
Supporting Software Architecture Maintenance by
Providing Task-specific Recommendations

Matthias Galster
University of Canterbury

New Zealand
mgalster@ieee.org

Christoph Treude
University of Adelaide

Australia
christoph.treude@adelaide.edu.au

Kelly Blincoe
University of Auckland

New Zealand
k.blincoe@auckland.ac.nz

Abstract—During software maintenance, developers have dif-
ferent information needs (e.g., to understand what type of main-
tenance activity to perform, the impact of a maintenance activity
and its effort). However, information to support developers may
be distributed across various sources. Furthermore, information
captured in formal architecture documentation may be outdated.
In this paper, we put forward a late breaking idea and outline a
solution to improve the productivity of developers by providing
task-specific recommendations based on concrete information
needs that arise during software maintenance.

Index Terms—software maintenance, software architecture,
natural language processing, text classification

I. INTRODUCTION

Expertise and skills to maintain high quality software
systems grow with experience. It is generally accepted that
experienced developers are better developers [1]. However,
skills and expertise required of those who maintain software
constantly evolve [2], e.g., the half-life of technology-related
software engineering knowledge is around five years [3]. Also,
those who develop and maintain software often have only
limited training in software development [4]. In this paper,
we put forward a late breaking idea to develop new methods
(and tools) to improve the productivity of software developers
by providing task-specific recommendations based on concrete
information needs during software maintenance. In particular,
we propose the use of knowledge extraction and classification
approaches to mine various types of software development
data and data sources.

II. PROBLEM DESCRIPTION

The overall problem our work aims to address is the
lack of information available to developers to make informed
maintenance decisions and to perform maintenance tasks. In
detail, our work aims at addressing the following problems:

• Insufficient information about maintenance activities:
Poor understanding of the concrete tasks that are required
to complete maintenance activities (including the impact
of maintenance activities) and related decisions make
maintenance difficult. For example, applying “extract
method” refactoring may be suitable for long methods
that are logically structured, but is more difficult for long
and poorly structured methods which implement a very

specific and unique business function. Furthermore, ap-
plying “extract method” refactoring may contradict a con-
scious design decision made by the “original” developers
(e.g., to reduce coupling at the cost of low modularity).
Developers often learn these trade-offs through experi-
ence as software maintenance is not typically taught in
software engineering degrees.

• Poor understanding of architecture change: Unin-
formed maintenance activities lead to increasing archi-
tecture complexity, accumulate architecture debt and de-
cay, and affect quality attributes such as understandabil-
ity, reliability, etc. Therefore, software engineers need
to understand where major architecture changes occur
(at different levels of abstraction, such as component
and/or system level). Also, software engineers need to
understand how much (i.e., to which extent and when)
architecture changes happen over time at both levels.

Some practical consequences of the above problems include
difficulties in budgeting and resource allocation (e.g., based
on the maintenance effort), staffing (e.g., based on required
expertise) and planning (e.g., when prioritizing maintenance
activities and when handling maintenance activities that are
performed across iterations in agile environments).

III. MOTIVATING EXAMPLE

Consider a developer who is working on adding a new
preference to the open source reference management software
JabRef,1 e.g., for configuring default file names. Since pref-
erences in JabRef can affect the behaviour of several compo-
nents, such a task is architecture-relevant, and information on
how to address it exists in different sources and formats:

• A GitHub issue outlining the desired architecture of
JabRef2 contains a diagram showing the overall ar-
chitecture and informal guidelines on how preferences
should be implemented: “If only one or two methods are
touched, I would pass the parameter, but if this would
touch a lot more methods, we should use the observer
pattern instead.” Natural language processing can be used
to extract this relevant information.

1https://github.com/JabRef/jabref
2https://github.com/JabRef/jabref/issues/1579

https://github.com/JabRef/jabref
https://github.com/JabRef/jabref/issues/1579


• The existing JabRef source code contains previously
implemented preferences. Applying static or dynamic
analysis [5] would reveal how these have been imple-
mented, and, in particular, whether they followed the
observer pattern.

• Architectural knowledge, such as how to properly im-
plement design patterns, has been described in formal
and informal documentation. In the case of the observer
pattern, textbook knowledge such as the Gang-of-Four
book [6] would be relevant.

• At the same time, many informal documentation
sources, such as blog posts [7], discuss opinions and
experiences related to architectural designs. For the ob-
server pattern, Neill Morgan’s blog post on pros and
cons of the observer pattern3 could serve as a source for
developer recommendations.

It would take considerable time to find all of the relevant
information when performing a maintenance task like this one
and some relevant information is likely to be missed.

IV. PROPOSED SOLUTION

We propose the use of automated tools that can assist devel-
opers during software maintenance activities. Our envisioned
solution uses natural language processing techniques to filter
and combine architecture-related information across multiple
sources, some of which are general sources of information
(e.g., online discussions or version control/issue tracker data
of publicly available open source systems), while others are
specific to the system under maintenance (e.g., version control
data and documentation of a particular system). The novelty
of our proposed work is as follows:

• We will focus on architecture-relevant information. This
is because maintenance at the code level has been studied
in the past, e.g., in the context of removing technical
debt and code smells [8]. Maintenance of systems at the
architecture level on the other hand is less understood, yet
places significant challenges in practice (see for example
the growing interest in architectural technical debt [9]).
As argued by Martini and Bosch, sub-optimal architecture
decisions can lead to immature architectural artifacts
and compromised quality attributes [10]. Also, architec-
tural information is often recorded by more informal
means (e.g., technical or personal notes, emails, wikis,
minutes) [11], and, even though high-level abstractions
often remain useful even when the implementation details
change, gets easily outdated due to its complexity [12]
and no longer represents the implemented architecture.

• We will utilize existing software development data, such
as software repositories and software development tools
that developers commonly use (e.g., version control sys-
tems, bug trackers, online/public sites and communities).
This removes the need to create and maintain separate
documentation, and, therefore, reduces workload and

3https://neillmorgan.wordpress.com/2010/02/07/
observer-pattern-pros-cons/

outdated data. Prior research suggests that these sources
do indeed provide reusable information for different ac-
tivities in the context of software architecting (e.g., [13]).

• We will utilize multiple sources, rather than relying on
one data source. Information from different sources can
complement each other to provide more comprehensive
information based on the information needs of developers
during maintenance. Relevant information can often be
found scattered throughout multiple forms of documen-
tation and information sources. For example, we may
combine commits and related information (e.g., who
committed, and when), version control data and change
logs, API references, wikis, project management data and
discussions on Slack (e.g., how controversial a refactoring
recommendation was in the past). Some sources can
be general (e.g., discussions on Stack Overflow), while
others may be specific to a system (e.g., an issue tracker).

• We will include opinions and experience of those who
develop and maintain software. As research has shown,
practitioners often base their decisions on the experience
and opinions of others they trust rather than on empirical
evidence [14], [15].

Considering the variety of sources that can contain use-
ful information for maintenance tasks with content ranging
from facts (e.g., extracted from source code) to guidelines
and opinions, our proposed approach to identify and extract
architecture-relevant knowledge is more complex than existing
software-related knowledge extraction approaches, e.g., for
explaining API types [16].

To build a system which can automatically issue recommen-
dations to developers who are working on architecture-relevant
tasks, at least three challenges need to be addressed:

• Identify architecture-relevant tasks. We will conceptualize
developers’ tasks as GitHub issues, and use similar issues
and the changes made to address them to determine
whether a task is architecture-relevant.

• Identify architecture-relevant information. We will ad-
dress this challenge using text classification approaches
with a seed corpus of architecture-relevant keywords. In
the example provided in Section III, a design pattern such
observer would be part of a keyword catalogue.

• Collect and aggregate relevant information. To issue
recommendations to developers, information from various
sources needs to be aggregated, considering its credibil-
ity [17]. We will employ multi-document summarization
and knowledge graph approaches [18] towards this goal.

This will result in a set of architecture-relevant recommenda-
tions for each architecture-relevant maintenance task.

V. CONCLUSIONS

In this paper we outlined some pressing problems that
occur during software maintenance and in particular related
to planning and understanding architecture change. We also
motivated and described our solution which relies on harvest-
ing existing knowledge from multiple sources based on the
concrete information needs of developers.

https://neillmorgan.wordpress.com/2010/02/07/observer-pattern-pros-cons/
https://neillmorgan.wordpress.com/2010/02/07/observer-pattern-pros-cons/


REFERENCES

[1] J. Hannay, E. Arisholm, H. Engvik, and D. Sjoberg, “Effects of personal-
ity on pair programming,” IEEE Transactions on Software Engineering,
vol. 36, pp. 61–80, 2010.

[2] R. Krishnamurthy, “Breezing my way as a solution architect: A ret-
rospective on skill development and use,” IEEE Software, vol. 34, pp.
9–13, 2017.

[3] P. Kruchten, “Lifelong learning for lifelong employment,” IEEE Soft-
ware, vol. 32, pp. 85–87, 2015.

[4] P. Antonino, A. Morgenstern, and T. Kuhn, “Embedded-software archi-
tects: It’s not only about the software,” IEEE Software, vol. 33, pp.
56–62, 2016.

[5] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Transactions on Software Engineering, vol. 35,
pp. 684–702, 2009.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[7] C. Parnin, C. Treude, and M.-A. Storey, “Blogging developer knowl-
edge: Motivations, challenges, and future directions,” in International
Conference on Program Comprehension (ICPC), 2013, pp. 211–214.

[8] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis, “Iden-
tification of refused bequest code smells,” in IEEE International Con-
ference on Software Maintenance (ICSM), 2013, pp. 392–395.

[9] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical
debt: A unified model and systematic literature review,” Journal of
Systems and Software, vol. 135, pp. 1–16, 2018.

[10] A. Martini and J. Bosch, “The danger of architectural technical debt:
Contagious debt and vicious circles,” in Working IEEE/IFIP Conference
on Software Architecture (WICSA), 2015, pp. 1–10.

[11] A. Tang, P. Liang, and H. V. Vliet, “Software architecture documenta-
tion: The road ahead,” in Working IEEE/IFIP Conference on Software
Architecture (ICSA), 2011, pp. 252–255.

[12] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE software, vol. 20,
pp. 35–39, 2003.

[13] M. Soliman, M. Galster, A. Salama, and M. Riebisch, “Architectural
knowledge for technology decisions in developer communities: An ex-
ploratory study with stack overflow,” in Working IEEE/IFIP Conference
on Software Architecture (WICSA), 2016, pp. 128–133.

[14] P. Devanbu, T. Zimmermann, and C. Bird, “Belief and evidence: How
software engineers form their opinions,” IEEE Software, vol. 35, pp.
72–76, 2018.

[15] ——, “Belief and evidence in empirical software engineering,” in
IEEE/ACM International Conference on Software Engineering (ICSE),
2016, pp. 108–119.

[16] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering infor-
mation explaining API types using text classification,” in International
Conference on Software Engineering (ICSE), 2015, pp. 869–879.

[17] A. Williams and A. Rainer, “How do empirical software engineering
researchers assess the credibility of practitioner-generated blog posts?”
in Evaluation and Assessment on Software Engineering (EASE), 2019,
pp. 211–220.

[18] H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao, “Improving
API caveats accessibility by mining API caveats knowledge graph,” in
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2018, pp. 183–193.


	Introduction
	Problem Description
	Motivating Example
	Proposed Solution
	Conclusions
	References

