
Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09775-w

SIEVE: Helping developers sift wheat from chaff
via cross-platform analysis

Agus Sulistya1 ·Gede Artha Azriadi Prana2 ·Abhishek Sharma2 ·
David Lo2 ·Christoph Treude3

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Software developers have benefited from various sources of knowledge such as forums,
question-and-answer sites, and social media platforms to help them in various tasks. Extract-
ing software-related knowledge from different platforms involves many challenges. In this
paper, we propose an approach to improve the effectiveness of knowledge extraction tasks
by performing cross-platform analysis. Our approach is based on transfer representation
learning and word embedding, leveraging information extracted from a source platform
which contains rich domain-related content. The information extracted is then used to solve
tasks in another platform (considered as target platform) with less domain-related content.
We first build a word embedding model as a representation learned from the source plat-
form, and use the model to improve the performance of knowledge extraction tasks in the
target platform. We experiment with Software Engineering Stack Exchange and Stack Over-
flow as source platforms, and two different target platforms, i.e., Twitter and YouTube. Our
experiments show that our approach improves performance of existing work for the tasks of
identifying software-related tweets and helpful YouTube comments.

Keywords Word embedding · Transfer representation learning · Software engineering
Communicated by: Denys Poshyvanyk

� Agus Sulistya
sulistya@telkom.co.id

Gede Artha Azriadi Prana
arthaprana.2016@smu.edu.sg

Abhishek Sharma
abhisheks@smu.edu.sg

David Lo
davidlo@smu.edu.sg

Christoph Treude
christoph.treude@adelaide.edu.au

1 PT Telkom Indonesia, Jakarta, Indonesia
2 Singapore Management University, Singapore, Singapore
3 University of Adelaide, Adelaide, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09775-w&domain=pdf
http://orcid.org/0000-0002-2835-5781
mailto: sulistya@telkom.co.id
mailto: arthaprana.2016@smu.edu.sg
mailto: abhisheks@smu.edu.sg
mailto: davidlo@smu.edu.sg
mailto: christoph.treude@adelaide.edu.au


Empirical Software Engineering

1 Introduction

Software developers rely on many sources of knowledge to help them stay up-to-date on the
latest technologies and to accomplish their development tasks. A study conducted byMaalej
et al. (2014) showed that 70% of developers use online resources (web search engines, pub-
lic documentation, forums) as channels to access knowledge. Among those channels, some
are more popular and contain richer content relevant to software engineering compared to
others. For example, Xia et al. (2017) observed how developers commonly make use of a
web search engine such as Google to find online resources to improve their productivity.
They found that 63% of the searches on the Internet ended with a visit to Stack Overflow,
a popular question and answer (Q&A) site. Another popular channel is the microblogging
platform Twitter, which is used by a large number of software developers to support their
professional activities, e.g., to share and obtain the latest technical news (Singer et al. 2014).

Aside from their activity to seek knowledge in various platforms, many software develop-
ers also share their experiences or knowledge through forums and social media. A study by
MacLeod et al. (2015) found that video is a useful medium for communicating knowledge
between developers, and that developers build their reputation by sharing videos through
social channels (e.g., YouTube). On YouTube, developers as content creators will also bene-
fit from comments given by their viewers. Such comments are valuable for content creators
since the comments reflect users’ experience with the video.

However, extracting software-related knowledge from different platforms requires vary-
ing levels of effort. For example, on Stack Overflow, almost all of the content is related to
software development. The content is also maintained to be of high quality by the collective
community effort and the site’s moderators. But it is more challenging to extract software-
development-related information from Twitter, since Twitter is a social media channel which
contains a wide range of content. In order to help software developers to handle these chal-
lenges, there is a need for an approach that helps developers filter relevant content from
various platforms. Our work is motivated by the following use cases:

Use Case 1: We consider a developer who wants to acquire new knowledge based on
software-relevant tweets. Singer et al. (2014) found that developers face challenges while
using Twitter, which relate to having to deal with a huge amount of irrelevant tweets pro-
duced on Twitter, as well as the challenge of maintaining a relevant network. It is impossible
to follow all relevant Twitter users since tweeting behaviour constantly changes and new
Twitter users enter the service. We can collect tweets generated from tens of thousands of
users regularly (which can amount to millions of tweets per day), but the problem is in
the identification of relevant tweets in this large collection of tweets. Furthermore, even
Twitter users who are considered experts in the software development community may at
various times post tweets that are not software-relevant. Indeed, a manual investigation of
1,000 randomly selected tweets (done by an author and an independent annotator) from a
collection of more than 6 millions tweets (downloaded from the Twitter accounts of 100
well-known software developers and their followers) found that only 16.7% of the tweets
are software related. As the developer has limited time to inspect new tweets, a content
aggregator for Twitter data related to software development is essential. This will address
the problem of following the right people and the large amount of irrelevant content. To
create such an aggregator, there is a need for a solution that finds relevant tweets among
the tweets that are released in a given time period. More generally, automatic identification
of software-relevant tweets will also enable downstream applications such as creation of a
specialized Twitter feed for the developer community. It can also be used to aid downstream



Empirical Software Engineering

analytics task related to tweets such as mining of user requirements (Williams and Mah-
moud 2017), early detection of software issues (El Mezouar et al. 2018), or topic / trend
detection (Sharma et al. 2015b).

Use Case 2: We consider a software developer who acts as a content creator and publishes a
coding tutorial on YouTube. Through these tutorials, viewers can visually follow the instruc-
tions provided in the videos. Additionally, viewers can leave a comment that expresses their
experience with the video. From the content creator point of view, as stated in the work
by Poché et al. (2017), digesting information taken from the comments will help content
creators to be more engaged with their audience and improve their future videos. The iden-
tification of software-relevant comments will be useful, in particular given that Poché et al.
(2017) report that only a small percentage (30%) of comments in the videos they analyzed
are content-related. Automatic filtering of relevant comments (referred to as ”content con-
cerns comments” or ”informative comments” by Poché et al.) will enable creators to study
feedback provided by viewers more efficiently, and similar to tweets, such filtering can be
used to improve downstream analytics tasks, such as detection of common topics among
relevant comments.

In both platforms mentioned above (Twitter and YouTube comments), sentences are
typically short, contain a lot of noise, and may contain non-standard words. In order
to address these challenges, we propose SIEVE, an approach to help automated tasks
in a non software-development-specific platform. Our approach utilizes content from a
rich software-development-specific platform based on transfer representation learning, to
help automated knowledge extraction tasks in other less software-development-specific
platforms. We consider two platforms, Software Engineering Stack Exchange and Stack
Overflow, as the rich domain-related platforms. We build word embeddings based on the
dataset collected from these platforms. We then leverage the word embeddings models to
solve information retrieval and classification problems in two different target platforms. We
experiment with two different use cases: finding tweets relevant to software development on
Twitter (Sharma et al. 2015a), and classifying informative comments for software engineer-
ing video tutorials on YouTube (Poché et al. 2017). We conducted experiments based on the
existing datasets (as described in Table 2) provided by Sharma et al. (2015a) for Twitter,
and Poché et al. (2017) for YouTube comments. Our experiments show the effectiveness of
our proposed cross-platform analysis approach which achieves performance improvements
of up to 28% and 10.3% for the first and second use case respectively. Our contributions
can be summarized as follows:

1. We propose an approach based on transfer representation learning and word embed-
dings to solve information retrieval problems on how to use data from domain-specific
platforms to help tasks in other platforms.

2. We conduct experiments to show the effectiveness of the proposed approach for two
different tasks and platforms (i.e., Twitter and YouTube), and use baselines described
in existing work.

3. We compare the performance of various word embedding algorithms with regards to
our use cases.

The next sections in this paper are structured as follows. In Section 2, we describe
background related to knowledge channels for software developers, and background on
representation learning and word embedding. In Section 3, we describe our approach on
learning a knowledge representation from source platforms. We present our first use case on



Empirical Software Engineering

finding software-related tweets in Section 4. Next, we present the second use case on clas-
sifying informative comments on YouTube in Section 5. In Section 6, we discuss findings
that are relevant to our approach. Threats to validity are discussed in Section 7. We describe
related work in Section 8. Finally, we conclude and mention future work in Section 9.

2 Background

In this section, we first discuss the knowledge sources used by developers which we have
considered in our current work. Next, we discuss background on transfer representation
learning and word embedding.

2.1 Knowledge Sources for Software Developers

Storey et al. found that software developers use many communication tools and channels
in their software development work (Storey et al. 2014, 2017). In this work, we focus on
learning word embedding from software-development-specific channels such as Software
Engineering Stack Exchange and Stack Overflow (which are popular software discussion
forums), and use the learned embedding to improve the performance of information retrieval
and classification tasks related to the extraction of software-development-related knowledge
from open domain channels such as Twitter (a microblogging site) and YouTube (video
sharing). In the subsequent paragraphs we give background on these channels.
Software Engineering Stack Exchange: Stack Exchange1 is a network of question and
answer (Q&A) websites, where each website focuses on a specific topic. On any of the web-
sites each of which is related to a particular domain, its users can ask questions related to
that domain and other users can provide answers to these questions. The motivation for users
to answer questions comes from the points that they can gain when other users in the same
community upvote or accept their answers. These points help them to build a reputation in
the domain (and the related community), which the Stack Exchange website is focused on.
The Stack Exchange community has been the focus of many studies, e.g., Begel and Bosch
(2013) and Posnett et al. (2012). In this work as we are interested in improving the per-
formance of information retrieval and classification tasks related to software engineering,
we focused on Stack Exchange communities related to software engineering and program-
ming, which are Software Engineering Stack Exchange2 and Stack Overflow3 respectively.
The difference between these two sites is that Stack Overflow is focused only on specific
programming tasks and problems, whereas Software Engineering Stack Exchange allows
more general questions related to software development and engineering such as discus-
sions about various libraries, methodologies etc. The latter has about 50,655 questions and
260,361 users. The intuition behind using Software Engineering Stack Exchange is that
models trained on the general nature of content may achieve different performance on the
task of filtering information from open domain websites such as Twitter and YouTube.
Stack Overflow: Stack Overflow3 is a programming question and answer website founded
in 2008 with a focus on software development. It is an online forum where anybody facing

1https://stackexchange.com/
2https://softwareengineering.stackexchange.com/
3https://stackoverflow.com/

https://stackexchange.com/
https://softwareengineering.stackexchange.com/
https://stackoverflow.com/


Empirical Software Engineering

a programming issue can post a question describing the problem they face. The questions
posted are public on the forum, so any other user on the forum can post their solutions as
answers to the posted questions. The original asker can then mark an answer as accepted if it
solved the problem. Other users can also upvote an answer if they think it is the right method
to solve the programming challenge being addressed. Thus Stack Overflow helps developers
in getting answers to their problems with the help of the crowd. It is one of the most used
websites by software developers in the world having more than 9,000,000 registered users,
more than 16,000,000 questions and an Alexa Rank of 704. As Stack Overflow contains
rich software development and software engineering content, it has been immensely popular
among software engineering researchers in recent years, where it has been used to discover
topics and trends (Barua et al. 2014), generate API call rules (Azad et al. 2017), explore
knowledge networks (Ye et al. 2017), build information filtering models (Sharma et al.
2015a) etc. More related work is discussed in detail in Section 8.

Figure 1 shows a sample question-and-answer thread from Stack Overflow. Each thread
generally contains five types of information: title, tags, body, answers, and comments. The
title of a thread is a summary of the question asked. The tags represent the metadata related
to the question being asked and are entered by the person who asked the question. Whenever
somebody asks a question on Stack Overflow, they receive a recommendation to attach at
least three tags to the question. The body part of the thread contains the description of the
question. Whenever a question is answered, the answer appears in the answers section of
the thread. Other developers can also ask further clarifying questions or comment on the
question or answers posted up to that point.
Twitter and Software Engineering: Twitter is currently one of the most popular microblog-
ging sites in the world. On Twitter, a user can post short messages (a.k.a. tweets) broadcasted
to all other Twitter users who are following the user. Twitter allows a user to follow another
user, which means the latter subscribes to all the tweets of the user he/she is following.
Users also have an option of reposting the tweets posted by others – an activity known as
retweeting. Twitter also allows users to mark favorite tweets, which conveys their interest in
the content of a tweet.

By virtue of its simple design and easy-to-use functionality, Twitter has become a pow-
erful medium for information sharing and dissemination. It started as a social networking
medium but has nowadays become one of the important sources of information for people
to keep up-to-date with the latest news and information about their domains of interest, to
share and promote knowledge, and to keep in touch with their family and friends (Kwak
et al. 2010). Twitter influences many communities including the software engineering com-
munity as highlighted by many prior studies (Singer et al. 2014; Bougie et al. 2011; Wang
et al. 2013; Tian et al. 2012). Various techniques have been proposed recently to mine soft-
ware engineering relevant information from Twitter (Sharma et al. 2015a, c; Williams and
Mahmoud 2017; Guzman et al. 2017b).
YouTube and Software Engineering: YouTube is a website where anybody can share videos
(Chenail 2008). It has over 1 billion users and generates billions of views daily (YouTube
2017). YouTube has also evolved into a knowledge sharing resource, where people can
share informational videos, follow other users and comment on videos. Thus it provides
people with resources to share information, learn new knowledge, as well as get and provide
feedback.

4https://en.wikipedia.org/wiki/Stack Overflow

https://en.wikipedia.org/wiki/Stack_Overflow


Empirical Software Engineering

Fig. 1 A sample question-answer-thread on Stack Overflow with tags (Thread ID 626759)

Software developers also use YouTube for sharing information as well as learn-
ing (MacLeod et al. 2015; Ponzanelli et al. 2016a). MacLeod et al. found that developers
share videos detailing information they wished they had found earlier (MacLeod et al.
2015). The videos mainly relate to sharing knowledge about development experiences,
implementation approaches, design pattern application, etc. Other work focuses on extract-
ing relevant information for developers from YouTube, which is a challenging task given the
large size of videos. Tools to help developers find relevant content from software engineer-
ing videos have been proposed (Ponzanelli et al. 2016b; Yadid and Yahav 2016). Poché et al.
analyzed user comments related to software engineering videos posted on YouTube (Poché
et al. 2017) and proposed a technique for finding relevant comments.



Empirical Software Engineering

2.2 Word Embedding and Transfer Representation Learning

In machine learning, many methods perform well under the common assumption that the
training and test data are drawn from the same feature space and the same distribution. In
many contexts, this assumption may not hold. For example, we attempt to solve a classifi-
cation problem in a domain that does not have enough training data, but we have sufficient
data in other related domains. In this case, knowledge transfer or transfer learning would
be useful to solve the classification problem (Pan et al. 2010). In the context of represen-
tation learning, transfer representation learning is where rich representations are learned in
a source platform with the aim of transferring them to different target platforms (Andrews
et al. 2016). Representation learning also can be described as learning representations of
data that make it easier to extract useful information when building classifiers or other pre-
dictors (Bengio and Courville 2013). In the field of Natural Language Processing (NLP)
applications, distributed word representations, i.e., word embedding, are one of the products
of representation learning.

Word embedding represent words in a low dimensional continuous space, to convey
semantic and syntactic information (Mikolov et al. 2013a; Pennington and Socher 2014).
One of the most popular word embedding techniques is Word2Vec, which uses a shallow
neural network to reconstruct contexts of words. Mikolov et al. (2013a, b) proposed two
methods to learn word embedding: Continuous Bag-of-Word (CBOW) and Skip-gram. They
have been widely adopted due to their effectiveness and efficiency. For CBOW, a neural
network is trained to predict a word based on its surrounding words. In CBOW, the contin-
uous value vector for a word is the vector that is input to the last layer in the network after
we input its surrounding words to the network. For Skip-gram, a neural network is trained
to predict surrounding words based on the current word. In this architecture, the continuous
value vector for a word is the vector that is output by the first layer in the network. It has
been shown that the embedding vectors produced by these models preserve the syntactic
and semantic relations between words under simple linear operations.

A recent study by Semwal et al. provided some practical guidelines for applying trans-
fer learning to NLP applications (Semwal et al. 2018). They highlighted that the content of
the embedding layer of a neural network learned from one dataset can potentially be used
for another dataset. They also suggested to pick a source domain with a large vocabulary
size that contains content with similar semantics to the target task. Their findings moti-
vate us in investigating the effectiveness of word embedding learned from platforms that
contain a large collection of software engineering content (e.g., Stack Overflow and Stack
Exchange) to help software engineering related tasks in other platforms with much less
software engineering content (e.g., Twitter and YouTube).

3 Approach

In this section, we first describe an overview of SIEVE, our approach to help automate tasks
in a non software-development-specific platform. Afterwards, we provide more detailed
discussion regarding stages in the proposed approach.

3.1 An Overview of SIEVE

Our work is related to transfer representation-learning, where rich representations are
learned from a software-development-specific platform, and leveraged in a different target



Empirical Software Engineering

Fig. 2 Overall approach

platform. To represent knowledge in the source platform, we build a word embedding model
that represents each word as a low-dimensional vector such that words that are similar in
meaning are associated with similar vectors.

Our approach consists of two stages: representation learning from a source platform, and
model building for a target platform. In the first stage, we learn a word embedding repre-
sentation from a software-development-specific platform. In the second stage, we leverage
the word embedding model built from the platform to resolve tasks in the target platform.
Figure 2 shows the overall architecture of our proposed framework.

3.2 Stages of the Proposed Approach

Stage 1: Representation Learning from Source Platform While most research done on
Q&A sites is based on Stack Overflow data (e.g. Sharma et al. (2015a) and Zhang et al.
(2018)), we believe that relevant domains of Stack Exchange are also a good source for
software engineering related terms. In this work, we focus on one domain: Software Engi-
neering Stack Exchange (Stack Exchange-SE). Stack Exchange-SE is an excellent source as
it is a “question and answer site for professionals, academics, and students working within
the systems development life cycle” and contains posts related to “software development
methods and practices”, “requirements, architecture, and design”, “quality assurance and
testing”, and “configuration, build, and release management” (StackExchange 2019). We
use text data extracted from the two sites (i.e., Stack Overflow and Stack Exchange-SE),
and build two models: SIEVE SO which is based on Stack Overflow and SIEVE SE which
is based on Stack Exchange-SE data.

The StackExchange-SE dataset is publicly available on the Stack Exchange data dump
site.5 We use the following two files: Posts.7z and Comments.7z. Posts.7z contains the
title and body of posts (i.e., questions and answers) that appear on Stack Exchange.
Comments.7z contains comments that users give to the questions and answers on Stack
Exchange. Our Stack Exchange dataset contains a total of 149,478 posts, 409,740 com-
ments, and 46,246 titles generated in a time period spanning from September 2010 to August
2017. We combined all of the posts, comments and titles for learning word embedding from
this dataset. We do not perform filtering of posts in the Stack Exchange-SE and Stack Over-
flow datasets (e.g., for answers or questions with negative votes), since we assume that most
of the posts will be software related, regardless of their quality.

5http://archive.org/download/stackexchange

http://archive.org/download/stackexchange


Empirical Software Engineering

We used the Stack Overflow data dump provided by previous work by Sharma et al.
(2015a). The data was also taken from the data dump site.5 They extracted the questions
and answers from the Posts.7z file, and user’s comments from Comments.7z. These files
contain content posted on Stack Overflow from September 2008 to September 2014. There
are a total of 7,990,787 titles, 21,736,594 posts (questions and answers), and 32,506,636
comments. Since there are too many posts and comments to efficiently process the data,
to reduce the time it takes to learn a model, they randomly selected 8 million posts and
comments from the data dump. We use this randomly selected data and combine all of the
posts, comments and titles.

Before we build the word embedding model, we performed the following text prepro-
cessing for both datasets:

1. Parse the posts into sentences, since we want to train word embedding at sentence-level.
We use NLTKFLs punkt tokenizer6 for sentence splitting.

2. Remove all HTML tags since they do not contain useful information for word
embedding.

3. Remove all special characters (e.g., symbols, punctuations, etc.) and words that contain
only numbers.

4. Change all words to their lower case.

We do not use stemming in the preprocessing steps as many past studies (Poché et al.
2017; Bacchelli et al. 2012a; Williams and Mahmoud 2017) have shown that it does not
boost performance. We chose the Skip-gram Word2Vec model proposed by Mikolov et al.
(2013a). We trained the word embedding models by using the Word2Vec Skip-gram model
implemented in Gensim7. We use the following hyper-parameter settings: context window
size of 5, vector dimension of 300, negative samples of 5, and minimum word frequency of
0. Context window size determines the number of surrounding words to be included as the
context of a target word. For example, a window size of 5 takes five words before and after a
target word as its context for training. For our dataset, since the sentences are typically short,
we chose a window size of 5. The vector dimension is the size of the learned word vector.
Training a higher dimension word vector is more computationally costly and produces a
larger word embedding matrix. According to the experiment conducted by Pennington and
Socher (2014), the best accuracy was achieved with 300 dimensions. In their experiments,
performance did not improve dramatically if the number of dimensions is increased further.
The negative samples parameter refers to the number of randomly chosen negative words
during training process. We use the default value of negative samples in Gensim (negative
sample = 5). Minimum word frequency is set to 0, which means that the model will preserve
all words in the dataset.

The output of the model is a dictionary of words, each of which is associated with a
vector representation. Table 1 includes statistics on the generated word embedding learned
from the datasets.

Stage 2: Model Building for Target Platform Our goal is to leverage knowledge extracted
from software-development-specific platforms and apply it to open-domain platforms. In
order to examine the learned word embedding representation in stage 1, we utilize the word

6http://www.nltk.org
7https://pypi.org/project/gensim/

http://www.nltk.org
https://pypi.org/project/gensim/


Empirical Software Engineering

Table 1 Statistics of datasets and word embedding extracted from Stack Overflow (SIEVE SO) and
StackExchange-SE (SIEVE SE)

StackExchange-SE Stack overflow

Number of Posts 149,478 21,736,594

Number of Comments 409,740 32,506,636

Number of Titles 46,246 7,990,787

Number of Sentences (sampled) 3,152,950 8,000,000

Vocabulary size in Word2Vec 233,098 275,103

Vocabulary size refers to the number of unique terms in the Word2Vec model

embedding in two different use cases. In the first use case, we aim to resolve the task of
finding tweets related to software engineering. In the second use case, we leverage the word
embedding to classify user comments on YouTube coding tutorial videos. We discuss each
of the use cases further in the next sections.

4 Finding Relevant Tweets UsingWord Embedding

In this section, we show how our approach can be used for the task of finding tweets related
to software engineering. Researchers have found that developers use Twitter to support their
professional activities by sharing and discovering various information from microblogs,
e.g., new features of a library, new methodologies to develop a software system, opinions
about a new technology or tools, etc. Sharma et al. (2015a) However, due to various topics
posted on Twitter, it becomes a challenge to find interesting software-related information
on Twitter. To overcome this problem, Sharma et al. (2015a) proposed a language-model
based approach and used the model to rank tweets based on their relevance to software
engineering. We will use the proposed model as a baseline, along with other baselines. We
aim to answer the following research question:

RQ1. How effective is our approach at the task of finding software related tweets?

4.1 Dataset

For the Twitter dataset, we use the same dataset created by Sharma et al. (2015a). The
dataset consists of around 6.2 million tweets downloaded through the Twitter REST API.
To collect tweets, they first obtained a set of microbloggers that are likely to generate
software-related content. They started with a collection of 100 seed microbloggers who are
well-known software developers. Next, they analyzed the follow links of these software
developers to identify other Twitter accounts that follow or are followed by at least 5 seed
microbloggers. After they had identified the target microbloggers, they downloaded tweets
that were generated by these individuals. The tweets collected were assumed to be mostly
software related, since they were collected from potential software developers. However,
based on our observation from a random sample of 1000 tweets, we found that only 16.7%
are software related, while the majority of them (83.3%) are not software related. Statistics
of the tweets dataset are listed in Table 2.



Empirical Software Engineering

Table 2 Statistics of the Twitter dataset

Number of Tweets (Raw data) 6,294,015

Software related (based on sample of 1000) 16.7 %

4.2 Approach

Figure 3 shows our proposed approach for the task of finding software development-related
tweets, by utilizing word embedding trained from a source platform. In general, we formu-
late the task of finding software-related tweets as a ranking problem, i.e., ranking the tweets
in the order of their similarity scores with selected sentences from the source platforms. We
follow these steps:

Step 1: Instance Selection

In our approach, selecting instances (i.e., sentences) from the source platform is an impor-
tant task, since we will use these selected sentences to rank the tweets based on a similarity
measure. Sentences extracted from the source platform (StackExchange-SE/Stack Over-
flow) are considered as software-related. However, some of the sentences may have different
characteristics from Twitter. Therefore, we use the following heuristic methods to select
suitable sentences from a source platform:

1. We select sentences that have a length of no more than 140 characters which corre-
sponds to a tweet’s maximum length.

2. Among these selected sentences, we randomly sample sentences. By default, we sam-
ple 1000 sentences. We believe that this sampled set should be enough to represent
sentences that contain software-related terms.

Step 2: Preprocess Tweets

We use the Twitter dataset provided by Sharma et al. (2015a). We also use the same prepro-
cessing steps as the prior work, i.e., we remove punctuation marks and URLs, and convert
all words into lowercase.

Step 3: Calculate Similarity

To measure similarity between tweets and selected sentences taken from the source plat-
forms, we need to use the same representation for both texts. Because sentences (or tweets)

Fig. 3 Our approach for finding software-related tweets



Empirical Software Engineering

have different lengths, we transform each sentence into fixed-length vector to represent
them. To build the vector representation, we leverage the word embedding learned from the
source platform. The model consists of word vectors that have 300 dimensions as mentioned
in Section 3. We follow these steps:

1. For each sentence or tweet in the dataset, we tokenize it into words.
2. For each word, we look up its weight from the word embedding model. If a word does

not exist in the model, we can either ignore that word, use a vector whose values are
all 0 to represent it, or use the average of the embedding from words having the lowest
frequency in the model. By default, we ignore the word that does not exist in the model.
The result is a 300 dimensions vector of real values taken from the word embedding
model.

3. We represent the sentence into a fixed-length vector. There are different ways to obtain
text representation from word embedding. The most common methods use the maxi-
mum, minimum, or average of the embedding of all words (or just the important words)
in a sentence (Socher et al. 2013). In this case, we take the average of the word embed-
ding of all words within the text, following Kenter and De Rijke (2015) At the end, we
have a word vector of real values with 300 dimensions for each tweet or sentence.

Figures 4 and 5 illustrate the above mentioned steps. In Fig. 4, N sentences are sampled
from Stack Exchange. Each word of the sentence is then converted into a vector of values
using the word embedding model. For example, the word ’sqlite’ will be converted to a
vector 〈-0.04910894,...,0.07086225〉. The vectors of words belonging to the same sentences
are then averaged. At the end, there are N vectors representing the N sentences from the
source platform.

In Fig. 5, two sample tweets are first preprocessed into two vectors of words. Each word
is then converted into a vector of values using the word embedding learned from the domain-
rich platform (i.e., Stack Exchange). Next, the vectors of words belonging to the same tweet
are then averaged and the resultant vector is used to represent the tweet. The second tweet is
an example where there are no corresponding word vectors in the word embedding model.
Thus, the average score for this tweet is zero.

For each tweet, we calculate similarities between the vector representation of the tweet
with each of the N vector representations of the sample sentences. Considering a sample

Fig. 4 Illustration of sampling process from Stack Exchange, followed by creating sentence vectors



Empirical Software Engineering

Fig. 5 Illustration of preprocessing, tokenizing and creating tweet vectors

size of N, for each tweet, there will be N similarity scores. We then calculate the average of
the N similarity scores. Next, we rank the tweets based on their average similarity scores.
The higher the score, the more likely the corresponding tweet is software-related.

To calculate similarity between two word vectors, we use cosine similarity. Cosine
similarity is a measure of similarity between two vectors (in this case, vectors of text rep-
resentation) that measures the cosine of the angle between them. Given a tweet T and a
selected sentence S, that are represented by two word vectors wvtweet and wvso, we define
their semantic similarity as the cosine similarity between their word vectors:

similarity(T , S) = wvT
tweet .wvso

||wvtweet ||||wvso||
Figure 6 shows an example on how the similarity score is calculated. For each tweet

vector, we calculate a similarity score between the tweet and each of the sentence vectors.
The final score would be the average similarity score. In this example, the similarity score
for the first tweet is 0.7892, while for the second tweet it is zero. We repeat this step for all
tweets available in the dataset.

Fig. 6 Illustration of calculating similarity score



Empirical Software Engineering

4.3 Baselines

We used several baselines to show the effectiveness of our approach. First, we compared
our proposed approach against NIRMAL (Sharma et al. 2015a), since we used the same
dataset as their work. Next, since our models are trained on software-development-specific
platforms, we compared the models with a within-platform model trained from the target
platform (Twitter). To show the effectiveness of the Word2Vec-based models that we use,
we compared the models with a model that uses Term Frequency − Inverse Document
Frequency (td-idf) vectors generated from a source platform. The tf-idf technique has been
widely used in other software-engineering-related information retrieval tasks, e.g., De Lucia
et al. (2014) and Palomba et al. (2016). We briefly describe the baselines as follows:

1. NIRMAL by Sharma et al.We used this approach as the main baseline. This approach
builds an N-gram language model by using SRILM (Stolcke 2002), a language mod-
eling toolkit. NIRMAL learns a language model from Stack Overflow data. NIRMAL
then uses the learned model to compute the perplexity score of each tweet. The lower
the perplexity score, the more likely the tweet is software related. NIRMAL then ranks
the tweets in ascending order of their perplexity scores and returns a ranked list. NIR-
MAL differs from SIEVE in several aspects. First, SIEVE uses word embedding to
capture relations between software-related terms. In addition, SIEVE samples selected
Stack Overflow titles, uses them as seed sentences, and calculates similarity scores
between the samples and the tweets. SIEVE then outputs a ranked list of tweets in
ascending order of their similarity scores.

2. Word2Vec trained on Twitter. We consider this approach as a within-platform base-
line, since we leverage knowledge extracted from Twitter itself as the target platform.
We considered two datasets: (1) all tweets, (2) all software engineering (SE) relevant
tweets. For the second dataset, we used 1,151 tweets that are labeled by an author and an
independent annotator as SE-related in our dataset. For each of these two datasets, we
trained word embedding models using the approach (i.e., Word2Vec) and parameters
described in Section 3.

3. Term Frequency − Inverse Document Frequency (tf-idf ). In this approach, instead
of using vectors generated by word embedding, we used td-idf vectors generated from a
source platform. We built two variants of tf-idf vectors: one from Stack Overflow posts,
and one from Stack Exchange posts. Term frequency (tf) is the number of times a word
occurs in a given sentence, accompanied with a measure of the term scarcity across
all the sentences, known as inverse document frequency (idf). Before constructing the
vectors, we performed stemming using Porter Stemmer (Porter 1980) and removed
English stopwords. To remove stopwords, we used stopwords listed in the Python
NLTK library8.

4.4 Experiments and Results

Experiments Setting We conducted experiments to answer RQ1 and evaluated the effec-
tiveness of our approach as compared to the baselines. After following the steps in our
proposed approach, we ranked the tweets based on similarity scores between the tweets and
selected instances taken from a source platform. We investigated various word embedding

8https://www.nltk.org/

https://www.nltk.org/


Empirical Software Engineering

models trained from Stack Overflow, StackExchange-SE and Twitter, and one non-word
embedding model (tf-idf).

The task of finding relevant tweets helps developers who wants to learn new knowledge
based on software-relevant tweets (Sharma et al. 2017c). As it is impossible for developers
to follow everyone who may generate useful content, it is useful to create a content aggre-
gator of tweets (Achananuparp et al. 2012). Such content aggregator will follow a large
number of Twitter users who may potentially generate software engineering relevant tweets
and capture all their tweets. Nirmal (Sharma et al. 2015a) and the solution that we built here
help rank tweets for such content aggregators. As developers have limited time for learning,
it is important that the top-K results listed in such aggregator are software related. Thus, to
measure the effectiveness of Nirmal (Sharma et al. 2015a), Nirmal’s authors have proposed
the use of accuracy@K, which is defined as the proportion of tweets in the top-K positions
that are software-related. Here, we use the same evaluation metric. This metric has also been
used in several other software analytics works such as API recommendation (Xu et al. 2018),
duplicate bug report detection (Hindle and Onuczko 2019), and concept location (Rahman
and Roy 2017).

We used accuracy@K, which is defined as the proportion of tweets in the top-K posi-
tions that are software-related. We manually evaluated the top-K tweets ranked by their
similarity scores. We asked two labelers who have master’s degrees in Computer Science to
manually label the tweets, either as “relevant” or “not relevant” to software engineering.
For our final ground truth, we labeled a particular tweet as “relevant” only if both labelers
agreed that the tweet is software-development-related. We used Cohen’s Kappa to measure
inter-rater reliability for the labeling task. We obtained a Kappa value of 0.78 for label-
ing SIEVE SE and a Kappa value of 0.68 for labeling SIEVE SO – following Landis and
Koch’s interpretation (Landis and Koch 1977), these values indicate substantial agreement.

Results The results of our experiments are shown in Table 3 and Fig. 7. Overall, the word
embedding model trained on Stack Exchange performed best in terms of all accuracy@K
measures. Word embedding models trained on platforms that contain rich software-
development-related knowledge (Stack Exchange and Stack Overflow) performed better as
compared to the baselines.

Based on our experiments, the performance of the Word2Vec model trained on all tweets
was lower than the other Word2Vec models. When we use the Word2Vec model trained on
the software-related tweets, the accuracy was improved as compared to the one trained on
all tweets (accuracy@10 of Word2Vec trained on all tweets is 0.400, while accuracy@10 of
Word2Vec trained on software-related tweets is 0.900). However, the performance achieved
was still lower than that of the Word2Vec model trained on the Stack Exchange-SE corpus.

Table 3 Accuracy@K results of different approaches in our experiments (best results are in bold)

Approach acc@10 acc@50 acc@100 acc@150 acc@200

Nirmal 0.900 0.820 0.720 0.707 0.695

TF-IDF (Stack Overflow) 1.000 0.540 0.730 0.693 0.575

TF-IDF (Stack Exchange) 1.000 0.560 0.400 0.347 0.310

Word2Vec (Twitter-All) 0.400 0.220 0.260 0.260 0.235

Word2Vec (Twitter-SWrelated) 0.900 0.580 0.540 0.547 0.530

SIEVE SO 0.900 0.880 0.870 0.847 0.800

SIEVE SE 1.000 1.000 0.990 0.980 0.975



Empirical Software Engineering

Fig. 7 Comparison of Accuracy@K achieved by different approaches

The low scores achieved by the word embedding models trained on all Twitter data can
be attributed to the fact that the content of typical tweets is mostly unrelated to software
development. For example, consider the following tweets: ”In New York and off to the pre
show cocktail party for From Scotland With Love hosted by Lord Jack M”, ”In an effort to
fit in with real men today I replaced my car stereo by myself and did it right the first time”.
Those two sample tweets achieved high similarity score and appeared in the top-100 list
when we used the Word2Vec model trained on Twitter data. On the other hand, when we
used the SIEVE SE model, the tweets were ranked much lower (rank >80,000).

While the tf-idf-based approach performed well when ranking the top-10 most relevant
tweets, the performance degrades significantly when ranking top 50, and fluctuates when
ranking the top 100, 150 and 200 tweets. Figure 8 shows a box-plot diagram, describing the
word count of the top 200 tweets returned by various approaches. We found that, in the top-
200 tweets ranked by the tf-idf approach, the tweets mostly contain the word stem ”use”,
such as ”What is the use of c”, ”Java MySQL Insert Record using Jquery”, ”@shayman I
used to work there”. On the other hand, the top 200 tweets returned by SIEVE SE contain
more diverse vocabulary and tend to be lengthy, such as ”I still very much admire all the
work put into TinyMCE Building a RTE is one of the most gruesome things you can do
in a browser,” ”@Youdaman yes angular is very minimal in the amount of code and glue
you need to do specially if you use a RESTful service”. This finding highlights the benefit
of leveraging word embedding models to learn feature representation from a rich software-
related platform.

The results show that SIEVE SE improves all accuracy@K scores of up to 28% as
compared to Nirmal. To measure whether this improvement is significant, we conducted a
Wilcoxon signed-rank test (Wilcoxon 1945). Our null hypothesis is there is no difference
in the mean accuracy@K (for K = 1 to 200) of SIEVE SE and Nirmal. Wilcoxon signed-
rank test results show that the p-value is less than 0.00001 which shows that we can reject
the null hypothesis. This demonstrates that the improvement that SIEVE SE achieves over
Nirmal is statistically significant.

RQ1: Two variants of SIEVE ( and ) are able to find

software-related tweets with accuracy@K of 0.800 - 1.000.



Empirical Software Engineering

Fig. 8 A box plot diagram representing word count of tweets returned by various approaches

5 Finding Informative Comments on YouTube UsingWord Embedding

The objective of this task is to analyze user comments for YouTube coding tutorial videos.
Important users’ questions and concerns can then be automatically classified in order to help
content creators to better understand the needs and concerns of their viewers, as described
in work by Poché et al. (2017) They categorized the comments into two general categories:
informative vs. non-informative (which corresponds to other miscellaneous comments). We
aim to answer the following research question:

RQ2. How effective is our approach at the use case of finding informative comments on
YouTube?

5.1 Dataset

We used the dataset provided by Poché et al. (2017)9 They collected a total of 41,773 com-
ments from 12 different coding tutorial videos. They used YouTube Data API3 10 to retrieve
the comments. This API extracts comments and their metadata, including the author’s name,
the number of likes, and the number of replies. Finally, Poché et al. sampled 6000 comments
(500 comments for each video) and labeled them as content concerns (informative) and mis-
cellaneous (uninformative). Based on their manual classification process, they found 1,826
comments (around 30% of the comments) to be informative, meaning that the majority of
comments are basically not related to the content.

5.2 Approach

Figure 9 shows our proposed approach for the use case of finding informative com-
ments on YouTube, by utilizing word embedding models trained on the source platforms
(StackExchange-SE and Stack Overflow). We formulate this task as a binary classification
problem, where a comment can be either informative or non-informative with regards to
the video content. In order to build a classifier for this use case, we need to represent the
YouTube comments into a feature representation. We leverage the word embedding learned
from a source platform. The model consists of word vectors that have 300 dimensions as

9http://seel.cse.lsu.edu/data/icpc17.zip
10https://developers.google.com/youtube/v3/

http://seel.cse.lsu.edu/data/icpc17.zip
https://developers.google.com/youtube/v3/


Empirical Software Engineering

Fig. 9 Approach for finding relevant comments on YouTube

mentioned in Section 3. We build vectors to represent the comments, by following these
steps:

1. For each comment, we tokenize it into words, remove words that contain only numbers,
and change all words into lowercase.

2. Next, for each word in the comment, we look up its vector value taken from the word
embedding model. We ignore a word if it does not exist in the word embedding model.
We take the average of the word embedding of all words within the text, following
Kenter and De Rijke (2015). At the end, we have a word vector of real values with 300
dimensions for each comment.

Figure 10 serves as an example that illustrates the above-mentioned steps. Each word of
the comment is then converted into a vector of values using the word embedding. The vec-
tors of words belonging to the same comment are then averaged. As a result, the comment
is represented as a vector with 300 dimensions. We repeat this step for all comments avail-
able. We then use the comment vectors as a set of features to be used by the classifier to
distinguish informative from non-informative comments.

5.3 Baselines

Since we used the same dataset and experiment setting as Poché et al.’s work, we used their
approach as the first baseline. To show the effectiveness of our models that are trained on

Fig. 10 An illustration of preprocessing and creating comment vectors for classifying YouTube comments



Empirical Software Engineering

software-development-specific platforms, we compared the models with a within-platform
model trained from YouTube comments, and another cross-platform pretrained model that
was learned from more general content. We briefly describe the baselines as follows:

1. Normalized Term-Frequency (as proposed by Poché et al. 2017). In order to auto-
matically identify content-relevant comments, Poché et al. investigate the performance
of two classification algorithms: Naive Bayes (NB) and Support Vector Machines
(SVM). They performed text preprocessing on the dataset, by stemming and removing
stopwords. They also remove words that appear in one comment only since they are
highly unlikely to carry any generalizable information. As feature representation, they
use normalized term frequency (tf) of words in their documents. They found that their
SVM classifier performs better than Naive Bayes. They also experimented with differ-
ent combinations of data preprocessing such as stemming and removing stop-words,
and found that the best result was achieved without stemming and stop-word removal.

2. Word2Vec trained from YouTube Comments. We consider this baseline as a within-
platform baseline, since we leverage knowledge extracted from the target platform itself
(i.e., YouTube comments). We built word embedding based on two datasets: (1) Use all
YouTube comments available in Poché et al.’s dataset (2) Use only comments in Poché
et al.’s dataset that are labeled as informative. There are 1,826 comments in the second
dataset. We then trained skip-gram word embedding models using the set of parame-
ters that we described in Section 3 on these datasets. We use these models to predict
informative comments following the process that we have described in Section 3.

3. Pretrained Word2Vec on GoogleNews.We used a pretrained word embedding model
on GoogleNews11 which is an alternative cross-platform pretrained model as another
baseline. The model contains 300-dimensional vectors for 3 million words and phrases,
which was trained on part of the Google News dataset (about 100 billion words).

5.4 Experiments and Results

Experiments Settings We conducted experiments to answer RQ2 and evaluated the effec-
tiveness of our approach as compared to the baselines. We used Support Vector Machines
(SVM) as the classification algorithm, since this algorithm performs better in Poché et al.’s
work (Poché et al. 2017). To enable a fair comparison, we used the same implementation of
SVM (inside Weka12) for classification. For the kernel function, in Poché et al.’s work, the
best results were obtained using the universal kernel. Therefore, we also used the universal
kernel in our experiment. To validate the result, we used 10-fold cross validation. With this
technique, the dataset was first partitioned randomly into 10 partitions of equal size. After-
wards, one of the partitions was selected as validation set while the remaining partitions are
used for training. The process was repeated 10 times with a different partition being selected
as validation set, ensuring that the entire dataset was used for both training and validation,
and each entry in the dataset was used for validation exactly once.

To measure the effectiveness of our approach, we used the same metrics as Poché et al.’s
study (i.e., Precision, Recall and F-measure). F-measure is the harmonic mean of precision
and recall, and it is used as a summary measure to evaluate if an increase in precision
(recall) outweighs a reduction in recall (precision). These metrics are calculated based on

11https://code.google.com/archive/p/word2vec/
12https://www.cs.waikato.ac.nz/ml/weka/

https://code.google.com/archive/p/word2vec/
https://www.cs.waikato.ac.nz/ml/weka/


Empirical Software Engineering

Table 4 Performance of different approaches for classifying informative comments

Approach Precision Recall F-Measure

NTF (Poché et al.) 0.790 0.750 0.770

Word2Vec (YouTube Comments - All) 0.829 0.833 0.830

Word2Vec (YouTube Comments - Relevant) 0.785 0.792 0.782

Word2Vec (GoogleNews) 0.859 0.861 0.859

SIEVE SO 0.868 0.870 0.869

SIEVE SE 0.872 0.874 0.873

four possible outcomes of each comment in an evaluation set: True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN). TP corresponds to the case
when a comment is correctly classified as an informative comment; FP corresponds to the
case when a non-informative comment is wrongly classified as an informative comment;
FN is when a comment is wrongly classified as a non-informative comment; TN is when a
non-informative comment is correctly classfied as such. The formulas to compute precision,
recall, and F-measure are shown below:

Precision = #T P

#T P + #FP

Recall = #T P

#T P + #FN

FMeasure = 2 × Precision × Recall

P recision + Recall

Results The results of our approach as compared to the baselines are shown in Table 4 and
Fig. 11. The results showed that the best performance (in terms of precision, recall, and F-
measure) was achieved by using the word embedding model trained on StackExchange-SE
data.

The results of our approach as compared to the baselines are shown in Table 4 and
Fig. 11. The results showed that the best performance (in terms of precision, recall, and F-
measure) was achieved by using the word embedding model trained on StackExchange-SE
data.

Fig. 11 Comparison of Precision, Recall and F-measure achieved by different approaches



Empirical Software Engineering

The results also showed that by using word embedding as feature representation, the
performance of the classifiers can be improved by up to 10.3% in terms of F-measure, as
compared to the normalized-tf based approach proposed by Poché et al. Among the five
word embedding models used in our experiment, models trained on StackExchange-SE and
StackOverflow performed best with F-measure scores of 0.874 and 0.869 respectively. This
finding justifies the importance of choosing a source platform that is more relevant to a
target task. Even though the corpus’ size is less as compared to GoogleNews data, Stack
Exchange and Stack Overflow data contains more software-development-specific content
than GoogleNews, and this explains the improved performance.

In the original work by Poché et al. (2017), they classified user comments into two
groups: content concerns (informative) and miscellaneous. Comments that fall under the
content concerns category include questions or concerns about certain parts of the video
content that need further explanation, comments that point out errors within the video, com-
ments that request for certain future content, comments that provide suggestions to improve
the quality of the tutorial, and comments that suggest a change in the media settings. There-
fore, a praise comments such as ”Very well explained, many thanks!” is identified as a
miscellaneous comment, while a comment that points out errors within the video (e.g., ”At
27:10 there’s a small mistake. The first parameter is the starting index, the second param-
eter is the number of chars”) is categorized as a content concern or informative comment.
Based on our observation, most of the informative comments contain software-related terms.
Therefore, the use of word embedding trained on a dataset obtained from a software-specific
domain can help.

RQ2: Two variants of SIEVE ( and ) performed better than

various baselines with F-measure score of 0.874 and 0.869 respectively.

6 Discussion

As shown in previous sections, our approach can improve performance on finding rele-
vant content in less-software-related platforms. However, there are some other observations
worth further investigation. In this section, we will discuss these additional observations:
(1) determining sample size in the task of finding relevant tweets, (2) comparing different
methods to learn word embedding, (3) learning word embedding in other software-related
domains, and (4) finding software-relevant content from sample tweets.

6.1 Determining Sample Size from Source Platform

For the first use case, we sample a number of sentences (i.e., Software Engineering Stack
Exchange post titles) to rank tweets based on a similarity measure. By default, we sam-
ple 1,000 sentences. In this section, we experiment with different sample sizes (500,
1,000, 1,500, and 2,000) and investigate their impact on the effectiveness of SIEVE. Since
Section 4 shows that SIEVE SE performs better than SIEVE SO, in this experiment, we use
word embedding trained on the Stack Exchange dataset.

The results of our experiment are shown in Table 5. From the table, we can observe
that results achieved using a sample size of 1,000 are better than those achieved using a
sample size of 500. This is true for Accuracy@50, Accuracy@100, Accuracy@150, and



Empirical Software Engineering

Table 5 Accuracy@K results for different sample sizes

sample size acc@10 acc@50 acc@100 acc@150 acc@200

500 0.900 0.800 0.830 0.813 0.780

1000 0.900 0.980 0.970 0.940 0.925

1500 0.900 0.940 0.930 0.933 0.915

2000 0.900 0.940 0.960 0.947 0.925

Accuracy@200. This shows that it is not advisable to reduce the sample size to be below
1,000. Moreover, from the table, we can observe that results achieved using a sample size
of 1,000 are comparable with those achieved using a sample size of 1,500 or 2,000. Thus,
for efficiency reason, we pick the sample size 1,000 as the default setting.

6.2 Comparing Different Methods to LearnWord Embedding

Skip-gram (Mikolov et al. 2013a) is a popular but not the only method to learn word embed-
ding. There are other methods such as CBOW (Mikolov et al. 2013a), GloVe (Pennington
and Socher 2014) and FastText (Bojanowski et al. 2017). CBOW and Skip-gram were pro-
posed by Mikolov et al. (2013a); CBOW learns word embedding by trying to predict a
word from its context, while Skip-gram learns word embedding by trying to predict the sur-
rounding words (aka. context) from a word. GloVe, proposed by Pennington and Socher
(2014), is a method for learning word embedding that leverages global count information
aggregated from the entire corpus as word-word occurrence matrix. FastText, proposed by
Bojanowski et al. (2017), is an approach built based on the Skip-gram model, where each
word is represented as a bag of character n-gram (Bojanowski et al. 2017).

Mikolov et al. have shown that the effectiveness of the word embedding learned via
CBOW and Skip-gram differ for different tasks (Mikolov et al. 2013a). Also, Pennington
and Socher (2014) and Bojanowski et al. (2017) have shown the power of GloVe and Fast-
Text over CBOW and Skip-gram. In the previous sections, we have explored the power of
the Skip-gram method for two use cases, i.e., finding software-related tweets for developer
learning (Section 4) and identifying informative comments for improving software devel-
opment video tutorials (Section 5). Here, we want to investigate whether the performance
of word embedding learned via the four methods (CBOW, Skip-gram, GloVe and FastText)
differ for the two use cases. If they differ, we want to know the best one for each of the use
cases.

To evaluate the effectiveness of the four methods for the first use case, we followed
the setting described in Section 4 and repeated the experiment four times using different
methods to learn word embedding. The results of our experiments for the first use case are
shown in Table 6. From the table, we can observe that all methods perform equally well
for acc@10. For acc@50, Skip-gram performed the best but its result is only marginally
better than those of the other methods (differences of 0.02-0.04). For acc@100, Skip-gram,
CBOW, and FastText achieved the best performance. For acc@150, Skip-gram performed
the best but again its result is only marginally better than those of the other methods (differ-
ences of 0.007-0.047). For acc@200, Skip-gram performed the best too, but the differences
are again minor (differences of 0.005-0.040).

To evaluate the effectiveness of the four methods for the second use case, we followed
the setting described in Section 5 and repeated the experiment four times using different



Empirical Software Engineering

Table 6 Accuracy@K results of different word embedding learning methods for the task of finding software-
relevant tweets

Models acc@10 acc@50 acc@100 acc@150 acc@200

GloVe 1.000 0.960 0.920 0.933 0.935

FastText 1.000 0.980 0.990 0.973 0.970

CBOW 1.000 0.980 0.990 0.973 0.970

Skip-gram 1.000 1.000 0.990 0.980 0.975

methods to learn word embedding. The results of our experiments for the second use case
are shown in Table 7. From the table, we can observe that the F-measures achieved by the
four methods are similar (0.828-0.873) with the best results achieved by Skip-gram.

From the above results, we would like to recommend the use of the Skip-gram method
for cross-domain tasks where data from source platforms which contain rich domain-related
content (e.g., Stack Overflow and Software Engineering Stack Exchange), are used to solve
tasks in other platforms with less domain-related content (e.g., Twitter and YouTube). How-
ever, the performance differences between Skip-gram and the other methods are not that
large and other considerations (e.g., runtime efficiency, etc.) may need to be considered to
determine one’s choice of the method to be used. CBOW for example has been shown to be
more efficient than Skip-gram (Mikolov et al. 2013a).

6.3 LearningWord Embedding in Another Software-Related Domain

We have shown that using Stack Overflow and Software Engineering Stack Exchange as
source platforms achieved promising results in the use cases described in Sections 4 and 5.
Here, we want to investigate whether we can use another software-related platform as source
platform. We chose HackerNews, a social news website that focuses on technology news.
We used the HackerNews dataset provided by Aniche et al. (2018) The dataset consist of
530,446 posts.

First, we learn a Word2Vec model using the Skip-gram method from the dataset, fol-
lowing the settings described in Section 3. The results of our experiments for the task of
finding software-relevant tweets are shown in Table 8. Overall, the accuracy@K results
obtained from the HackerNews dataset are comparable to the results obtained from the Stack
Exchange dataset, and better than those obtained from the Stack Overflow dataset.

To evaluate the effectiveness of the HackerNews dataset for the second use case, we
followed the settings described in Section 5. The results of our experiment for classify-
ing YouTube comments are shown in Table 9. We can observe from the table that the

Table 7 Performance of different
word embedding learning
methods for classifying YouTube
comments

Models Precision Recall F-Measure

GloVe 0.858 0.861 0.858

FastText 0.868 0.869 0.868

CBOW 0.860 0.862 0.828

Skip-gram 0.872 0.874 0.873



Empirical Software Engineering

Table 8 Accuracy@K results of different source platforms for the task of finding software-relevant tweets

Platform acc@10 acc@50 acc@100 acc@150 acc@200

HackerNews 0.900 0.980 0.970 0.980 0.980

Stack Exchange 1.000 1.000 0.990 0.980 0.975

Stack Overflow 0.900 0.880 0.870 0.847 0.800

F-measures achieved by all source platforms are comparable (0.860 - 0.873) with the best
results achieved by Stack Exchange. These findings show that Stack Overflow and Stack
Exchange platforms provide sufficiently rich datasets that are as effective as a dataset that
is obtained from HackerNews.

6.4 Finding Software-Relevant Content from Sample Tweets

In Section 4, we experimented with a collection of around 6 million tweets to demonstrate
our approach on how to find software relevant tweets. In this section, we want to investigate
the performance of our approach on a set of randomly selected tweets. Instead of using all
tweets, we randomly selected 1000 tweets (which is a statistically significant sample size
considering a confidence level of 95% and a confidence interval of 5) and applied different
approaches for finding software-relevant tweets. This dataset consists of 16.7% software-
relevant tweets (as described in Table 2). In addition, we use different metrics to evaluate
the performance of the approaches. Instead of using the accuracy@k metric, we use Mean
Average Precision at k (MAP@k). To calculate MAP@k, we first calculate the average
precision across all values between 1 and k. Then, MAP@k is defined as the mean value of
all average precision values ranging from 1 to k.

The results of our experiments are shown in Table 10. Overall, the MAP@k results
obtained from SIEVE SE (Word2Vec trained on Software Engineering Stack Exchange)
are better than those obtained from other approaches. These findings justify our previous
observation that the Stack Overflow and Stack Exchange platforms provide sufficiently rich
information that can be leveraged to find software-relevant content across platforms.

7 Threats to Validity

We present the potential threats to the validity of our findings. The threats include threats to
internal, external, and construct validity.

Threats to internal validity These threats are related to potential errors that may have
occurred when performing the experiments and labeling. Internal threats might stem from

Table 9 Performance of different
source platforms for classifying
YouTube comments as
Informative/not Informative

Platform Precision Recall F-Measure

HackerNews 0.860 0.862 0.860

Stack Exchange 0.872 0.874 0.873

Stack Overflow 0.868 0.870 0.869



Empirical Software Engineering

Table 10 MAP@K results of different approaches for the task of finding software-relevant tweets on a
sample of 1000 tweets

Approach MAP@10 MAP@50 MAP@100 MAP@150

SIEVE SE 1.000 0.889 0.746 0.651

SIEVE SO 0.803 0.598 0.514 0.464

Tf-idf SE 0.131 0.208 0.238 0.253

Tf-idf SO 0.177 0.223 0.241 0.254

the tools we used in our analysis. We used Gensim13, a popular Python module for machine
learning to build word embeddings that has also been used in many previous studies related
to word embeddings. For machine learning and classification tools, we used Weka14 which
has been extensively used in the literature and has been shown to generate robust results for
various applications. Potential errors might also occur when labelling our dataset. To label
tweets as software related or not, we asked two labelers with experience in programming,
and with degrees in Computer Science. We believe the labelers have enough expertise to
judge if a tweet is software-related or not.

Threats to external validity These threats refers to the generalizability of our results. To
mitigate these threats, we have considered two source domains (Software Engineering Stack
Exchange and Stack Overflow), two target domains (Twitter and YouTube), two tasks (rele-
vant tweet identification and informative comment classification), and two settings (ranking
and classification).

Threats to construct validity These threats are related to the suitability of the evaluation
metrics that we use for analyzing the result. We use the same evaluation metrics used to
evaluate previous studies (Sharma et al. 2015a; Poché et al. 2017) to enable fair comparisons
(i.e., Accuracy@k, Precision, Recall and F-measure). Therefore, we believe that the threat
to construct validity is minimal.

8 RelatedWork

In this section, we describe work related to our study.

8.1 Developer Information Channels

In the past few years, there has been a substantial amount of work which has analyzed tools
or channels used by software developers. Storey et al. found that software developers use
many communication tools and channels in their software development work (Storey et al.
2014, 2017). They found that a lot of knowledge is embedded in these tools and channels
which also encourages a participatory culture in software development. Their work also
highlights the challenges faced by developers while using these channels. In the paragraphs
below, we discuss work related to channels such as Software Engineering Stack Exchange

13https://pypi.org/project/gensim/
14https://www.cs.waikato.ac.nz/ml/weka

https://pypi.org/project/gensim/
https://www.cs.waikato.ac.nz/ml/weka


Empirical Software Engineering

and Stack Overflow (software question-and-answer sites), Twitter, and YouTube, as these
are the domains we have considered in this work.

Stack Overflow has received much attention in recent years in the software engineering
research community. Barua et al. analyzed in detail the topics and trends among discus-
sions on Stack Overflow by applying Latent Dirichlet Allocation (LDA) (Barua et al. 2014).
They found that the topics which interest developers range from jobs to version control
systems to C# syntax etc. Their analysis showed that web development, mobile applica-
tions, Git, and MySQL were the topics that were gaining the most popularity over time.
Vasilescu et al. explore how the developer’s use of Stack Overflow and GitHub relates to
each other (Vasilescu et al. 2013). Many empirical studies have focused on understanding
and modeling questions and/or answers on Stack Overflow. Asaduzzaman et al. found that
some questions go unanswered on Stack Overflow as the questions may be short, unclear,
too hard, etc. Asaduzzaman et al. (2013). Rahman et al. developed a prediction model based
on behavior, topics, and popularity of a question to determine unresolved questions (Rah-
man and Roy 2015). Ponzanelli et al. have performed studies to analyze the quality of
questions on Stack Overflow (Ponzanelli et al. 2014a) and also proposed an approach to
detect low-quality questions (Ponzanelli et al. 2014b). Treude et al. did an analysis of how
programmers ask and answer questions on Stack Overflow (Treude et al. 2011). How the
crowd generates valuable documentation on Stack Overflow and ways of measuring it have
been discussed by Parnin et al. (2011, 2012) A lot of tools have also been proposed which
can help developers in their usage of Stack Overflow. Many techniques have been proposed
for solving the problem of tag prediction for questions on Stack Overflow (Wang et al. 2014;
Zhou et al. 2017; Cai et al. 2016). Seahawk, an Eclipse plugin was proposed to integrate
Stack Overflow knowledge within the IDE (Ponzanelli et al. 2013; Bacchelli et al. 2012b).
Identification of opinionated sentences from Stack Overflow data and subsequent aspect
identification have been proposed recently by Uddin et al. (2017a, b).

Stack Exchange was first explored from a software engineering perspective by Begel and
Bosch (2013). This work explored what kinds of service were provided by Stack Exchange,
what challenges they face, and how people benefit from the service. Possnet et al. did an
empirical analysis of user expertise on Stack Exchange websites and found that the expertise
of users does not increase with time spent in the community; experts join the community
as experts, and provide good answers from the beginning (Posnett et al. 2012). Vasilescu et
al. analyzed how social Q&A sites such as Stack Exchange affect the knowledge sharing
practices in open source communities (Vasilescu et al. 2014).

Twitter also has been explored in recent years by the software engineering research com-
munity. Singer et al. did a survey involving 271 developers from GitHub and found that
Twitter is used by developers to keep themselves up-to-date with the latest happenings in
software development (Singer et al. 2014). Bougie et al. did an exploratory study on under-
standing how Twitter is used in software engineering (Bougie et al. 2011). Wang et al.
studied the usage of Twitter in Drupal open source development (Wang et al. 2013). Tian et
al. found that Twitter is also used by software developers for coordination of efforts, shar-
ing of knowledge, etc. (Tian et al. 2012, 2014). Sharma et al. have explored the categories
of software engineering related tweets and events on Twitter (Sharma et al. 2015b). Meth-
ods to filter software-relevant tweets and links have been proposed in Prasetyo et al. (2012)
and Sharma et al. (2015a, 2017c). Sharma et al. also proposed an approach to find software
experts on Twitter (Sharma et al. 2018). Guzman et al. analyzed tweets on Twitter which
talked about software applications and companies, and demonstrated that machine learning
techniques have the capacity to identify valuable information for companies and developers



Empirical Software Engineering

of software applications Guzman et al. (2016, 2017a). They also proposed a technique to
mine tweets for software requirements and evolution (Guzman et al. 2017b). There has been
other work also on mining Twitter feeds for software user requirements such as by Williams
and Mahmoud (2017). Mezouar et al. found that tweets generated by users can help in early
detection of bugs in software applications, and can help developers know about a bug which
may be affecting a large user base (El Mezouar et al. 2018).

Software development videos on YouTube in recent years have been studied as a repos-
itory from which software-related knowledge can be extracted. MacLeod et al. studied the
developer’s usage of videos (on YouTube) to document software knowledge Macleod et al.
(2015, 2017). They found that the main motivation for sharing videos by developers are
building an online identity, to give back to community, to promote themselves, etc. Pon-
zanelli et al. proposed an approach to extract relevant fragments from software development
video tutorials Ponzanelli et al. (2016a, b). Their approach splits the video tutorials into
coherent fragments, which are then classified into relevant categories. These fragments are
then available individually for developers to query, rather than being forced to browse the
whole video. Poché et al. proposed an approach to identify relevant user comments on cod-
ing video tutorials on YouTube (Poché et al. 2017). Parra et al. proposed a text-mining-based
approach to recommend tags for software development videos on YouTube (Parra et al.
2018). Recently there has been work on extracting code and/or code related features also
from programming tutorial videos extracted from YouTube by Yadid and Yahav (2016) and
Ott et al. (2018).

8.2 Transfer Learning for Neural Models

Transfer learning for neural models has been explored in the literature (Mou et al. 2016;
Semwal et al. 2018; Yu et al. 2018; Johnson and Zhang 2015, 2016). We present several
recent related work and highlight similarities and differences between their work and ours.
As we will discuss below, the major differences between related work and ours is (1) the use
of an unlabelled data set from the source platform, (2) the focus on multiple classification
tasks instead of the narrower sentiment analysis, and (3) knowledge transfer from a domain-
rich platform to a domain-poor platform.

Related to our work is a recent study by Mou et al. that explored the question how trans-
ferable are neural networks in Natural Language Processing (NLP) tasks (Mou et al. 2016).
They investigated how a labelled dataset created for a specific classification task can be used
for the same (or a related) classification task performed on another dataset. In particular,
they demonstrated that a large labeled dataset for sentiment analysis of movie reviews can
be used to help classify the sentiment of movie reviews (i.e., positive or negative) in another
smaller dataset. They also demonstrate that a large dataset for natural language inference –
inference whether a hypothesis (e.g., “people ride bikes”) is supported by a premise (e.g.,
“two men on bicycles are competing in a race”) – can be used to help in detecting para-
phrases. A number of other studies extended Mou et al.’s work for additional NLP tasks,
e.g., named-entity-recognition (Lee et al. 2017), retrieval-based question answering (Yu
et al. 2018), etc. In our work, different from Mou et al.’s work and its extensions, we use
an unlabeled dataset from a platform with rich software engineering related content to help
in software engineering related tasks in a different platform. Mou et al.’s study investigates
two different methods for transfer learning: parameter initialization and multi-task learning.
Our approach can be considered as a parameter initialization method; however, we consider
an unsupervised setting.



Empirical Software Engineering

A study by Semwal et al. provides some practical guidelines for applying transfer learn-
ing considering neural models for NLP applications (Semwal et al. 2018). Their work
demonstrated that for a sentiment classification task, the content of the embedding layer of a
neural network learned from one dataset can be used for the same task performed on another
dataset. They also suggest to pick a source dataset with a large vocabulary size that con-
tains content with similar semantics to the target dataset. Our study is different from them
in several aspects: (1) we consider different tasks (not sentiment classification); (2) we use
an unlabeled dataset from one platform to help in ranking and classification tasks in another
platform. Still, we uncover some similar findings; for example, our study demonstrates (at
least for the tasks and datasets that we consider) that a source dataset with a large vocab-
ulary size that contains content with similar semantics to a target task can be leveraged to
help the target task.

There are prior studies that use unlabelled data to improve neural models (Johnson and
Zhang 2015, 2016). For example, Johnson and Zhang made use of unlabelled data from one
platform (e.g., IMDB) to boost performance of sentiment classification tasks, done using a
Convolutional Neural Network (CNN), for labelled data from the same platform (Johnson
and Zhang 2016). In their later work, they considered a Long Short Term Memory (LSTM)
recurrent neural network instead of CNN (Johnson and Zhang 2016). Different from their
work, in this work, we consider how unlabelled data from one domain-rich platform can be
used for domain-related tasks in a different platform that is domain-poor.

Word embedding have been used in software engineering for improving information
retrieval tasks (Ye et al. 2016; Xu et al. 2016; Chen et al. 2016c). Chen et al. have used word
embedding based methods to mine analogical libraries (Chen et al. 2016a), assist collabora-
tive editing (Chen et al. 2018), recommend tag synonyms (Chen et al. 2017) and recommend
similar libraries (Chen and Xing 2016b). In work of Yang et al. (2016), word embedding was
combined with information retrieval to recommend similar bug reports. Guo et al. proposed
a neural architecture based on word embedding and Recurrent Neural Network (RNN) (Guo
et al. 2017), for automatic generation of trace links. Zhao et al. proposed a traceability
recovery technique based on combination of word embedding and learning to rank meth-
ods (Zhao et al. 2017). Methods similar to or based on word embedding have also been used
recently for better code retrieval (Van Nguyen et al. 2017), to find common software weak-
nesses (Zhenchang et al. 2018), API recommendation (Zhang et al. 2018) and sentiment
analysis for software engineering (Calefato et al. 2018). Ye et al. (2016) built a Skip-gram
word embedding model by using a corpus extracted from Eclipse repositories (including
the Platform API Reference, the JDT API Reference) and evaluated the model for the tasks
of bug localization and linking API documents to Java questions posted on Stack Overflow.
While SIEVE also uses word embedding technique and computes similarity between texts,
our work differs from Ye et al.’s work in the following aspects: (1) We are the first to investi-
gate the power of leveraging data from source platforms which contain rich domain-related
content (i.e., Stack Overflow and Software Engineering Stack Exchange), to solve tasks in
other platforms with less domain-related content (i.e., Twitter and YouTube) via transfer
representation learning; (2) We consider not only information retrieval but also classifica-
tion tasks relevant to software engineering; (3) We explore the power of word embedding
on two use cases that were not considered by Ye et al.(i.e., finding software-related tweets
for developer learning and identifying informative comments for improving software devel-
opment video tutorials); (4) We have explored not only the Skip-gram method but multiple
other alternatives to learn word embedding and investigated their impact on the two use
cases.



Empirical Software Engineering

9 Conclusion and FutureWork

We proposed an approach to exploit knowledge from rich software-development-specific
platforms, to automate knowledge seeking tasks in other less software-development-specific
platforms. We first built word embedding from text extracted from Stack Overflow and
Software Engineering Stack Exchange, to represent software-development-related knowl-
edge sources. We then leveraged the word embedding to solve tasks in two different target
platforms. In the first use case, we leveraged the word embedding and sampled sentences
from source platforms, to find software-related tweets. In the second use case, we used the
word embedding to classify informative comments on YouTube video tutorials. Based on
our experiments conducted in both use cases, our approach improves performance of exist-
ing state-of-the-art work for software-development-specific knowledge extraction tasks in
the target platforms.

In the future, we intend to perform additional experiments to evaluate the effectiveness
of the approach for additional tasks. We plan to expand the work to other platforms and
knowledge sources, such asWikipedia articles, software development blogs, README files
on GitHub, and software documentation. We also plan to apply SIEVE at a finer-grained
categories (i.e., mobile, big data etc.).

Acknowledgments This research is supported by the National Research Foundation, Prime Ministers
Office, Singapore under its International Research Centres in Singapore Funding Initiative.

References

Achananuparp P, Lubis IN, Tian Y, Lo D, Lim E-P (2012) Observatory of trends in software related
microblogs. In: 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. IEEE, pp 334–337

Andrews JTA, Tanay T, Morton EJ, Griffin LD (2016) Transfer representation-learning for anomaly
detection. In: Anomaly detection workshop. ICML

Aniche M, Treude C, Steinmacher I, Wiese I, Pinto G, Storey M-A, Gerosa MA (2018) How modern
news aggregators help development communities shape and share knowledge. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, pp 499–510

Asaduzzaman M, Mashiyat AS, Roy CK, Schneider KA (2013) Answering questions about unanswered
questions of stack overflow. In: Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press, pp 97–100

Azad S, Rigby PC, Guerrouj L (2017) Generating api call rules from version history and stack overflow
posts. ACM Transactions on Software Engineering and Methodology (TOSEM)

Bacchelli A, Sasso TD, D’Ambros M, Lanza M (2012a) Content classification of development emails. In:
2012 34Th international conference on software engineering (ICSE). IEEE, pp 375–385

Bacchelli A, Ponzanelli L, Lanza M (2012b) Harnessing stack overflow for the ide. In: Proceedings of
the Third International Workshop on Recommendation Systems for Software Engineering. IEEE Press,
pp 26–30

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? an analysis of topics and trends
in stack overflow. Empir Softw Eng 19(3):619–654

Begel Andrew, Bosch Jan (2013) Social networking meets software development: Perspectives from github,
msdn, stack exchange, and topcoder. IEEE Softw 30(1):52–66

Bengio Y, Courville A (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern
Anal Mach Intell 35(8):1798–1828

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information.
Trans Assoc Comput Linguist 5:135–146

Bougie G, Starke J, Storey M-A, German DM (2011) Towards understanding twitter use in software engi-
neering: preliminary findings, ongoing challenges and future questions. In: Proceedings of the 2nd
international workshop on Web 2.0 for software engineering, pp 31–36



Empirical Software Engineering

Cai X, Zhu J, Shen B, Chen Y (2016) Greta: Graph-based tag assignment for github repositories. In:
Computer software and applications conference (COMPSAC), 2016 IEEE 40th annual. IEEE, vol 1,
pp 63–72

Calefato F, Lanubile F, Maiorano F, Novielli N (2018) Sentiment polarity detection for software develop-
ment. Empir Softw Eng 23(3):1352–1382

Chen C, Sa G, Xing Z (2016a) Mining analogical libraries in q&a discussions–incorporating relational and
categorical knowledge into word embedding. In: 2016 IEEE 23rd international conference on Software
analysis, evolution, and reengineering (SANER). IEEE, vol 1, pp 338–348

Chen C, Xing Z (2016b) Similartech: automatically recommend analogical libraries across different program-
ming languages. In: 2016 31st IEEE/ACM international conference on Automated software engineering
(ASE). IEEE, pp 834–839

Chen G, Chen C, Xing Z, Xu B (2016c) Learning a dual-language vector space for domain-specific
cross-lingual question retrieval. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, pp 744–755

Chen C, Xing Z, Wang X (2017) Unsupervised software-specific morphological forms inference from infor-
mal discussions. In: Proceedings of the 39th International Conference on Software Engineering. IEEE
Press, pp 450–461

Chen C, Xing Z, Liu Y (2018) By the community & for the community: A deep learning approach to assist
collaborative editing in q&a sites. In: Proceedings of the 21st ACM Conference on Computer-Supported
Cooperative Work and Social Computing. ACM, pp 32:1–32:21

Chenail RJ (2008) Youtube as a qualitative research asset: Reviewing user generated videos as learning
resources. Q Rep 13(3):18–24

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2014) Labeling source code with information
retrieval methods: an empirical study. Empir Softw Eng 19(5):1383–1420

El Mezouar M, Zhang F, Zou Y (2018) Are tweets useful in the bug fixing process? an empirical study on
firefox and chrome. Empir Softw Eng 23(3):1704–1742

Guo J, Cheng J, Cleland-Huang J (2017) Semantically enhanced software traceability using deep learning
techniques. In: 2017 IEEE/ACM 39th international conference on Software engineering (ICSE). IEEE,
pp 3–14

Guzman E, Alkadhi R, Seyff N (2016) A needle in a haystack What do twitter users say about software?. In:
2016 IEEE 24th international Requirements engineering conference (RE). IEEE, pp 96–105

Guzman E, Alkadhi R, Seyff N (2017a) An exploratory study of twitter messages about software applications.
Requir Eng 22(3):387–412

Guzman E, Ibrahim M, Glinz Martin (2017b) A little bird told me: mining tweets for requirements and
software evolution. In: 2017 IEEE 25Th international requirements engineering conference (RE). IEEE,
pp 11–20

Hindle A, Onuczko C (2019) Preventing duplicate bug reports by continuously querying bug reports. Empir
Softw Eng 24(2):902–936

Johnson R, Zhang T (2015) Semi-supervised convolutional neural networks for text categorization via region
embedding. In: Advances in neural information processing systems, pp 919–927

Johnson R, Zhang T (2016) Supervised and semi-supervised text categorization using lstm for region
embeddings. arXiv:1602.02373

Kenter T, De Rijke M (2015) Short text similarity with word embeddings. In: Proceedings of the 24th ACM
international on conference on information and knowledge management. ACM, pp 1411–1420

Kwak H, Lee C, Park H, Moon SB (2010) What is twitter, a social network or a news media?. In: Proceed-
ings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina,
pp 591–600

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. biometrics
pp 159–174

Lee JY, Dernoncourt F, Szolovits P (2017) Transfer learning for named-entity recognition with neural
networks. arXiv:1705.06273

Maalej W, Tiarks R, Roehm T, Koschke R (2014) On the comprehension of program comprehension. ACM
Trans Softw Eng Methodol (TOSEM) 23(4):31

MacLeod L, Storey M-A, Bergen A (2015) Code, camera, action: how software developers document
and share program knowledge using youtube. In: Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension. IEEE Press, pp 104–114

MacLeod L, Bergen A, Storey M-A (2017) Documenting and sharing software knowledge using screencasts.
Empir Softw Eng 22(3):1478–1507

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector space.
arXiv:1301.3781

http://arXiv.org/abs/1602.02373
http://arXiv.org/abs/1705.06273
http://arXiv.org/abs/1301.3781


Empirical Software Engineering

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of words and
phrases and their compositionality. In: Advances in neural information processing systems, pp 3111–
3119

Mou L, Meng Z, Yan R, Li G, Xu Y, Lu Z, Jin Z (2016) How transferable are neural networks in nlp applica-
tions?. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp 479–489

Ott J, Atchison A, Harnack P, Best N, Anderson H, Firmani C, Linstead E (2018) Learning lexical features
of programming languages from imagery using convolutional neural networks. In: Proceedings of the
26th Conference on Program Comprehension, ICPC ’18. ACM, New York, pp 336–339

Palomba F, Panichella A, De Lucia A, Oliveto R, Zaidman A (2016) A textual-based technique for smell
detection. In: 2016 IEEE 24Th international conference on program comprehension (ICPC). IEEE,
pp 1–10

Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359
Parnin C, Treude C (2011) Measuring api documentation on the web. In: Proceedings of the 2nd international

workshop on Web 2.0 for software engineering. ACM, pp 25–30
Parnin C, Treude C, Grammel L (2012) Crowd documentation: Exploring the coverage and the dynamics of

api discussions on stack overflow. Georgia Institute of Technology, Technical Report
Parra E, Escobar-Avila J, Haiduc S (2018) Automatic tag recommendation for software development video

tutorials. In: Proceedings of the 26th Conference on Program Comprehension. ACM, pp 222–232
Pennington J, Socher R (2014) Glove: Global vectors for word representation. In Proceedings of the 2014

conference on empirical methods in natural language processing (EMNLP), pp 1532–1543
Poché E, Jha N, Williams G, Staten J, Vesper M, Mahmoud A (2017) Analyzing user comments on youtube

coding tutorial videos. In: Proceedings of the 25th International Conference on Program Comprehension.
IEEE Press, pp 196–206

Ponzanelli L, Bacchelli A, Lanza M (2013) Seahawk: Stack overflow in the ide. In: Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, pp 1295–1298

Ponzanelli L, Mocci A, Bacchelli A, Lanza M (2014a) Understanding and classifying the quality of technical
forum questions. In: Quality software (QSIC), 2014 14th international conference on. IEEE, pp 343–352

Ponzanelli L, Mocci A, Bacchelli A, Lanza M, Fullerton D (2014b) Improving low quality stack overflow
post detection. In: 2014 IEEE international conference on Software maintenance and evolution (ICSME).
IEEE, pp 541–544

Ponzanelli L, Bavota G, Mocci A, Di Penta M, Oliveto R, Hasan M, Russo B, Haiduc S, Lanza M (2016a)
Too long; didn’t watch!: extracting relevant fragments from software development video tutorials. In:
Proceedings of the 38th International Conference on Software Engineering. ACM, pp 261–272

Ponzanelli L, Bavota G, Mocci A, Di Penta M, Oliveto R, Russo B, Haiduc S, Lanza M (2016b) Codetube:
extracting relevant fragments from software development video tutorials. In: Proceedings of the 38th
International Conference on Software Engineering Companion. ACM, pp 645–648

Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137
Posnett D, Warburg E, Devanbu P, Filkov V (2012) Mining stack exchange: Expertise is evident from initial

contributions. In: 2012 international conference on Social informatics (socialinformatics). IEEE, pp 199–
204

Prasetyo PK, Lo D, Achananuparp P, Tian Y, Lim E-P (2012) Automatic classification of software related
microblogs. In: 2012 28th IEEE international conference on Software maintenance (ICSM). IEEE,
pp 596–599

Rahman MM, Roy CK (2015) An insight into the unresolved questions at stack overflow. In: Proceedings of
the 12th Working Conference on Mining Software Repositories. IEEE Press, pp 426–429

Rahman MM, Roy CK (2017) Strict: Information retrieval based search term identification for concept loca-
tion. In: 2017 IEEE 24Th international conference on software analysis, evolution and reengineering
(SANER). IEEE, pp 79–90

Semwal T, Yenigalla P, Mathur G, Nair SB (2018) A practitioners’ guide to transfer learning for text classifi-
cation using convolutional neural networks. In: Proceedings of the 2018 SIAM International Conference
on Data Mining. SIAM, pp 513–521

Sharma A, Tian Y, Lo D (2015a) Nirmal: Automatic identification of software relevant tweets leverag-
ing language model. In: 2015 IEEE 22nd international conference on Software analysis, evolution and
reengineering (SANER). IEEE, pp 449–458

Sharma A, Tian Y, Lo D (2015b) What’s hot in software engineering twitter space?. In: 2015 IEEE
international conference on Software maintenance and evolution (ICSME). IEEE, pp 541–545

Sharma A, Tian Y, Sulistya A, Lo D, Yamashita AF (2017c) Harnessing twitter to support serendipitous
learning of developers. In: 2017 IEEE 24th international conference on Software analysis, evolution and
reengineering (SANER). IEEE, pp 387–391



Empirical Software Engineering

Sharma A, Tian Y, Sulistya A, Wijedasa D, Lo D (2018) Recommending who to follow in the software
engineering twitter space. ACM Trans Softw Eng Methodol 27(4):16:1–16:33

Singer L, Filho FF, Storey M-A (2014) Software engineering at the speed of light: how developers stay
current using twitter. In: Proceedings of the 36th International Conference on Software Engineering.
ACM, pp 211–221

Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng A, Potts C (2013) Recursive deep models
for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 conference on
empirical methods in natural language processing, pp 1631–1642

StackExchange (2019) About software engineering stack exchange. [Online; accessed 16-April-2019]
Stolcke A (2002) Srilm-an extensible language modeling toolkit. In: Seventh international conference on

spoken language processing
Storey M-A, Singer L, Cleary B, Filho FF, Zagalsky A (2014) The (r) evolution of social media in software

engineering. In: Proceedings of the on Future of Software Engineering. ACM, pp 100–116
Storey M-A, Zagalsky A, Singer L, German D et al (2017) How social and communication channels

shape and challenge a participatory culture in software development. IEEE Transactions on Software
Engineering, (1):1–1

Tian Y, Achananuparp P, Lubis IN, Lo D, Lim E-P (2012) What does software engineering community
microblog about?. In: 2012 9th IEEE working conference on Mining software repositories (MSR). IEEE,
pp 247–250

Tian Y, Lo D (2014) An exploratory study on software microblogger behaviors. In: 2014 IEEE 4Th workshop
on mining unstructured data. IEEE, pp 1–5

Treude C, Barzilay O, Storey M-A (2011) How do programmers ask and answer questions on the web?: Nier
track. In: 2011 33rd international conference on Software engineering (ICSE). IEEE, pp 804–807

Uddin G, Khomh F (2017a) Automatic summarization of api reviews. In: 2017 32Nd IEEE/ACM interna-
tional conference on automated software engineering (ASE). IEEE, pp 159–170

Uddin Gx, Khomh F (2017b) Opiner: An opinion search and summarization engine for apis. In: 2017 32Nd
IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 978–983

Van Nguyen T, Nguyen AT, Phan HD, Nguyen TD, Nguyen TN (2017) Combining word2vec with revised
vector space model for better code retrieval. In: Proceedings of the 39th International Conference on
Software Engineering Companion. IEEE Press, pp 183–185

Vasilescu B, Filkov V, Serebrenik A (2013) Stackoverflow and github: Associations between software
development and crowdsourced knowledge. In: 2013 international conference on Social computing
(socialcom). IEEE, pp 188–195

Vasilescu B, Serebrenik A, Devanbu P, Filkov V (2014) How social q&a sites are changing knowledge
sharing in open source software communities. In: Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing. ACM, pp 342–354

Wang X, Kuzmickaja I, Stol K-J, Abrahamsson P, Fitzgerald B (2013) Microblogging in open source
software development: The case of drupal and twitter, Software. IEEE

Wang S, Lo D, Vasilescu B, Serebrenik A (2014) Entagrec: An enhanced tag recommendation system for soft-
ware information sites. In: 2014 IEEE international conference on Software maintenance and evolution
(ICSME). IEEE, pp 291–300

Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bullet 1(6):80–83
Williams G, Mahmoud A (2017) Mining twitter feeds for software user requirements. In: 2017 IEEE 25Th

international requirements engineering conference (RE). IEEE, pp 1–10
Xia X, Bao L, Lo D, Kochhar PS, Hassan AE, Xing Z (2017) What do developers search for on the web?

Empir Softw Eng 22(6):3149–3185
Xu B, Xing Z, Xia X, Lo D, Wang Q, Li S (2016) Domain-specific cross-language relevant question retrieval.

In: Proceedings of the 13th International Conference on Mining Software Repositories. ACM, pp 413–
424

Xu C, Sun X, Li B, Lu X, Guo H (2018) Mulapi: Improving api method recommendation with api usage
location. J Syst Softw 142:195–205

Yadid S, Yahav E (2016) Extracting code from programming tutorial videos. In: Proceedings of the 2016
ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. ACM, pp 98–111

Yang X, Lo D, Xia X, Bao L, Sun J (2016) Combining word embedding with information retrieval to
recommend similar bug reports. In: 2016 IEEE 27th international symposium on Software reliability
engineering (ISSRE). IEEE, pp 127–137

Ye D, Xing Z, Kapre N (2017) The structure and dynamics of knowledge network in domain-specific q&a
sites: a case study of stack overflow. Empir Softw Eng 22(1):375–406



Empirical Software Engineering

Ye X, Shen H, Ma X, Bunescu R, Liu C (2016) From word embeddings to document similarities for improved
information retrieval in software engineering. In: Proceedings of the 38th international conference on
software engineering. ACM, pp 404–415

YouTube (2017) Youtube. [Online; accessed 20-AUG-2018]
Yu J, Qiu M, Jiang J, Huang J, Song S, Chu W, Chen H (2018) Modelling domain relationships for transfer

learning on retrieval-based question answering systems in e-commerce. In: Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining. ACM, pp 682–690

Zhang J, He J, Ren Z, Chen X (2018) Recommending apis for api related questions in stack overflow. IEEE
Access 6:6205–6219

Zhao T, Cao Q, Sun Q (2017) An improved approach to traceability recovery based on word embeddings.
In: 2017 24th Asia-pacific software engineering conference (APSEC). IEEE, pp 81–89

Zhou P, Liu J, Yang Z, Zhou G (2017) Scalable tag recommendation for software information sites. In: 2017
IEEE 24th international conference on Software analysis, evolution and reengineering (SANER). IEEE,
pp 272–282

Zhenchang HL, Han XZ, Li X, Feng Z (2018) Reasoning common software weaknesses via knowledge
graph embedding. In: 2018 IEEE 25rd international conference on Software analysis, evolution, and
reengineering (SANER)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Agus Sulistya is currently a Senior Expert at PT Telekomunikasi Indonesia. He received his PhD in Informa-
tion Systems from the School of Information Systems, Singapore Management University (SMU). Earlier,
he received his B.Eng in Informatics from Telkom University, Indonesia and Master of Science in Informa-
tion Systems from Northeastern University. His research interest is in the area of making sense of crowd
generated content in domain specific settings. Prior to his doctoral study, he has held several technical and
managerial positions at PT Telekomunikasi Indonesia.



Empirical Software Engineering

Gede Artha Azriadi Prana is a PhD student in the School of Information Systems, Singapore Manage-
ment University, under supervision of Associate Professor David Lo. He received his B.Eng. in Computer
Engineering from Nanyang Technological University and M.Tech. in Knowledge Engineering from National
University of Singapore. His research focuses on application of analytics to unstructured data in software
engineering domain. Prior to his current study, he has worked in the field of software engineering for about
a decade.

Abhishek Sharma is currently a Research Fellow at Singapore Management University, Singapore. Previ-
ously, he had obtained his PhD in Information Systems from the School of Information Systems, Singapore
Management University, Singapore. Earlier he has completed Bachelor of Technology in Computer Science
& Engineering from National Institute of Technology, Hamirpur, India. Prior to his doctoral studies he has
also worked as a Software Developer with Accenture and Tata Consultancy Services Ltd.



Empirical Software Engineering

David Lo is an Associate Professor of Information Systems at Singapore Management University, leading
the Software Analytics Research (SOAR) group. His research interest is in the intersection of software engi-
neering and data science, encompassing socio-technical aspects and analysis of different kinds of software
artefacts, with the goal of improving software quality and developer productivity. He has served in more than
20 organizing committees and numerous program committees of research conferences including serving as
general or program co-chairs of ASE 2020, SANER 2019, ICSME 2018, ICPC 2017, and ASE 2016. He
is also serving in the editorial board of Empirical Software Engineering, IEEE Transactions on Reliability,
Journal of Software: Evolution and Process, Information and Software Technology, Information Systems,
and Neurocomputing (Software Section).

Christoph Treude is a Senior Lecturer and an ARCDECRA Fellow in the School of Computer Science at the
University of Adelaide, Australia. He received his Diplom degree from the University of Siegen, Germany,
and his PhD degree in Computer Science from the University of Victoria, Canada. The goal of his research
is to advance collaborative software engineering through empirical studies and the innovation of processes
and tools that explicitly take the wide variety of artefacts available in a software repository into account. He
currently serves as a board member on the Editorial Board of the Empirical Software Engineering journal
and as General Co-Chair for ICSME 2020.


	SIEVE: Helping developers sift wheat from chaff via cross-platform analysis
	Abstract
	Introduction
	Use Case 1:
	Use Case 2:


	Background
	Knowledge Sources for Software Developers
	Word Embedding and Transfer Representation Learning

	Approach
	An Overview of SIEVE
	Stages of the Proposed Approach
	Stage 1: Representation Learning from Source Platform
	Stage 2: Model Building for Target Platform



	Finding Relevant Tweets Using Word Embedding
	Dataset
	Approach
	Baselines
	Experiments and Results
	Experiments Setting
	Results



	Finding Informative Comments on YouTube Using Word Embedding
	RQ2. How effective is our approach at the use case of finding informative comments on YouTube?
	Dataset
	Approach
	Baselines
	Experiments and Results
	Experiments Settings
	Results



	Discussion
	Determining Sample Size from Source Platform
	Comparing Different Methods to Learn Word Embedding
	Learning Word Embedding in Another Software-Related Domain
	Finding Software-Relevant Content from Sample Tweets

	Threats to Validity
	Threats to internal validity
	Threats to external validity
	Threats to construct validity



	Related Work
	Developer Information Channels
	Transfer Learning for Neural Models

	Conclusion and Future Work
	References


