transcript. Investigator B then reviewed the
codes and the two investigators jointly created a phase-final catalog
of codes organized into two categories: Experience (eight codes)
and Meta (also eight codes). The Experience codes capture direct
observations of the participant’s experience (e.g., “struggles with
notation”), and the Meta codes capture verbalization that are reflec-
tions of the participants themselves (e.g., “too much information”).
There was no explicit correspondence between the two types of
codes in our open coding phase.

3. Searching for Themes. The investigators discussed the distribu-
tion of codes across transcripts and the relation between the codes,
and identified six themes as salient. The themes mapped to a subset

1Three distinct concepts were assigned to the first four participants. The one not
included was Regular Expression.

of the Experience codes, with the Meta codes used in a supporting
role when defining the themes.

4/5. Reviewing and Defining Themes. Investigator A then re-
viewed once again all transcripts, this time identifying each extract
with a theme, summarizing the themes, and linking the themes.

Member Checking. As recommended by Creswell [7], we addi-
tionally prepared specific description of the themes to present back
to participants to elicit their feedback.

We finalized the definition of the themes after receiving the
feedback from eight participants (see Section 4.2). As part of this
process we also decided to drop one theme from our analysis. This
theme, titled Recalling Knowledge, captured how participants tried
to relate what they were reading about to what they knew already.
When developing a rich description of this theme, we determined
that it was simply a basic expression of the learning process and
not specifically related to computer programming or the use of
Wikipedia. Furthermore, it was the theme that had resonated the
least with our participants.

3.4 Threats to Validity
Our research method follows a grounded, inductive approach with
the following implications. The participants were asked to learn a
concept as part of a study and not as the result of experiencing a
need to learn, which creates a dissociation with common assump-
tions for adult learning [20]. However, we carefully selected the
target concepts to match common information needs as expressed
on Stack Overflow. The number of participants in our study is in-
evitably limited, which bears the risk that we may have missed
important themes or modulations of a theme. However, interview-
ing 18 participants with different characteristics and studying four
concepts distributed across participants provides a degree of assur-
ance that aspects of the participants’ experience that are salient
enough to be observed in different contexts, will have been ex-
pressed. In the case of the concepts selected, we applied a strict
selection procedure to ensure that the corresponding articles would
be of a reasonable quality and not obviously inaccessible to the
participants. A study of low-quality articles or articles wildly be-
yond the grasp of the participants would be likely to yield different
results. The think-aloud protocol used to elicit insights from partici-
pants is not a procedure participants would naturally employ while
learning a concept. As expected, the amount and usefulness of their
verbalizations varied between participants and the threat is that
we may have missed important insights due to some participants
not properly verbalizing their thoughts. This threat is mitigated
by the fact that all interviews were conducted by an investigator
experienced with this research method, who used prompts and
questions to elicit feedback. Finally, our use of thematic analysis
to interpret the data implies that the themes elicited are impos-
sible to completely detach from the investigator’s influence. We
controlled against deleterious investigator bias by triangulating
data from multiple sources (screen recordings, questionnaire, semi-
structured interviews), by having two investigators participate in
the data analysis, and by asking our participants to verify our key
outcomes.

Table 3: Learning Computing Concepts with Wikipedia: Main Themes

Theme Description Evidence

Concept Confusion The reader encounters a new concept which seem to be a familiar concept that they have already
learned. Initially, it seems the new concept could be referring to what they already know, but this
is not the case. The ambiguity creates a distraction and leads the reader to make false assumptions
about what they are trying to understand.

Need for Examples The reader would like to see examples to understand the concept. They explicitly look for example
applications of the concept. Seeing the concept in action helps them both get an initial understanding
of the concept and solidify their knowledge.

New Terminology Wikipedia articles can be dense with new terminology. Many of the terms will be unfamiliar to the
novice reader. The presence of new terms makes it harder to understand parts of the article that
refer to it. The amount of new terms can be distracting, and even overwhelming, because for each
it is necessary to decide how much one needs to know about this term to keep making sense of the
article. Encountering too many new terms can be discouraging.

Trivia Clutter Because of their encyclopedic nature, Wikipedia articles can include a lot of detailed but peripheral
information that does not help to understand a concept. This information constitutes clutter when
the page is used as a learning tool, as it must be identified as irrelevant and skipped. This problem
is especially acute for readers not fluent in the language of the article.

Unfamiliar Notation Some information in the article can use a specialized notation. Examples include source code,
modeling languages, and mathematical notation. Because the notation is not the topic of the article,
it is not explained. Readers unfamiliar with the notation must guess what it means and remain
unsure of what they are learning about.

4 FINDINGS
Table 3 describes the main themes we identified and summarizes
the amount of supporting evidence for each theme. The summary
of the evidence is provided as a bar chart where each bar represents
one participant, and the height of the bar represents the number
of distinct data extracts related to the theme. The length of the
chart’s area spans amaximum of 18 bars. The diagram thus supports
assessing, at a glance, how supporting evidence is distributed. For
example, the theme Trivia Clutter is developed based on data from
one third of the participants, where one participant provided many
of the usable extracts, with one or two extracts from the other
sessions. The bars are ordered in decreasing height.

4.1 A Closer Look at the Themes
To the extent possible given the space, we provide rich descriptions
of each theme using a selection of corresponding data extracts.

Concept Confusion. Although only observed with four partic-
ipants, Concept Confusion provides a striking illustration of the
disorientation that can be experienced. Noting the epsilon symbol
(ϵ) in the article on Levenshtein Distance, Iris incorrectly thought it
referred to the molar attenuation coefficient, as seen in a previous
course: “Epsilon, what I meant is, I learned it in electrical, so it’s a value
that’s fixed for every material”. Paula was also confused by the epsilon
symbol, in her case as used in the article on Regular Expression:
“Isn’t [epsilon] the ‘subset’ symbol?”. Common words used in a special-
ized context, such as “distance”, “word”, and “cost”, caused similar
confusion: “I don’t really understand what is measuring the distance be-
tween two sequences. I’m thinking [of] coordinates...”—Iris; “Words [in the
sense of a number of bits]. I think they meant keywords!”—Frank.

Need for Examples. The majority of our participants clearly stated
or demonstrated that they needed examples to understand the
material. For instance, when asked to explain the meaning of a

section of the article, Ben, Eric, Iris, Julia, Nicole, and Paula provided
an explanation strictly in terms of an example from the article. In
two other cases, when asked a prompting question, the participants
searched for examples, e.g.: “It’s probably more useful just to look at the
examples”—Adam. Finally, in other cases, participants stated the value
of examples directly: “I don’t really understand the Jaro-Winkler distance.
Usually if I want to understand something it’s from an example”—Julia;
“I’d like to see if there’s a basic example somewhere, just to solidify what I
was reading”—Chris

New Terminology. A majority of our participants struggled with
the amount of new terminology they encountered in the article. This
struggle was identified through participants verbalizing what they
did not understand, but also by observing them roll over Wikilinks
and search for terms using a search engine. The theme is accurately
captured by Adam: “to read this whole article and understand everything,
as a beginner [...] it would be impossible because, every couple of sentences
you’ve got new links that you have to click on to understand this concept.
But to understand that you have to go to that article and click on all sorts
of links to understand that, and it’s just a huge web of information. [...]
And all of this wouldn’t completely make sense unless you understand
most of these [other concepts].”

Trivia Clutter. Wikipedia articles typically include numerous
“small facts” (trivia) which, although relevant for an encyclopedia
entry, are of dubious help for learning a concept. Participants were
free to chose what to focus on during the study session, and many
engaged naturally in an information selection and filtering process:
“If it doesn’t matter I’ll usually skip all this”—Eric. Six participants were
explicit enough about this process to allow us to document and
analyze it. The issue of trivia is best illustrated through the reference
to the tangential application of Levenshtein distance to that of
linguistic distance. When reading the corresponding paragraph,
Julia reacted with “[I don’t understand] how Levenshtein Distance applies

Table 4: Results of Member Checking. Letters are the initial
of the participants’ pseudonym (Table 2). Values are: – (Neu-
tral/Don’t Know); • (Agree), •• (Strongly Agree)

Theme A D F I J K L N
Concept Confusion • • • • •• • – •

Recalling Knowledge – • – • •• – – •

Need for Examples •• •• •• • •• •• – •

New Terminology •• • •• • • •• – •

Trivia Clutter •• • •• •• •• – – •

Unfamiliar Notation • •• •• •• •• – – •

in linguistics”; Mark had a similar reaction: “It’s a concept I never heard
before [...]. I’m not sure why it’s relevant”. Topics identified as trivia
by our participants include etymology, history, long lists of names,
and related algorithms and concepts.

Unfamiliar Notation. Each of the four target articles included
material in some specialized notation, including the Unified Model-
ing Language (UML) (Dependency Injection), source code (all four
articles), mathematics (Levenshtein Distance), and other formal
languages (Regular Expression). Use of this notation translated into
an obstacle for many participants, of which we were able to collect
evidence for eight. For example, Adam, Chris and Dora had to guess
their way through UML diagrams: “I’ve seen UML diagrams like this
[class diagram], but not seen one like this [sequence diagram]. So I don’t
know, this diagram.”—Adam; Likewise, Adam, Chris, Harry, and Mark
faced code fragments in an unfamiliar programming language: “I
don’t know what the union [variable in C code] is, because I never used
it”—Harry; As Lucywent through the article on Levenshtein Distance,
she indicated “I have no idea about that math defintion”.

4.2 Feedback from Participants
We sent a follow-up survey to all 18 participants to help assess the
credibility of our themes. The survey asked them for each theme:
“To what degree do you agree that this theme resonates with you?”
and provided respondents with a five-point Likert scale for agree-
ment (from “strongly disagree” to “strongly agree”). For each theme,
we included the description shown in Table 3 and an example from
the study. Table 4 shows the results. The header for each participant
column corresponds to the initial of the participant’s pseudonym.
Eight of the participants responded to the survey, and no participant
disagreed with any of the themes. The median agreement was at
least Agree on the five-point scale for all themes. For transparency,
we also include the feedback we collected for the preliminary theme
Recalling Knowledge, which we subsequently elided.

5 DISCUSSION AND CONCLUSION
By interviewing 18 participants, we elicited five themes that de-
scribe the experience of novice programmers attempting to learn
a computing concept by reading a Wikipedia article. Although
they are individually self-explanatory, the themes are best
interpreted as an ensemble, with meaningful links among them.

Concept Confusion overlaps with Unfamiliar Notation if the con-
fusion is caused by the use of symbols or other notation: “Isn’t this
[epsilon] the "subset" symbol?”—Paula. However, the themes are dis-
tinct because Concept Confusion emphasizes the distraction caused

by misunderstanding, whereas Unfamiliar Notation captures the
sense of disorientation caused by the obvious absence of prereq-
uisite declarative knowledge. Concept Confusion can also be seen
as a special case of New Terminology, but where the new term is
not immediately identified as new, as illustrated by Frank’s confu-
sion over the use of the term “word” in the context of computer
architecture (see Section 4.1).

Need for Examples captures the need of learners to have exam-
ples. However, in the context of Wikipedia, longs lists of examples
can lead to the problem of Trivia Clutter if the examples are nu-
merous and trivial and do not support an educational function:
“I think this is not a very important concept for this page. Because this
is just examples”—Gina. The obstacle to learning that Trivia Clutter
represents is also compounded if it leads to Concept Confusion, New
Terminology, or Unfamiliar Notation. Not only does the reader need
to determine that content is irrelevant for learning a concept, but
they also need to struggle and overcome confusion in their process
to make this determination, as illustrated by the case of linguistic
distance (see Section 4.1).

Finally, while the majority of participants expressed a Need for
Examples, such examples can cause them to faceUnfamiliar Notation
if they are not knowledgeable in the notation used in examples, e.g.,
the programming language.

Ourmain conclusion is to confirmWikipedia’s unsuitabil-
ity as a resource for opportunistic learning of computing
concepts. Although Wikipedia does not claim to be a learning re-
source in the first place [33], we (see Section 2.1) and others [13, 30]
have observed that it is common to link to Wikipedia to guide
readers to definitions of concepts they might need to learn. Our
study contributes a thematic categorization with rich descriptions
of evidence showing how the content of the Wikipedia article for
four popular computing concepts is not pedagogical.

Our findings have implications for both members of on-
line programmer communities and for researchers. In the
short term, linking practices in programming Q&A forums would
benefit from an explicit distinction between simple concept refer-
ences and resource recommendations for learners. Concept references
can continue to link to Wikipedia, but resource recommendations
should favor tutorial and other sites explicitly targeted at learn-
ers. For example, the site regular-expressions.info [14] is a more
appropriate learning resource than the Wikipedia article Regular
Expression for that concept. Given that the number of potential
computing concepts can easily exceed the number of high-quality
tutorial web sites that it is possible to maintain, the crowd-sourced
development of computing dictionaries, such as FOLDOC [9], has
the potential to help orient learners while avoiding the cognitive
load caused by detailed treatment and extensive trivia found of
some Wikipedia articles.

This paper contributes additional texture to our knowledge of
information needs for novice programmers and the obstacles they
face when trying to fulfill them. To continue to advance the goal
of helping novice programmers learn computing concepts oppor-
tunistically, it will be necessary to also understand which sources
they currently consult and why. Finally, there is potential for a
line of research on automatically synthesizing concept explana-
tions and examples from web resources such as Stack Overflow and
Wikipedia.

ACKNOWLEDGMENTS
We are grateful to the study participants for their contribution. We
thank the members of the Computer Science Education Research
Group (CSER) in the School of Computer Science at the University
of Adelaide for their advice and assistance, and Alison Li, Deek-
sha Arya, and Mathieu Nassif from the Knowledge and Software
Technology Group at McGill University for recommendations on
related work and feedback on the paper. This work has been sup-
ported by the Australian Research Council’s Discovery Early Career
Researcher Award (DECRA) funding scheme (DE180100153).

REFERENCES
[1] Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto,

Margaret-Anne Storey, and Marco Aurélio Gerosa. 2018. How Modern News
Aggregators Help Development Communities Shape and Share Knowledge. In
Proceedings of the 40th ACM/IEEE International Conference on Software Engineering.
499–510.

[2] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.
SOTorrent: Reconstructing and Analyzing the Evolution of Stack Overflow Posts.
In Proceedings of the 15th International Conference on Mining Software Repositories.
319–330. version: 2018_09_23.

[3] Susan Bergin and Ronan Reilly. 2005. Examining the Role of Self-Regulated
Learning on Introductory Programming Performance. In Proceedings of the 1st
International Workshop on Computing Education Research. 81–86.

[4] Jonas Boustedt, Anna Eckerdal, Robert McCartney, Kate Sanders, Lynda Thomas,
and Carol Zander. 2011. Students’ Perceptions of the Differences Between For-
mal and Informal Learning. In Proceedings of the 7th International Workshop on
Computing Education Research. 61–68.

[5] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1589–1598.

[6] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology.
Qualitative Research in Psychology 3, 2 (2006), 77–101.

[7] John W. Creswell. 2003. Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches (2nd ed.). Sage Publications.

[8] Peter K. Dunn, Margaret Marshman, and Robert McDougall. 2017. Evaluating
Wikipedia as a Self-Learning Resource for Statistics: You Know They’ll Use It.
The American Statistician 73, 3 (2017), 1–8.

[9] Denis Howe et al. 2019. FOLDOC: Free On-Line Dictionary of Computing.
https://foldoc.org/. Accessed 19 August 2019.

[10] Anneli Eteläpelto. 1993. Metacognition and the Expertise of Computer Program
Comprehension. Scandinavian Journal of Educational Research 37, 3 (1993), 243–
254.

[11] Katrina Falkner, Claudia Szabo, Rebecca Vivian, and Nikolas Falkner. 2015. Evo-
lution of Software Development Strategies. In Proceedings of the 37th IEEE/ACM
International Conference on Software Engineering, Vol. 2. 243–252.

[12] Katrina Falkner, Rebecca Vivian, and Nickolas Falkner. 2014. Identifying Com-
puter Science Self-Regulated Learning Strategies. In Proceedings of the 19th Annual
Conference on Innovation and Technology in Computer Science Education. 291–296.

[13] Carlos Gómez, Brendan Cleary, and Leif Singer. 2013. A Study of Innovation
Diffusion Through Link Sharing on Stack Overflow. In Proceedings of the 10th
Working Conference on Mining Software Repositories. 81–84.

[14] Jan Goyvaerts. 2019. Regular-Expressions.info. https://www.regular-expressions.
info. Accessed 19 August 2019.

[15] Matthias Hauswirth and Andreea Adamoli. 2017. Metacognitive Calibration
When Learning to Program. In Proceedings of the 17th Koli Calling International
Conference on Computing Education Research. 50–59.

[16] Ville Isomöttönen and Ville Tirronen. 2013. Teaching Programming by Empha-
sizing Self-Direction: How Did Students React to the Active Role Required of
Them? ACM Transactions on Computing 13, 2 (2013).

[17] Carita Kiili, Leena Laurinen, and Miika Marttunen. 2008. Students Evaluating
Internet Sources: From Versatile Evaluators to Uncritical Readers. Journal of
Educational Computing Research 39, 1 (2008), 75–95.

[18] Ada S. Kim and Andrew J. Ko. 2017. A Pedagogical Analysis of Online Coding Tu-
torials. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. 321–326.

[19] Charles Knight and Sam Pryke. 2012. Wikipedia and the University, a Case Study.
Teaching in Higher Education 17, 6 (2012), 649–659.

[20] Malcom S. Knowles, Elwood F. Holton III, and Richard A. Swanson. 2005. The
Adult Learner (6th ed.). Elsevier.

[21] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A Study of
the Difficulties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education. 14–18.
[22] Dastyni Loksa and Andrew J. Ko. 2016. The Role of Self-Regulation in Pro-

gramming Problem Solving Process and Success. In Proceedings of the 12th ACM
International Computing Education Research Conference. 83–91.

[23] Teun Lucassen and Jan Maarten Schraagen. 2010. Trust in Wikipedia: How Users
Trust Information from an Unknown Source. In Proceedings of the 4th Workshop
on Information Credibility. 19–26.

[24] Robert McCartney, Jonas Boustedt, Anna Eckerdal, Kate Sanders, Lynda Thomas,
and Carol Zander. 2016. Why Computing Students Learn on Their Own: Motiva-
tion for Self-Directed Learning of Computing. ACM Transactions on Computing
Education 16, 1 (2016), 2:1–2:18.

[25] Laurie Murphy and Josh Tenenberg. 2005. Do Computer Science Students Know
What They Know?: A Calibration Study of Data Structure Knowledge. In Pro-
ceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. 148–152.

[26] David G. Novick and Karen Ward. 2006. What Users Say They Want in Docu-
mentation. In Proceedings of the 24th Annual ACM International Conference on
Design of Communication. 84–91.

[27] Jennifer Parham, Leo Gugerty, and D. E. Stevenson. 2010. Empirical Evidence for
the Existence and Uses of Metacognition in Computer Science Problem Solving. In
Proceedings of the 41st ACM Technical Symposium on Computer Science Education.
416–420.

[28] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing
Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 531–537.

[29] J. Gregory Trafton and Brian J. Reiser. 1993. Studying Examples and Solving
Problems: Contributions to Skill Acquisition. In Proceedings of the 15th conference
of the Cognitive Science Society. 1017–1022.

[30] Nicholas Vincent, Isaac Johnson, and Brent Hecht. 2018. Examining Wikipedia
With a Broader Lens: Quantifying the Value of Wikipedia’s Relationships with
Other Large-Scale Online Communities. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 566:1–566:13.

[31] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program Comprehension
During Software Maintenance and Evolution. Computer 28, 8 (1995), 44–55.

[32] Ryen W. White, Susan Dumais, and Jaime Teevan. 2009. Characterizing the
Influence of Domain Expertise on Web Search Behavior. In Proceedings of the 2nd
ACM International Conference on Web Search and Data Mining. 132–141.

[33] Wikipedia. 2019. What Wikipedia is not. https://en.wikipedia.org/wiki/
Wikipedia:What_Wikipedia_is_not. Accessed 10 July 2019.

[34] Carol Zander, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Kate Sanders,
Jan Erik Moström, and Lynda Thomas. 2012. Self-directed Learning: Stories
from Industry. In Proceedings of the 12th Koli Calling International Conference on
Computing Education Research. 111–117.

[35] Rui Zhi, Thomas W. Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. 2019. Exploring the Impact of Worked Examples in a Novice
Programming Environment. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education. 98–104.

[36] Barry J. Zimmerman and Manuel Martinez Pons. 1986. Development of a Struc-
tured Interview for Assessing Student Use of Self-Regulated Learning Strategies.
American Educational Research Journal 23, 4 (1986), 614–628.

https://foldoc.org/
https://www.regular-expressions.info
https://www.regular-expressions.info
https://en.wikipedia.org/wiki/Wikipedia:What_Wikipedia_is_not
https://en.wikipedia.org/wiki/Wikipedia:What_Wikipedia_is_not

	Abstract
	1 Introduction
	2 Background
	2.1 Linking to Wikipedia
	2.2 Related Work

	3 Method
	3.1 Participants
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Threats to Validity

	4 Findings
	4.1 A Closer Look at the Themes
	4.2 Feedback from Participants

	5 Discussion and Conclusion
	Acknowledgments
	References

