
074 0 -74 59 /19©2019 I E E E   JULY/AUGUST 2019  |  IEEE SOFTWARE 41

FOCUS: SOFTWARE DEVELOPMENT PROCESSES

OSS IS AN important driving force 
in today’s software industry, result-
ing in many prominent projects that 
are extensively used throughout the 
development stack, from kernels to 
sophisticated end-user applications. 
Therefore, it is no surprise that the 
OSS movement attracts a large, 
globally distributed community of 
volunteers. Volunteers’ diverse mo-
tivations for participation have been 
thoroughly studied1,2 and classifi ed3

into three categories: 

• extrinsic (payment, career/port-
folio building) 

• externalized intrinsic (reputa-
tion, reciprocity, learning, code 
for own use) 

• intrinsic (OSS ideology, altru-
ism, kinship, fun).

The survival, long-term success, 
and continuity of OSS projects re-
quires a perpetual infl ux of new-
comers.4 However, new developers 
face many barriers when attempting 
to contribute for the fi rst time5; be-
cause delivering a patch to an OSS 
project is usually a long, multistep 
process, some newcomers lose moti-
vation or even give up on contribut-
ing. The fi rst-contribution barriers 
affect not only those interested in 
becoming core project members but 
also those who wish to submit a sin-
gle contribution (e.g., a bug fi x or a 
new feature). Such “casual contribu-
tors” are becoming increasingly com-
mon; we found that approximately 
50% of the contributors to top OSS 
projects make a single contribution, 
without any long-term commitment 
to the community.6 Lowering fi rst-
contribution barriers may leverage 
newcomers’ latent contribution po-
tential, thereby benefi ting communi-
ties, which ultimately receive more 
diverse contributions.

Let Me In: 
Guidelines for 
the Successful 
Onboarding of 
Newcomers to 
Open Source 
Projects
Igor Steinmacher,  Federal University of Technology 
and Northern Arizona University

Christoph Treude,  University of Adelaide

Marco Aurélio Gerosa, N orthern Arizona University 
 and the University of São Paulo 

// Ma ny community-based open source 

software (OSS) projects depend on a 

continuous in� ux of newcomers for their 

survival and continuity, yet newcomers 

face many barriers to contributing to a 

project. We provide guidelines based on our 

previous work for both OSS communities 

and newcomers to OSS projects. //

Digital Object Identifi er 10.1109/MS.2018.110162131
Date of publication: 18 June 2019



42 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: SOFTWARE DEVELOPMENT PROCESSES

To better understand � rst-con-
tribution barriers, in our previous 
work, we empirically conceived of 
a model containing seven categories 
of barriers faced by newcomers to 
OSS projects.5 Based on this model, 
we designed and evaluated FLOSS-
coach (ht tp: //www.f losscoach
.com), a portal to better organize in-
formation for newcomers and sup-
port their � rst steps.7 Our results 
showed that organizing  existing 
information and strategies accord-
ing to the barriers model made 
newcomers feel more con� dent and 
oriented. Moreover,  newcomers 
perceived the portal as helpful and 
easy to use and indicated that they 
would use it in the future. In the 
next section, we brie� y summarize 
the method and results this research 
achieved. Then, backed by evidence 
gathered from these studies, we 
provide a set of guidelines for OSS 
communities that want to offer ap-
propriate support for newcomers 
and for newcomers who want to 

contribute to OSS projects in the 
“Guidelines” section.

Identifying Barriers 
and Building a Portal to 
Support Newcomers
To detemine barriers and support 
newcomers to OSS projects, we con-
ducted a set of studies, as depicted 
in Figure 1. To classify and under-
stand the barriers, we performed a 
systematic literature review, followed 
by a qualitative analysis of three data 
sources: 1) feedback obtained from 
nine students of OSS courses who were 
newcomers to OSS projects; 2) 24 an-
swers to an open question sent to OSS 
communities; and 3) 35 semistructured 
interviews conducted with OSS project 
members, newcomers, and dropouts. 
Next, we merged the outcomes, result-
ing in a model of 57 barriers, which we 
further organized into seven catego-
ries,4 as shown in Figure 2(a):

• Newcomer characteristics (11 
barriers): This category includes 

barriers related to the newcom-
ers’ experiences and behaviors, 
including how they demonstrate 
their knowledge and interact 
with the community when join-
ing a project.

• Newcomer orientation (seven 
barriers): Newcomers often 
face rugged and unfamiliar 
landscapes when onboarding 
to OSS projects. Examples of 
barriers in this category include 
dif� culty � nding a mentor 
and poor “how to contribute” 
documentation.

• Communication issues 
(11 barriers): This category 
comprises the barriers related 
to the interactions between 
newcomers and the community, 
including lack of or impolite re-
sponse to a message.

• Local environment setup 
hurdles (four barriers): This 
encompasses technical barriers 
related to setting up the local 
workspace, including problems 

FIGURE 1. The method followed to identify the barriers, build the portal, and create the guidelines.16–20

P
ha

se
 1

—
Id

en
tif

ic
at

io
n

of
 B

ar
rie

rs
P

ha
se

 2
—

P
or

ta
l t

o
S

up
po

rt
 N

ew
co

m
er

Systematic Literature
Review16 on Barriers Faced

by Newcomer to OSS

Qualitative Study17 to
Gather the Barriers Faced

by Newcomer to OSS

Barriers

Newcomer
Characteristics

Newcomer
Orientation

Communication
Issues

Local Environment
Setup Hurdles

Code/Architecture
Hurdles

Change Request
Hurdles

Portal Development: Portal
for Newcomer Based on

the Barriers Model

Study to Assess How the Portal
Supports Newcomer to Overcome

the Barriers (Diaries18 +
Self-Efficacy19 + TAM20)

FLOSScoach—A Portal
to Support Newcomer to OSS

Guidelines
for Newcomer and
OSS Communities



JULY/AUGUST 2019  |  IEEE SOFTWARE 43

with compilation, missing de-
pendencies, and operating sys-
tem issues.

• Code/architectural hurdles 
(nine barriers): These are bar-
riers related to the existing 
architecture and source code, 
including problems related to 
code characteristics (e.g., code 

quality, codebase size) and cog-
nitive issues.

• Change request hurdles (four 
barriers): During the process of 
submitting the change request, 
barriers can include lack of in-
formation on how to submit the 
patch and delay in the review of 
the request.

• Documentation problems (11 
barriers): To become familiar with 
a project’s technical and social 
aspects, newcomers need to search 
and use artifacts; in doing so, 
they may face challenges, such as 
outdated documentation, unclear 
code comments, information over-
load, and lack of documentation.

Barriers

Newcomer
Characteristics

Newcomer
Orientation

Communication
Issues

Local Environment
Setup Hurdles

Code/Architecture
Hurdles

Change Request
Hurdles

Documentation
Problems

(a)

(b)

FIGURE 2. (a) The barriers aggregated by category and (b) how they map into the FLOSScoach portal (the “How to Start” section in 

the � gure).



44 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: SOFTWARE DEVELOPMENT PROCESSES

Guided by this classifi cation of 
barriers, we built FLOSScoach, a 
web portal for organizing informa-
tion and strategies gathered from 
practitioners to support newcomers’ 
fi rst steps. To develop the FLOSS-
coach portal, each category of the 
barriers model [Figure 2(a)] was 
mapped onto a section that con-
tained information and strategies 
aimed at supporting newcomers in 
overcoming those challenges [Fig-
ure  2(b)]. Because documentation 

problems crosscut all other catego-
ries addressed by FLOSScoach, the 
portal does not include this category.

In the portal, newcomers fi nd in-
formation about the skills needed to 
contribute to a project, a step-by-step 
contribution fl ow, the location of fea-
tures (such as source-code repository, 
issue tracker, and mailing list), a list 
of newcomer-friendly tasks (when 
provided by the project), and tips on 
how to interact with the community. 
To evaluate the portal, we prepopu-
lated it with existing strategies and 
information gathered from interviews 
with experienced members as well as 
from manual inspection of the proj-
ect web pages of seven OSS projects: 
Amarok, Audacity, Banshee, Empa-
thy, JabRef, LibreOffi ce, and VIM. 
We chose these projects because they 
are end-user applications from com-
mon domains and because they align 

with the programming languages fa-
miliar to our study participants. To 
evaluate the portal, we conducted a 
controlled study with 65 newcom-
ers (split between a group that made 
use of FLOSScoach and one that did 
not), relying on qualitative analysis 
of diaries, self-effi cacy pre- and post-
questionnaires, and the technology 
acceptance model.

Our results showed that FLOSS-
coach helps newcomers, guiding 
them in their fi rst steps and making 

them more confi dent in their ability 
to contribute to a project.7 To evalu-
ate how the use of FLOSScoach in-
fl uenced participants’ self-effi cacy, 
we analyzed the variation in pre- 
and poststudy answers. By apply-
ing a Wilcoxon signed-rank test, we 
found that the self-effi cacy score sig-
nifi cantly decreased for the partici-
pants who did not use FLOSScoach 
(p = 0.005), but there was no sig-
nifi cant difference in the group that 
used the portal. By taking a closer 
look, we found that the decrease 
was mainly related to social interac-
tions and code issues, whereas the 
self-effi cacy of newcomers using the 
portal remained high. We attribute 
the decrease in self-effi cacy to par-
ticipants encountering unexpected 
barriers.7 The results of the Tech-
nology Acceptance Model question-
naire indicated that participants 

perceived a high usefulness, ease of 
use, and self-predicted future use of 
the portal.

We qualitatively analyzed the dia-
ries written during the contribution 
process following grounded theory 
procedures. We found evidence that 
FLOSScoach made newcomers feel 
oriented and more comfortable with 
the process, whereas those who did 
not have access to FLOSScoach re-
peatedly reported uncertainty and 
doubt about how to proceed. As re-
ported by some participants,

[FLOSScoach] offered the facility 
to understand how the contribution 
process works, the links to informa-
tion about forks, pulls, git com-
mands, tips to send a commit, etc.

That timeline is very good. 
I really liked it. I think that for 
those who are contributing for the 
fi rst time it is very good, because 
the person thinks, “What should I 
do now?” and the answer is there.

Other participants used the portal 
as a quick reference guide, to which 
they could return at any time to fi nd 
the information needed to fi nish a 
task or overcome a problem:

The fl ow [of FLOSScoach] was 
great. I always used it, and from 
here I accessed the other informa-
tion. It is easy.

Guidelines
Based on the evidence found during 
interviews, diary analysis, and obser-
vation of newcomers attempting to 
contribute to OSS projects as well as 
our examination of several OSS proj-
ects, we propose guidelines both for 
communities that want to offer ap-
propriate newcomer support and for 
newcomers who want to contribute to 
an OSS project for the fi rst time. All 

We present guidelines for OSS 
communities organized in three 

categories: contribution process, 
social behavior, and technical.



	 JULY/AUGUST 2019  |  IEEE SOFTWARE � 45

guidelines presented here are backed 
by evidence previously collected and/
or supported by the literature.

Guidelines for OSS Communities
We present guidelines for OSS com-
munities organized in three catego-
ries: contribution process, social 
behavior, and technical. Following 
these guidelines is especially im-
portant for those newcomers who 
are intrinsical ly motivated and 
who have no further commitment 
to contributing.

Contribution Process Guidelines

•	 Create a newcomer-specific page 
or portal: The study conducted 
with FLOSScoach showed that 
presenting a structured page, 
with clean and organized in-
formation, orients newcomers 
and increases their self-efficacy.7 
Therefore, we suggest provid-
ing newcomers with all of the 
resources they need (and only 
those) in a well-organized and 
easy-to-follow way. This was 
highlighted by one of our inter-
viewees, who said, “Searching 
and filtering information would 
require too much effort.” It is 
important to show what is essen-
tial for their first steps, how the 
project is organized, and what/
where the important resources 
are (e.g., code repository, mailing 
lists, issue tracker, IRC channel, 
and code review tools). Some 
projects (e.g., Gnome projects 
and Open Office) offer a “How 
to Contribute” or “Introduction 
to Development” page. Similarly, 
GitHub encourages maintainers 
to have this kind of information 
in a CONTRIBUTING.md file, 
including general information 
about ways to contribute, paths 

to obtaining the current code-
base, mailing list addresses and 
etiquette, introductions to issue 
tracker systems, build guidelines, 
and so on.

•	 Identify and dismiss outdated 
information: If it is hard to 
maintain up-to-date documen-
tation, community members 
should remove outdated in-
formation, or at least clearly 
identify it as such. Outdated 
documentation demotivates 
newcomers, as described by this 
newcomer we interviewed: 

The information was outdated on 
the wiki. So, at least as a newcom-
er, it was quite challenging to get 
past those errors… . You do tend 
to get bored of that after a while.

By recognizing the absence or 
obsolescence of documents, com-
munities can request help from 
newcomers to update or create 
such documentation. This is also 
an opportunity for (semi)auto-
mated documentation generation, 
involving gathering documenta-
tion from different sources inside 
and outside the project and filter-
ing it down to up-to-date infor-
mation relevant to newcomers.

•	 Point newcomers to easy tasks: 
“Finding a task to start with” 
was the second most recurring 
barrier in our model, which 
greatly affected newcomers’ mo-
tivation. Some projects tag issues 
to help newcomers find tasks that 
are easy and suitable for them 
(tagging them as “easy enough,” 
“good for newcomers,” and so 
on). Some additional information 
that guides newcomers includes 
task difficulty level, modules 
affected, language/technology 

skills needed, and project mem-
bers who can help. Some proj-
ects, such as LibreOffice, include 
a section called “Easy Hacks” 
on their wiki page. On this page, 
newcomers find tasks filtered 
by difficulty, skills needed, and 
topics. Apache Open Office, 
Mozilla, Gnome, Media Wiki, 
and Ubuntu apply similar strate-
gies. Another recommendation 
for projects that are part of an 
ecosystem is to create a com-
mon pool of tasks, which can 
increase the diversity of tasks 
and promote knowledge transfer 
among projects.8 For example, 
the project Up-for-Grabs (http://
up-for-grabs.net/#/) provides 
“a list of projects, which have 
curated tasks specifically for new 
contributors.” By using this ser-
vice, a newcomer can search for 
easy/starter tasks that need at-
tention, filtering the tasks by, for 
example, language and platform.

•	 Keep the issue list up to date: 
Providing a tagged list of issues 
supports newcomers. However, 
keeping the issue status updated 
and cleaning outdated tasks 
requires frequent upkeep. Out-
dated issues scare and demoti-
vate newcomers, as reported by 
two newcomers: 

[The project page] guided me 
through this particular task. But 
when I tried the next task, turns 
out it was outdated too. So I kind 
of gave up. 

Choosing a task was hard […] 
I started many different tasks and 
then, in the middle of the job, I 
discovered that someone else was 
also working on the same issue.

This last newcomer posted a 
comment on the issue mentioning 



46	 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: SOFTWARE DEVELOPMENT PROCESSES

that he was starting to work on 
the task, yet, after a few days, 
another person committed 
the solution.

Social Behavior Guidelines

•	 Answer quickly: Some of our 
interviewees reported that they 
never received a reply: 

They never answered our forum 
post. We spent a lot of effort on 
something that was already  
being done… .

An interview with a core member 
also revealed this challenge: 

In my opinion, the first [barrier] is 
not getting any reply.

Newcomers are mostly volunteers 
who dedicate their time trying 
to help. The community should 
not let their motivation decline 
by making them wait or leaving 
them without an answer. Auto-
matic greetings could be used to 
help,9 at least to say that some-
one will answer quickly or guide 
newcomers to the appropriate 
communication channel. Leav-
ing a good first impression is very 
important, as stated by Karl Fo-
gel10: “If a project doesn’t make a 
good first impression, newcomers 
may wait a long time before giv-
ing it a second chance.”

•	 Be kind and make newcomers 
feel part of the team: A com-
munity can make newcomers 
feel welcome and keep them 
motivated by treating them as 
potential contributors. Sending 
thankful, welcoming messages 
helps deal with cultural differ-
ences and misunderstandings. It 

is known from the literature11 
that receiving impolite answers 
demotivates newcomers. In our 
study, we found an experienced 
member reporting that 

… [S]ome developers may not be 
suitable for receiving newcomers; 
they may get angry pretty quickly 
and kill the interest of the new-
comers. Very few of the newcom-
ers know how to behave against 
this kind of tough developer.

Designating a few experienced 
members to communicate with 
new members or setting a code of 
conduct are possible solutions to 
such reception issues.

•	 Identify mentors or experts: As 
noted by a newcomer, 

[For someone] who wants to do 
some stuff with an open source 
project, probably some basic 
handholding would help.

Lack of mentorship was identi-
fied by both newcomers and core 
members as a barrier, because 
mentorship can play a role in 
keeping newcomers motivated and 
helping them overcome potential 
barriers. Large OSS projects (e.g., 
Apache, LibreOffice, and Mozilla) 
already provide mentoring pro-
grams. In Mozilla projects, for 
example, some bugs are mentored. 
On Mozilla’s page, they are pre-
sented as bugs that “have a men-
tor who commits to helping you 
every step of the way. Generally, 
there should be enough informa-
tion in the bug to get started… .” 
Apache also offers a mentoring 
program that focuses on provid-
ing mentors for anyone interested 
in contributing. The LibreOffice 

community provides a wiki page 
called “Find the Expert,” which 
lists a set of developers who are 
experts in specific knowledge ar-
eas within the project. In addition, 
Google’s Summer of Code pro-
gram, which provides scholarships 
for students interested in writing 
code for OSS projects, assigns 
mentors to support the students 
during their scholarship period.12

Technical Guidelines

•	 Make it easy for newcomers to 
build the system locally: Setting 
up the local workspace was the 
most reported barrier in our  
first study. This barrier also de-
motivated and frustrated many 
newcomers during the FLOSS-
coach study:

 I am still trying to build, because 
many errors occurred. […] I 
was expecting to move forward, 
because so far I did not have time 
to look at the source code. […] It 
is frustrating.

One option is to create a detailed, 
step-by-step tutorial that links to 
information about common prob-
lems and possible solutions (an 
FAQ section). Another potential 
solution would be a virtual ma-
chine with preconfigured build en-
vironments,13 web-based IDEs, or 
a container management tool such 
as Docker (www.docker.com).

•	 Document the code structure: 
It is important to clearly docu-
ment the code’s organizational 
structure and how the compo-
nents, modules, classes, and 
packages relate to each other. 
Some newcomers mentioned in 
their feedback that thorough 



	 JULY/AUGUST 2019  |  IEEE SOFTWARE � 47

documentation of the structure 
and the relationship among 
modules makes it easier for them 
to understand the code and 
find the artifacts they need. A 
newcomer suggested the use of 
diagrams to help understand the 
project organization: 

We need documentation, prefer-
ably diagrams that show how the 
project is organized… .

Another one suggested “visual 
maps to support comprehending 
the overall system,” which has al-
ready been positively evaluated.14 
Our study with FLOSScoach 
showed that simply organizing the 
existing information and docu-
mentation was not enough to help 
newcomers overcome technical 
barriers, however, and we believe 
that this is a gap that demands ad-
ditional research and tools.

Guidelines for Newcomers  
to OSS Projects
In addition to the guidelines for OSS 
communities, we present advice for 
newcomers to OSS projects.

Contribution Process Guidelines

•	 Find an easy task to start with: 
Newcomers should try to iden-
tify whether the community tags 
its issues with a specific keyword 
to identify suitable tasks. A core 
member reported that 

The task makes some sense, but 
it is huge, and the newbie thinks 
she’ll be able to implement it in a 
few days.

According to this member, at-
tempting to tackle a huge task 
can be demotivating. Choosing 

small tasks with fast rewards 
can be the first step to becoming 
known in the project commu-
nity and staying motivated.

•	 Keep the community informed 
about decisions. When a new-
comers choose a task to work 
on, they should add a comment 
to the issue stating that they are 
trying to address it. In the same 
way, newcomers should inform 
the community if they give up or 
find any problem related to the 
task, keeping the task updated. 
This way, they avoid reproduc-
ing the work of other developers, 
which was found as a barrier.5

Social Behavior Guidelines 

•	 Be proactive: Newcomers ought 
to try to overcome the barri-
ers they face by searching for 
solutions themselves. This is 
expected by the community, as 
stated by one core member: 

You cannot wait for other people. 
You have to be willing to study 
new stuff by yourself.

A member of another project 
mentioned, 

I think the only requirement is 
that when a newcomer asks, we 
want to see that he or she did 
some research before asking.

Therefore, before contacting the 
community, we suggest search-
ing the mailing-list archives, 
other resources made available 
by the community, and special-
ized forums to solve problems. 
Newcomers may find that their 
question has been answered 
previously.

•	 Do not be afraid of the commu-
nity: If newcomers cannot solve 
problems by themselves or by us-
ing the available resources, it is 
important that they reach out to 
the community through the ap-
propriate communication means. 
We found that shyness is a bar-
rier; however, communicating is 
necessary in collaborative envi-
ronments, such as OSS projects. 
Newcomers should thus take 
caution when interpreting the 
answers they receive. Cultural 
differences may affect the way 
people communicate, as one ex-
perienced member highlighted: 

A guy sent me a rude message, 
but, you know, we Brazilians are 
not used to the “German way of 
talking directly.”

•	 Send a kind and meaningful mes-
sage: Tips on how to send a message 
to the community include being 
kind, mentioning your skills and 
goals, asking your question clearly 
and objectively, and explaining the 
steps you took to solve your prob-
lem before referring to the commu-
nity. While evaluating FLOSScoach, 
we found that using a template was 
helpful, as one member stated: 

I liked the message template, 
showing how to introduce  
myself and to present the 
problems I am facing.

The mentioned template is pre-
sented here:

Hello,
My name is [your name] 

and I am a newcomer trying to 
place my first code contribu-
tion to Amarok. I am facing 
problems [during my first steps/



48 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: SOFTWARE DEVELOPMENT PROCESSES

finding a task/setting up my 
workspace]. Can someone help 
me [clarifying some questions/
mentoring me]?

I have already [mention the 
things you have done already to 
try to solve your problem] [If you 

are getting an error, include it in 
the message].

[Mention the OS you are 
working on and the tools you 
are using].

Thanks in advance.
[Your signature]

Technical Guideline: Use a Virtual Machine to 
Set up Their Local Workspace 
We observed many problems related 
to previously installed packages, de-
pendencies from other software, and 
unsupported versions of operating 
systems. Some newcomers reported 
that they had to reinstall their op-
erating systems after installing and 
uninstalling dependencies. Installing 
a new operating system in a virtual 
machine prevents newcomers from 
encountering some of these problems 
and from crashing already installed 
applications. In addition, by using a 
virtual machine, newcomers can use 
the operating system and development 
tools recommended by the project.

T he FLOSScoach portal and 
the proposed guidelines can 
serve as a starting point for 

open source communities aiming to 
support newcomers and alert them 
to barriers they might face. We ex-
pect that the posit ive results we 
obtained when using a portal that 
organizes information to support 
newcomers encourages communities 
to invest in this direction.

A smooth fi rst contribution may 
increase the number of contributions 
an OSS project receives from new de-
velopers. Our results are in line with 
those of a recent study by Carillo 
et al.,15 who demonstrated the impor-
tance of key socialization factors (e.g., 
task segregation, task purposefulness, 
interaction intensity, and supportive-
ness) in engaging and retaining new-
comers. We believe that the guidelines 
presented in this article have impli-
cations for how communities receive 
newcomers and for guiding newcom-
ers’ behavior while attempting to con-
tribute. Ultimately, newcomers can 
help expand the OSS movement, in-
cluding its diversity and range. 

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

 IGOR STEINMACHER is an assistant professor in the School 

of Informatics, Computing, and Cyber Systems at Northern Ari-

zona University. His research interests include human aspects 

of software engineering, behavior in open source software 

communities, mining software repositories, and software 

engineering education training. Steinmacher received a Ph.D. 

in computer science from the University of São Paulo. He was 

the program cochair of the 12th International Workshop on 

Cooperative and Human Aspects of Software Engineering and 

guest editor of special issues on open source software of IEEE 
Software and Journal of Internet and Software Applications. 

Contact him at igor.steinmacher@nau.edu.

CH R ISTOPH TREUDE is a faculty member at the University 

of Adelaide, Australia, with the School of Computer Science. 

The goal of his research is to advance collaborative software 

engineering through empirical studies and the innovation of 

processes and tools that explicitly take the wide variety of ar-

tifacts available in a software repository into account. Treude 

received a Ph.D. in computer science from the University of 

Victoria, Canada. Contact him at christoph.treude@adelaide.

edu.au. 

MAR C O AURÉLIO GEROSA is an associate professor at 

Northern Arizona University. His research interests lie in the 

intersection between software engineering and computer-sup-

ported cooperative work/social computing. Gerosa received 

a Ph.D. in computer science from the Pontifi cal Catholic 

University of Rio de Janeiro. He is or was the program commit-

tee chair of events such as IEEE ICGSE and CRIWG, a member 

of the program committee of events such as the ACM SIGSOFT 

Symposium on the Foundations of Software Engineering, ACM 

Conference on Computer-Supported Cooperative Work and 

Social Computing, International Conference on Mining Soft-

ware Repositories, and SANER, and guest editor of four journal 

special issues. Contact him at marco.gerosa@nau.edu.



	 JULY/AUGUST 2019  |  IEEE SOFTWARE � 49

References
1.	K. R. Lakhani and R. G. Wolf, “Per-

spectives on free and open source 

software,” in Perspectives on Free 

and Open Source Software, J. Feller, 

Ed. Cambridge, MA: MIT Press, 

2005, pp. 1–22.

2.	C. Hannebauer and V. Gruhn, “Mo-

tivation of newcomers to FLOSS 

projects,” presented at the 12th Int. 

Symp. Open Collaboration, 2016. 

doi: 10.1145/2957792.2957793. 

3.	G. von Krogh, S. Haefliger, S. Spaeth, 

and M. W. Wallin, “Carrots and 

rainbows: Motivation and social 

practice in open source software de-

velopment,” MIS Quart., vol. 36, no. 

2, pp. 649–676, June 2012. 

4.	I. Qureshi and Y. Fang, “Socializa-

tion in open source software projects: 

A growth mixture modeling ap-

proach,” Org. Res. Methods, vol. 14, 

no. 1, pp. 208–238, Jan. 2011. doi: 

10.1177/1094428110375002.

5.	I. Steinmacher, T. Conte, M. A. 

Gerosa, and D. F. Redmiles, “Social 

barriers faced by newcomers plac-

ing their first contribution in open 

source software projects,” presented 

at the 18th ACM Conf. Computer 

Supported Cooperative Work and 

Social Computing, Vancouver, Brit-

ish Columbia, Canada, 2015. doi: 

10.1145/2675133.2675215.

6.	G. Pinto, I. Steinmacher, and M. A. 

Gerosa, “More common than you 

think: An in-depth study of casual 

contributors,” in Proc. IEEE 23rd 

Int. Conf. Software Analysis, Evolu-

tion, and Reengineering, (SANER 

2016), 2016, pp. 112–123.

7.	I. Steinmacher, T. U. Conte, C. Treude, 

and M. A. Gerosa, “Overcoming open 

source project entry barriers with a 

portal for newcomers,” in Proc. 38th 

Int. Conf. Software Engineering 

(ISCE’16), 2016, pp. 273–284. 

8.	A. Sarma, M. A. Gerosa, I. Stein-

macher, and R. Leano, “Training 

the future workforce through task 

curation in an OSS ecosystem,” in 

Proc. 2016 24th ACM SIGSOFT Int. 

Symp. Foundations of Software En-

gineering, 2016, pp. 932–935. 

9.	J. Preece, “Etiquette online: From 

nice to necessary,” Commun. ACM, 

vol. 47, no. 4, pp. 56–61, Apr. 2004. 

doi: 10.1145/975817.975845.

10.	K. Fogel, Producing Open Source 

Software: How to Run a Successful 

FreeSoftware Rroject, First. Sebasto-

pol, CA: O’Reilly Media, 2013.

11.	V. Singh, “Newcomer integration 

and learning in technical support 

communities for open source soft-

ware,” in Proc. 17th ACM Int. Conf. 

Supporting Group Work, 2012,  

pp. 65–74. 

12.	J. O. Silva, I. S. Wiese, D. M. Ger-

man, I. Steinmacher, and M. A. 

Gerosa, “How long and how much: 

What to expect from summer of 

code participants?” in Proc. 33rd 

IEEE Int. Conf. Software Main-

tenance and Evolution (ICSME 

2017), 2017, pp. 69–79. 

13.	V. Wolff-Marting, C. Hannebauer, 

and V. Gruhn, “Patterns for tearing 

down contribution barriers to FLOSS 

projects,” in Proc. 12th Int. Conf. 

Intelligent Software Methodologies, 

Tools and Techniques, 2013, pp. 9–14. 

14.	Y. Park and C. Jensen, “Beyond 

pretty pictures: Examining the ben-

efits of code visualization for open 

source newcomers,” in Proc. 5th 

IEEE Int. Workshop Visualizing 

Software Understanding and Analy-

sis, 2009, pp. 3–10. 

15.	K. Carillo, S. Huff, and B. Chawner, 

“What makes a good contributor? 

Understanding contributor behavior 

within large free/open source soft-

ware projects—A socialization per-

spective,” J. Strategic. Inform. Syst., 

2017. doi: 10.1016/j.jsis.2017.03.001.

16.	B. Kitchenham, “Procedures for 

performing systematic reviews,” De-

partment of Computer Science, Keele 

University, Staffordshire, U.K., Tech. 

Rep. TR/SE-0401, 2004.

17.	A. Strauss and J. M. Corbin, Basics 

of Qualitative Research: Techniques 

and Procedures for Developing 

Grounded Theory. Newbury Park, 

CA: Sage, 2007.

18.	L. O. Jepsen, L. Mathiassen, and P. 

A. Nielsen, “Back to thinking mode: 

Diaries for the management of infor-

mation systems development projects. 

Behaviour and Inform. Technol., vol. 

8, no. 3, pp. 207–217.

19.	A. Bandura, “Self-efficacy: Toward a 

unifying theory of behavioral change. 

Psychological Rev., vol 84, no. 2, 

pp. 191–215.

20.	F. D. Davis, “Perceived usefulness, 

perceived ease of use, and user ac-

ceptance in information technology.” 

MIS Quart., vol. 13, no. 3,  

pp. 319–340.

Access all your IEEE Computer  
Society subscriptions at

computer.org 
/mysubscriptions


