
What is the Vocabulary of Flaky Tests?
Gustavo Pinto

Federal University of Pará
Belém, Brazil

gpinto@upfa.br

Breno Miranda
Federal University of Pernambuco

Recife, Brazil
bafm@cin.ufpe.br

Supun Dissanayake
University of Adelaide
Adelaide, Australia

supun.dissanayake@adelaide.edu.au

Marcelo d’Amorim
Federal University of Pernambuco

Recife, Brazil
damorim@cin.ufpe.br

Christoph Treude
University of Adelaide
Adelaide, Australia

christoph.treude@adelaide.edu.au

Antonia Bertolino
ISTI — CNR
Pisa, Italy

antonia.bertolino@isti.cnr.it

ABSTRACT
Flaky tests are tests whose outcomes are non-deterministic. Despite
the recent research activity on this topic, no effort has been made on
understanding the vocabulary of flaky tests. This work proposes to
automatically classify tests as flaky or not based on their vocabulary.
Static classification of flaky tests is important, for example, to detect
the introduction of flaky tests and to search for flaky tests after
they are introduced in regression test suites.

We evaluated performance of various machine learning algo-
rithms to solve this problem. We constructed a data set of flaky and
non-flaky tests by running every test case, in a set of 64k tests, 100
times (6.4 million test executions). We then used machine learn-
ing techniques on the resulting data set to predict which tests are
flaky from their source code. Based on features, such as counting
stemmed tokens extracted from source code identifiers, we achieved
an F-measure of 0.95 for the identification of flaky tests. The best
prediction performance was obtained when using Random For-
est and Support Vector Machines. In terms of the code identifiers
that are most strongly associated with test flakiness, we noted that
job, action, and services are commonly associated with flaky tests.
Overall, our results provides initial yet strong evidence that static
detection of flaky tests is effective.

CCS CONCEPTS
• Software and its engineering→ Software testing and de-

bugging.
KEYWORDS

test flakiness, regression testing, text classification

ACM Reference Format:
Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. 2020. What is the Vocabulary of
Flaky Tests?. In 17th International Conference on Mining Software Repositories
(MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3379597.3387482

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387482

1 INTRODUCTION
Regression testing is an important practice in software develop-
ment [7]. It aims to check that any code or configuration changes
do not break existing functionality. Ideally, tests should be deter-
ministic, i.e., their output should remain the same for the same
environment and product configuration, and this is often assumed
in academic research [11, 34]. Unfortunately, in practice, non-
deterministic—or flaky—tests are common [11, 19, 20]. These are
tests that may unpredictably pass or fail when rerun, even with no
changes to the configuration under test.

In regression testing of large complex systems, developers may
spend important resources in analyzing failures that are due to flaky
tests and not to actual problems in production code, with concrete
impact on productivity and costs. Practitioners got now used to
rerun each newly observed failure several times, to ascertain that it
is a genuine regression failure and not an intermittent one [16, 21].
However, this is a very inefficient way to deal with flakiness, and in
recent years the software engineering community is observing an
insurgence of research in approaches for preventing, identifying,
and repairing flaky tests, e.g. [4, 13, 15, 17, 19, 26].

Notwithstanding, flaky tests remain deceitful. By manually an-
alyzing the Apache Software Foundation (ASF) central commits
repository, Luo et al. [19] aimed at identifying the prevalent causes
of flakiness: they successfully identified a catalog of common causes
explaining why a test is flaky. For instance, one of their findings was
that “asynchronous wait" is the most common source of flakiness,
responsible for 45% of the cases analyzed, and occurs when a test
does not wait properly for the result of an asynchronous call.

Such types of study certainly help to understand the phenome-
non, and also to reason on strategies to counteract it. For instance,
the “asynchronous wait" problem can be fixed by introducing a
method call with time delays (e.g., Thread.sleep). However, to
really contrast flakiness, we need approaches that can timely and
efficiently recognize a flaky test, even well before it is committed in
the test repository. Preceding this study, we have analyzed different
datasets of flaky tests [4, 8, 19, 23] and could observe that, as is the
case for the “asynchronous wait" example, flaky tests seem to follow
a set of syntactical patterns. Based on that, we conjecture that those
test code patterns could be used to automatically recognize flaky
tests using natural language processing (NLP) techniques.

To test this conjecture, we extracted identifiers, such as method
names, from the code of test cases preventively labeled as flaky
or non-flaky, and employed standard NLP techniques, including

https://doi.org/10.1145/3379597.3387482
https://doi.org/10.1145/3379597.3387482

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pinto et al.

identifier splitting, stemming, and stop word removal, to turn these
identifiers into tokens that could be used as input for text classi-
fication algorithms. We augmented these tokens with numerical
features, such as the number of lines of code in the test case and
the number of Java keywords, acting as proxies of code complexity,
and ran five state-of-the-art classifiers on the resulting data set.
The evaluation confirmed our conjecture, with our best classifier
achieving an F1-score of 0.95.

After analyzing the impact of different features (e.g., identifier
splitting) in our pipeline on the overall performance, we computed
the information gain of each token, i.e., the usefulness of a token in
distinguishing flaky tests from non-flaky tests. Tokens such as “job”
and “table” showed particularly useful for this distinction, so that
we can identify a sort of vocabulary of flaky tests, of which in the
paper we provide a more detailed discussion.

Note that both the natural language processing and the predic-
tion phase that form our approach can be carried out in a completely
static way, i.e., without requiring any dynamic data such as cover-
age traces as is done in [4]. This is an important property of our
approach, as collecting coverage information can be very costly,
especially in Continuous Integration environments [12], whereas
the overhead caused by our approach is expected to be negligible.
Runtime cost consists of (1) extracting tokens from a test case (i.e.,
parsing), (2) post-processing the tokens (e.g., splitting words using
their camel-case syntax), and (3) predicting the class of the exemplar
using the previously-computed model.

In summary, the contributions of this work include:
(1) the first compilation of a vocabulary of flaky tests;
(2) a set of automated classifiers for test cases as flaky or non-

flaky;
(3) performance evaluation of state-of-the-art classifiers over

an existing data set of flaky tests.
Our contribution of a flaky test vocabulary and flakiness pattern

classifiers can help: (1) to prevent the introduction of flaky tests by
warning developers early, even while they are typing the test code
(e.g., our approach could be embedded into the test code editor)
and (2) to guide the identification of flaky tests that have been
introduced in the test repository.

2 RELATEDWORK
Our work is related with empirical studies of: i) test code bugs, ii)
test smells and iii) flaky tests.

Test code bugs. A series of studies [30, 32] aims at characterizing
causes and symptoms of buggy tests: these are problematic test
cases that can fail raising a false alarm when in fact there is no
indication of a bug in the application code. This paper focuses on
test flakiness, which is one of several possible types of test code
issues. Vahabzadeh et al. [30] mined the JIRA bug repository and
the version control systems of ASF finding a set of 5,556 unique
bug fixes exclusively affecting test code. They manually examined
a sample of 499 test bugs and found that, among five identified
major causes of false alarms, 21% were due to flaky tests, which
they further classified into Asynchronous Wait, Race Condition
and Concurrency Bugs. In contrast, to classify flaky tests we aim
here at studying exclusively the test code, and not the fix changes,
as they do. The authors of [32] developed a set of patterns that can

help pinpoint problematic test code portions in JUnit test cases,
and performed a validation study over a set of 12 open source
projects. While their intent is similar to ours, we aim here at an
automated lexical analysis of test cases. Recently, Tran et al. [27]
studied test quality by surveying 19 practitioner’s perceptions of
test quality and conducting a mining study over the change history
of 152 software projects, concluding that testers responsible for test
execution are more concerned with comprehension of test cases
rather than with their repeatability or performance.

Test smells. This research has been pioneered by van Deursen
et al. [31] who identified a series of 11 different test smells, i.e.,
symptoms of poor design choices in test coding, and suggested
a few refactoring guidelines. Recently, several extensive studies
related to test smells have been conducted. Bavota et al. [2] and
Tufano et al. [29] separately studied the test smell types defined
in [31], which were detected through the application of simple com-
prehensive rules and then manual validation. Precisely, the study
of Bavota et al. investigated their prevalence, concluding that up to
82% of 637 analyzed test classes contained at least one test smell,
whereas Tufano et al. studied the life cycle of those smells, conclud-
ing that they are introduced since test creation (and not during test
evolution), last for long surviving even thousands commits, and
can be related to smells in production code. As flakiness may origi-
nate from test smells, such studies motivate our own study of code
features in flaky tests. Indeed, in two subsequent studies [23, 24],
Palomba and Zaidman analyze the relation between test smells and
flakiness, and they observed that 75% of the flaky tests were due
to presence of smells. We remain to investigate if a catalogued test
smell suggests high-level features that a prediction model could
use to further increase accuracy. A recent work towards such di-
rection leverages information retrieval techniques [25], somewhat
following a conjecture as the one we make here. It is also worth
noting that a more comprehensive catalogue of test smells and a
summary of guidelines and tools to deal with them are provided by
Garousi et al. in a multivocal literature review [10].

Flaky tests. The first empirical study centered on flakiness is due
to Luo et al. [19]. In this seminal work, they first filtered out from
the complete commit history of the ASF central repository 1,129
commits including the keyword “flak” or “intermit”, and then man-
ually inspected all of them. As a result of their extensive work, they
propose 10 categories of flakiness root causes, still widely referred,
and summarize the most common strategies to repair them. Thorve
et al. [26] conducted a similar study in Android apps, observing that
some causes of Android tests flakiness are similar to those identi-
fied by Luo et al. [19], but also finding two new causes as Program
Logic and UI. We are interested in identifying causes of flakiness
as [19, 26], but we strive for automated and efficient detection of
flakiness that could be applied, for example, to warn developers
during evolution when they are about to add likely flaky tests. We
remain to evaluate how our classifiers perform during evolution.
We are particularly interested in understanding developers’ reac-
tion to the indication of potential flakiness produced by an IDE in
contrast with the alternative approach that indicates flakiness in a
report produced by Continuous Integration (CI) systems.

Our paper is also related with works that propose techniques
to locate flaky tests. Bell et al. [4] and Lam et al. [17] proposed

What is the Vocabulary of Flaky Tests? MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

@Test
public void testCodingEmptySrcBuffer() throws Exception {
final WritableByteChannelMock channel = new ritableByteChannelMock(64);
final SessionOutputBuffer outbuf = new SessionOutputBufferImpl(1024, 128);
final BasicHttpTransportMetrics metrics = new BasicHttpTransportMetrics();
final IdentityEncoder encoder = new IdentityEncoder(channel, outbuf, metrics);
encoder.write(CodecTestUtils.wrap("stuff"));
final ByteBuffer empty = ByteBuffer.allocate(100);
empty.flip();
encoder.write(empty);
encoder.write(null);
encoder.complete();
outbuf.flush(channel);
final String s = channel.dump(StandardCharsets.US_ASCII);
Assert.assertTrue(encoder.isCompleted());
Assert.assertEquals("stuff", s);
}

⇓

pty src buffer codec test utils standard charsets
channel assert equals encoder byte buffer empty test
coding empty assert allocate flush outbuf metrics
dump complete wrap write flip stuff completed

Figure 1: A selected test case and its tokenized result.

different techniques for detecting test flakiness dynamically, i.e.,
they require that test cases are executed (one or more times), aiming
at optimizing the traditional approach used by practitioners of
rerunning failed tests for a fixed number of times. Gambi et al. [9]
focus on one specific cause of flakiness that is test dependency,
which they propose to discover by flow analysis and iterative testing
of possible dependencies. The works in [13, 15] aim instead to build
a static predictor, as we also do here. The work in [13] develops
a machine learning approach that mines association rules among
individual test steps in tens of millions of false test alarms. In [15]
a Bayesian network is instead constructed. In contrast, our work
aims at developing a lightweight flakiness predictor that learns from
test code of flaky and non-flaky tests. We are aware of one only
recent approach that takes a similar standpoint as we do (i.e., [5]).
However, here, we derive a more comprehensive set of predictors
and build a vocabulary of tokens, which is out of their scope.

3 APPROACH
To understand the vocabulary of flaky tests, we extracted all identi-
fiers from the test cases in our data set. We first localized the file
declaring the test class and then processed that file to identify the
flaky test case and corresponding identifiers. After obtaining the
identifiers used in the test code, we split these identifiers using their
camel-case syntax, and converted all resulting tokens to lower case.
We removed stop words from the set of tokens for each test case.
As a concrete example, consider the code snippet appearing at the
top of Figure 1. This is a test case from the httpcore project1. The
tokens extracted from the test appear at the bottom of the figure.

We observed that, in some cases, a part of an identifier after split-
ting (i.e., a token) seemed to be an indicator of flakiness (e.g., “ser-
vices”), whereas, in other cases, the entire identifier was an indicator
of flakiness (e.g., “getstatus”), but not its constituents on their own

1https://tini.to/52IC

(e.g., “get”, “status”). Therefore, we used both the split identifiers
and the original identifiers (after lower-casing) as input for the text
classification. In other words, the identifier “getStatus” would be
represented using three features: “get”, “status”, and “getstatus”. We
evaluate the impact of this choice in our evaluation section.

In addition to the tokens obtained this way, we determined the
length of each test case in terms of lines of code and the number
of Java keywords contained in the test code, as a proxy for the
code’s complexity. Again, we separately evaluate the impact of
these choices as part of answering our third research question.

We then used the pre-processed flaky and non-flaky test cases
as input for machine learning algorithms. Each test case was repre-
sented using its features: the number of lines of code, the number
of Java keywords, and for each token the information whether or
not it contained this token. This approach creates one feature for
each distinct token found in tests cases. Consequently, our data set
includes a large number of features. Following previous work, we
used attribute selection to remove features with low information
gain: we used the same threshold of 0.02 as in previous work [28].

We evaluated the performance of five machine learning clas-
sifiers on our data set. We chose the same classifiers as used in
previous work on text classification in the context of software engi-
neering (e.g., [6, 28]): Random Forest, Decision Tree, Naive Bayes,
Support Vector Machine, and Nearest Neighbour. For all algorithms,
we relied on their implementation in the open source machine
learning software Weka [33].

To evaluate the performance, we split our data set into 80%
for training and 20% for testing. We choose to report the results
based on this split rather than x-fold cross-validation since cross-
validation would train a new model from scratch for each fold, thus
resulting in several models rather than a single one. Note that we
also ran our experiments with 10-fold cross-validation, with very
similar (slightly improved) performance numbers. We report the
standard metrics of precision (the number of correctly classified
flaky tests divided by the total number of tests that are classified as
flaky), recall (the number of correctly classified flaky tests divided
by the total number of actual flaky tests in the test set), and F1-score
(the harmonic mean of precision and recall). We also report MCC
(Matthews correlation coefficient) and AUC (area under the ROC
curve). MCC measures the correlation between predicted classes
(i.e., flaky vs. non-flaky) and ground truth, and AUC measures the
area under the curve which visualises the trade-off between true
positive rate and false positive rate. We focus our discussions on
the F1-score since we are more interested in correctly predicting
flakiness rather than non-flakiness.

4 OBJECTS OF ANALYSIS
This section describes the datasets we used to train and test our
prediction model. Machine learning algorithms use positive and
negative examples for learning. In our setting, positive examples cor-
respond to flaky test cases whereas negative examples correspond
to likely non-flaky test cases. Indeed, the diagnosis of non-flakiness
is an estimate—there is no guarantee a test is non-flaky with a given
number of runs.

https://tini.to/52IC

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pinto et al.

Table 1: Projects and number of test cases analyzed.

project description GitHub ID # tests
flaky non-flaky

achilles Java Object Mapper/Query DSL generator for Cassandra doanduyhai/Achilles.git 67 8
alluxio distributed storage system Alluxio/alluxio.git 4 3022
ambari manages and monitors Apache Hadoop clusters apache/ambari.git 4 15

assertj-core strongly-typed assertions for unit testing joel-costigliola/assertj-core.git - 13455
checkstyle checks Java source code for adherence to standards checkstyle/checkstyle.git - 3169

commons-exec executes external processes from within the JVM apache/commons-exec.git 2 103
dropwizard library for building production-ready RESTful web services dropwizard/dropwizard.git 1 1641
hadoop framework for distributed processing of large data sets apache/hadoop.git 305 4475

handlebars a tool for building semantic templates jknack/handlebars.java.git 1 844
hbase non-relational distributed database apache/hbase.git - 402
hector interface to the Cassandra database hector-client/hector.git 2 282
httpcore low level HTTP transport components apache/httpcore.git 2 1441

jackrabbit-oak hierarchical content repository apache/jackrabbit-oak.git 8 13172
jimfs in-memory file system for Java 7+ google/jimfs.git 7 5833

logback a logging framework for Java qos-ch/logback.git 2 526
ninja full stack web framework for Java ninjaframework/ninja.git 18 1022
okhttp manage HTTP sessions square/okhttp.git 66 1663
oozie workflow engine to manage Hadoop jobs apache/oozie.git 856 729
orbit framework for building distributed systems orbit/orbit.git 8 -
oryx framework for large scale machine learning OryxProject/oryx.git 13 393

spring-boot Java-based framework used to create micro services spring-projects/spring-boot.git 15 8133
togglz feature flags for the Java platform togglz/togglz.git 11 441

undertow non-blocking web server undertow-io/undertow.git - 607
wro4j web resource optimizer wro4j/wro4j.git 10 1146
zxing barcode scanning library for Java zxing/zxing.git 1 457

total - - 1,403 62,979

We based the construction of our data set on the DeFlaker bench-
mark2. We took this decision based on the number of flaky test
cases it reports, with over 5K flaky tests3, which is, to the best of
our knowledge, the largest data set of flaky tests available today. In
a nutshell, DeFlaker monitors the coverage of several Java projects.
For each one of them, DeFlaker observes the latest code changes
and marks as flaky any newly failing test that did not execute
changed code. The expectation is that a test that used to pass and
did not execute changed code should pass. As that was not the case,
there must have been changes in the coverage profile caused by
non-determinism.

In the following, we describe the methodology we used to con-
struct the datasets. DeFlaker is focused on finding flaky test cases.
Consequently, its benchmark does not list non-flaky tests, which
are necessary for training a machine learning classifier. To circum-
vent this limitation, we re-executed the test suites of the projects
from the DeFlaker benchmark for 100 times and flagged as (likely)
non-flaky all test cases that had a consistent outcome across all
executions, e.g., the test passes in all runs.

It is worth noting that, considering all test cases from all projects
we analyzed, the number of non-flaky tests is much higher com-
pared to the number of flaky tests and learning from imbalanced
2www.deflaker.org/icsecomp/
3http://www.deflaker.org/wp-content/uploads/2019/11/historical_rerun_flaky_tests.csv

data is challenging. To mitigate this problem, we selected an equal
number of non-flaky tests as that of flaky tests—original DeFlaker
data set—and selected each non-flaky test in a way that the median
sizes (in number of lines of code) of flaky and non-flaky tests were
nearly the same. More precisely, we proceeded as follows. Consider
that the number of flaky test cases and their median sizes were,
respectively, n and s . We randomly selected a test with size above s
and then randomly selected a test with size below s . We repeated
this selection process until selecting n distinct tests to complete the
data set. We empirically confirmed that the median sizes of the set
of flaky and non-flaky test sets were very close.

Altogether, we considered 24 of the 25 DeFlaker projects, dis-
carding one project—orbit. In the latter, we were unable to build
the project, since the most recent version had build compilation
errors. We also tried to navigate in the latest five revisions available
in the version history, but we observed the same build problem. We
then decided to discard this project from the rest of the analysis. All
re-executions for non-flaky tests were made on the most recent re-
vision of each of the 24 studied projects. Altogether, we ran 64k test
cases over all the studied projects. The data produced in this work is
available online at: https://github.com/damorimRG/msr4flakiness/

https://github.com/damorimRG/msr4flakiness/

What is the Vocabulary of Flaky Tests? MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

5 EVALUATION
Based on the approach described and the data set curated, we pose
the following research questions.

• RQ1. How prevalent and elusive are flaky tests?

Rationale. Prior work showed that flaky tests are common in re-
gression test suites [4, 8, 11, 18, 19, 21, 23]. The goal of this research
question is to confirm that phenomenon to justify the importance
of statically classifying flaky tests, which is the central goal of this
paper. To answer this question, we conducted an experiment where
we ran the test suites of the 24 projects we selected (see Section 4)
for 100 times on their latest revisions. We considered a test as flaky
if there was a disagreement in the outcomes (i.e., pass, fail or error)
across the hundred runs. For example, we consider as flaky a test
that passes in all but one (or more) run(s). Given that most projects
in that data set are popular and that the teams had the chance to fix
flaky tests originally reported in the DeFlaker paper, we considered
those projects a good benchmark to check whether flaky tests are
still present. Another dimension we wanted to analyze with this
study is the degree of flakiness of each test. This is important to
identify if there is an ideal number of reruns that one could use
to find flakiness. If that number is sufficiently small then rerun-
ning test suites may be considered a practical approach to detect
flakiness.

• RQ2. How accurately can we predict test flakiness based on
source code identifiers in the test cases?

Rationale. Being able to predict test flakiness based on source
code identifiers would enable us to notify developers of flaky tests
without having to run these tests. This would be particularly impor-
tant since we conjecture that flaky tests might take a while to run
because they might rely on time-intensive actions such as connect-
ing to external services, for example, and since it is impossible to
determine flakiness based on a single run or even several runs (see
Section 5.1). Of course, such a recommender system, which warns
developers when they are about to introduce a flaky test, can only
be useful if the precision of the approach is high—developers would
not appreciate false positives, i.e., being warned about flaky tests
which are not actually flaky. Therefore, in answering our second
research question, we seek to evaluate the performance of classi-
fiers to predict test flakiness without running the tests, i.e., based
on the source code identifiers.

• RQ3.What value do different features add to the classifier?

Rationale. Understanding what features affect the performance
of the classifier will help inform future work in areas where fur-
ther performance gains might be possible. We employ standard
pre-processing steps, such as stemming and stop word removal, in
our approach, but also want to evaluate to what extent these steps
affect the performance of the classifiers. In particular, when con-
verting source code identifiers into numeric features amenable to
traditional machine learning algorithms, we need to make several
design choices, such as deciding whether to split identifiers. We
also want to evaluate the impact of these choices to guarantee the
best possible performance of the classifier.

Table 2: Number of flaky tests per project. #PF (resp., #PE)
denotes number of Pass and Fail (resp., Pass and Error) tests.

project SHA # test cases # flaky tests (%) #PF #PE
alluxio 260533d 3,034 12 (0.40) 1 11
hector a302e68 322 40 (12.4) 3 37

jackrabbit-oak 226e216 13,193 2 (0.02) 1 1
okhttp 6661e14 1,682 19 (1.20) 19 0

undertow b6bd4d2 609 2 (0.33) 1 1
wro4j d2a3de7 1,158 11 (0.95) 0 11
— — 19,998 86 (—) 25 61

• RQ4. Which test code identifiers are most strongly associated
with test flakiness?

Rationale. Cataloguing the test code identifiers that are strongly
associated with test flakiness can inform software developers of
particular aspects of developing software that are likely to lead to
flaky tests. Based on this information, developers might be helped to
prevent test flakiness, or at least be aware and pay extra care to areas
that are likely to be associated with flaky tests. Such information
could, for example, be useful when conducting code review and
when debugging test failures.

5.1 Answering RQ1: How prevalent and elusive
are flaky tests?

Table 2 shows the results for this first research question. The table
shows the project’s name (column “project"), their revision (col-
umn “SHA"), the total number of tests (column “# test cases”), the
number of flaky tests found in that revision of that project (col-
umn “# flaky tests (%)"), and the breakdown of kind of flakiness: PF
indicates a mix of pass and fail runs and PE indicates a mix of pass
and error runs. We did not find other combination of test outcomes
in these configurations. The table only includes projects with at
least one flaky test detected. This result indicates that flakiness is
indeed a problem affecting 25% (=6/24) of the projects analyzed.
Overall, we found a total of 86 flaky tests by rerunning test cases.
The project alluxio is a virtual distributed storage system, hector is
a high-level Java client interface to the Cassandra distributed data-
base, jackrabbit-oak is an efficient implementation of a hierarchical
content repository for use in web sites and content-management
systems, okhttp is a library to efficiently manage HTTP sessions,
undertow is a high-performance non-blocking web server imple-
mentation, and wro4j is a library to optimise web page loading time.
Note that every project involves IO, for example, they refer to the
file system or the network.

Another interesting finding of this table is the low number of
flaky tests. Some reasons that may justify this result: First, running
100 times might not be enough to find a good number of flaky tests.
However, it is not in the scope of this paper to empirically evaluate
the ideal number of reruns to find flaky tests. Second, we used the
most recent version of the DeFlaker data set. Maintainers of these
projects could have fixed the known flaky tests. Third, our focus
on unit tests might cap the total number of flaky tests that could
be observed.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pinto et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Figure 2: Histogram of probability of a flaky test to pass.

Figure 2 shows the histogram for the probability of a flaky test
to pass, with data aggregated across all projects. The x-axis shows
probability intervals (e.g., [0, 10%[, [10%, 20%[, etc.) whereas the
y-axis shows the number of flaky tests that fall in that interval.

The histogram shows that the majority of the cases we found
to be flaky, around 70% (61 out of 86), passed in more than 90% of
the executions. For example, for 47 flaky tests (55%), the test passed
99 times (out of 100 repetitions) and produced a different result in
only one case. This result may indicate that more executions might
be needed to accurately identify flaky tests.

The histogram also shows that there are rare cases where the
probability of a flaky test to pass is low–only one flaky test passed in
less than 10% of the executions. For this case, the strategy adopted
by Continuous Integration (CI) systems to rerun the test for a
small number of times would unlikely identify the cause of failure
as flakiness. The probability of subsequent failures after the first
test execution fails is relatively high. Assuming for example that
the framework reruns a test three other times, after a failure, the
probability of flakiness going undetected would be 66% (=0.94), i.e.,
the probability of four failures in a row.

Results indicate that flakiness is a relatively common
problem in IO-related projects. Furthermore, detecting

flakiness with test reruns is challenging.

5.2 Answering RQ2: How accurately can we
predict test flakiness based on source code
identifiers in the test cases?

Table 3 shows the performance of five machine learning algorithms
on our data set in terms of standard metrics used in the literature,
namely: precision, recall, F1-score, MCC (Matthews correlation
coefficient), and AUC (area under the ROC curve). Numbers in bold
highlight the algorithm that performed best for a given metric.

All classifiers achieved very good performance in distinguishing
flaky test cases from non-flaky test cases. While Random Forest
achieved the best precision (0.99), the Support Vector Machine
classifier slightly outperformed Random Forest in terms of recall
(0.92). Overall, in terms of F1-score, Random Forest achieved the
best performance, but all classifiers achieved an F1-score of at least
0.85. Results are consistent when considering Matthews correlation

Table 3: Classifier performance

algorithm precision recall F1 MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 0.93 0.80 0.86 0.74 0.93
Support Vector 0.93 0.92 0.93 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

coefficient and area under the ROC curve. In both cases, the Random
Forest classifier achieves the best performance, with values of 0.90
and 0.98, respectively.

As is common when using automated classifiers, we attempted
parameter tuning to see if it would impact the classifier performance.
In this case, we changed the ‘number of trees’ parameter of the
Random Forest algorithm from its default setting in Weka of 100.
Increasing the number of trees had no impact on the F1-score (we
tried values of 500 and 1,000) while reducing the number of trees led
to a decrease in F1-score to 0.91 for the values of 5 and 10. Reducing
the number of trees to 50 had no impact on the F1-score.

All classifiers performed very well on our data set.
Overall, Random Forest was the classifier that

performed best.

5.3 Answering RQ3: What value do different
features add to the classifier?

In this section, we investigate the impact of the different features
used in our classifiers on their performance. We focus the inves-
tigation on the two best-performing classifiers identified in the
previous section: Random Forest (best precision and F1-score) and
Support Vector Machine (best recall).

Tables 4a and 4b compare the performance of these two classi-
fiers to the performance of the same classifier without a particular
feature, including features of the text classification algorithm (e.g.,
stemming, stop word removal, etc.) and features describing the data
(e.g., number of lines of code, contains identifier "status", etc.).

For the Random Forest classifier (Table 4a), not all features in
our pipeline had a visible impact on the results: running the same
pipeline, but without stemming, without stop word removal or
without including the LOCmetric had no impact on the F1-score, for
example, and it also made no difference whether we considered only
split identifiers as tokens (e.g., turning getId into two features get
and id instead of three features get, id, and getid). Lowercasing
had a negligible impact (without it, the F1-score would drop from
0.95 to 0.94), similar to not including Java keywords or not splitting
identifiers by camel case.

The only large impact was observed when we only included
Java keywords as tokens, but not identifier names. In this case, the
performance would drop from an F1-score of 0.95 to 0.79.

As Table 4b shows, the results for the Support Vector Machine
classifier are similar: the F1-score was not affected by stemming,
stop word removal, the LOC metric, and Java keywords, while the

What is the Vocabulary of Flaky Tests? MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 4: Performance without features

(a) Random Forest

features precision recall F1 MCC AUC
All Features 0.99 0.91 0.95 0.90 0.98
No Stemming 0.99 0.91 0.95 0.90 0.98
No Stop W. Removal 0.99 0.91 0.95 0.90 0.98
No Lowercasing 0.98 0.91 0.94 0.89 0.98
No Identifier Split. 0.98 0.89 0.94 0.88 0.98
Only Split Identif. 0.99 0.92 0.95 0.90 0.98
No Lines of Code 0.99 0.91 0.95 0.90 0.99
No Java Keywords 0.99 0.90 0.94 0.89 0.98
No Identifiers 0.76 0.82 0.79 0.56 0.85

(b) Support Vector

features precision recall F1 MCC AUC
All Features 0.93 0.92 0.93 0.85 0.93
No Stemming 0.93 0.92 0.93 0.85 0.93
No Stop W. Removal 0.93 0.92 0.93 0.85 0.93
No Lowercasing 0.91 0.93 0.92 0.84 0.92
No Identifier Split. 0.91 0.88 0.89 0.79 0.90
Only Split Identif. 0.93 0.92 0.93 0.85 0.93
No Lines of Code 0.93 0.92 0.93 0.85 0.93
No Java Keywords 0.93 0.92 0.93 0.85 0.93
No Identifiers 0.64 0.87 0.74 0.40 0.68

effect of lowercasing was negligible. Not splitting identifiers re-
duced the F1-score from 0.93 to 0.89 and not considering identifiers
at all reduced it to 0.74.

While the impact of some pre-processing steps is
negligible, identifier splitting has a positive impact

on the classifier performance.

5.4 Answering RQ4: Which test code identifiers
are most strongly associated with test
flakiness?

Table 5 shows the 20 features with the highest information gain
along with their frequency in flaky and non-flaky test cases. The
table also shows in how many different projects each of these
features appeared. We discuss the most prominent features in more
detail in the following paragraphs.

The feature with the highest information gain is that associated
with the token “job”, i.e., the feature "is the token job included in the
test case?". This feature appeared in 524 different flaky tests in our
data set, distributed across 2 projects (Hadoop and Oozie), but only
in 4 different non-flaky tests, all from the same project (Hadoop). An
example of a flaky test which contains the token “job” more than
ten times is testFailAbortDoesntHang in the Hadoop project.
Figure 3 shows the code for this test. The test creates and aborts jobs
within a ten second time budget—the timeout is likely the reason
that the test case sometimes fails and sometimes does not. Several of

Table 5: Top 20 features by Information Gain

feature inf. gain flaky non-flaky
#tests #projects #tests #projects

job 0.2053 524 (2) 4 (1)
table 0.1449 406 (4) 8 (2)
id 0.1419 522 (9) 52 (4)
action 0.1366 387 (3) 8 (2)
oozie 0.1360 274 (1) 0 (0)
services 0.1310 371 (2) 7 (1)
coord 0.1192 307 (1) 0 (0)
getid 0.1077 287 (4) 1 (1)
coordinator 0.1070 258 (1) 0 (0)
xml 0.1062 147 (2) 6 (2)
LOC (metric) 0.0978 - - - -
workflow 0.0914 207 (1) 0 (0)
getstatus 0.0885 246 (2) 2 (2)
throws (Java) 0.0874 3 (3) 7 (2)
record 0.0845 296 (2) 18 (1)
jpa 0.0781 207 (2) 0 (0)
jpaservice 0.0753 200 (1) 0 (0)
service 0.0733 367 (4) 67 (3)
wf 0.0721 192 (1) 0 (0)
coordinatorjob 0.0689 184 (1) 0 (0)

@Test(timeout = 10000)
public void testFailAbortDoesntHang() throws IOException {
Configuration conf = new Configuration();
conf.set(MRJobConfig.MR_AM_STAGING_DIR, stagingDir);
conf.set(MRJobConfig.MR_AM_COMMITTER_CANCEL_TIMEOUT_MS, "1000");
DrainDispatcher dispatcher = new DrainDispatcher();
dispatcher.init(conf);
dispatcher.start();
OutputCommitter committer = Mockito.mock(OutputCommitter.class);
CommitterEventHandler commitHandler =
createCommitterEventHandler(dispatcher, committer);

commitHandler.init(conf);
commitHandler.start();
// Job has only 1 mapper task. No reducers
conf.setInt(MRJobConfig.NUM_REDUCES, 0);
conf.setInt(MRJobConfig.MAP_MAX_ATTEMPTS, 1);
JobImpl job = createRunningStubbedJob(conf, dispatcher, 1, null);
// Fail. finish all the tasks. This should land the JobImpl directly in the

FAIL_ABORT state
for (Task t : job.tasks.values()) {
TaskImpl task = (TaskImpl) t;
task.handle(new TaskEvent(task.getID(), TaskEventType.T_SCHEDULE));
for (TaskAttempt ta : task.getAttempts().values()) {
task.handle(new TaskTAttemptEvent(ta.getID(), TaskEventType.

T_ATTEMPT_FAILED));
}

}
assertJobState(job, JobStateInternal.FAIL_ABORT);
dispatcher.await();
// Verify abortJob is called once and the job failed
Mockito.verify(committer, Mockito.timeout(2000).times(1)).abortJob((JobContext

) Mockito.any(), (State) Mockito.any());
assertJobState(job, JobStateInternal.FAILED);
dispatcher.stop();
}

Figure 3: Code for test TestJobImpl.testFailAbortDoesntHang
from project Hadoop with prolific use of term "job".

the other test cases associated with flakiness and the token job are
about killing a job, e.g., testKill and testCoordKillSuccess1.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pinto et al.

public void testTableCreateAndDeletePB() throws IOException, JAXBException {
String schemaPath = "/" + TABLE2 + "/schema";
TableSchemaModel model;
Response response;
assertFalse(admin.tableExists(TABLE2));
// create the table
model = TestTableSchemaModel.buildTestModel(TABLE2);
TestTableSchemaModel.checkModel(model, TABLE2);
response = client.put(schemaPath, Constants.MIMETYPE_PROTOBUF, model.

createProtobufOutput());
assertEquals(response.getCode(), 201);
// make sure HBase concurs, and wait for the table to come online
admin.enableTable(TABLE2);
// retrieve the schema and validate it
response = client.get(schemaPath, Constants.MIMETYPE_PROTOBUF);
assertEquals(response.getCode(), 200);
model = new TableSchemaModel();
model.getObjectFromMessage(response.getBody());
TestTableSchemaModel.checkModel(model, TABLE2);
// delete the table
client.delete(schemaPath);
// make sure HBase concurs
assertFalse(admin.tableExists(TABLE2));
}

Figure 4: Code for test method testTableCreateAndDeletePB
from class TestSchemaResource, project Hadoop, with high
usage of term "table".

The feature with the second highest information gain is that as-
sociated with the token “table”, appearing in 406 flaky tests across
four projects (Achilles, Hadoop, Oozie, and OkHttp) and in eight
non-flaky tests across two projects (Hadoop and HttpCore). An
example is the test testTableCreateAndDeletePB from Hadoop
which contains the token more than ten times. Figure 4 shows the
code for this test case. The code suggests that the need to wait
for a table to come online after a call to method enableTable
might be the reason for flakiness. Other flaky test cases containing
the token “table” are similar, e.g., testDisableAndEnableTable
and testWritesWhileScanning. Connecting to tables and/or
databases appears to be a source for flakiness.

“Id” is a common token in many software development projects
and it is the third most useful token for distinguishing flaky test
cases from non-flaky test cases in our data set. It appears in 522
flaky test cases across nine projects (Cloudera Oryx, Orbit, OkHttp,
Achilles, Ambari, Hadoop, Jackrabbit Oak, Oozie, and Togglz),
and in 52 non-flaky test cases across four projects (ZXing, Ninja,
Hadoop, HttpCore). In addition, the token getid is the features with
the eighth-highest information gain, appearing in 287 flaky test
cases across four projects (Cloudera Oryx, Hadoop, Jackrabbit Oak,
Oozie) and only in a single non-flaky test case in Hadoop. As an
example, the test method testUpdatedNodes in Haddop contains
the token id more than ten times. In this method, id is used to refer
to different objects: jobs, attempts, applications, and nodes. Much
like the example described in the context of the token job, in this
case, the test method relies on jobs being completed elsewhere,
which might contribute to its flakiness.

The token “action” occurred in 387 different flaky test cases
across three projects (Ambari, Hadoop, and Oozie) and in eight
different non-flaky test cases across two projects (Hadoop and
Logback). An example is the test method testActionExecutor in
Oozie which contains the token action four times. Figure 5 shows

public void testActionExecutor() throws Exception {
ActionExecutor.enableInit();
ActionExecutor.resetInitInfo();
ActionExecutor ae = new MyActionExecutor();
ae.initActionType();
ActionExecutor.disableInit();
ae.start(null, null);
ae = new MyActionExecutor(1, 2);
ae.check(null, null);
Exception cause = new IOException();
try {
throw ae.convertException(cause);
} catch (ActionExecutorException ex) {
assertEquals(cause, ex.getCause());
assertEquals(ActionExecutorException.ErrorType.TRANSIENT, ex.getErrorType());
assertEquals("IO", ex.getErrorCode());
} catch (Exception ex) {
fail();
}
...
// omitted for space
}

Figure 5: Code for test TestActionExecutor.testActionExecutor
from Oozie, with high usage of term "action".

the code for this test method, which attempts to execute an action
through a remote method invocation (RMI), likely the source of
flakiness, e.g., because of timing issues in asynchronous calls or the
remote object not listening to synchronous calls.

Table 5 shows further tokens associated with flakiness. Interest-
ingly, we did not find a single token in the top 20 that was more
strongly associated with non-flakiness. With the exception of the
Java keyword throws, for all features shown in the table, a higher
value indicates a higher likelihood of flakiness. In contrast, for
the Java keyword throws, a lower value indicates a higher likeli-
hood for flakiness. We conjecture that proper exception handling
as indicated through the Java keyword throws can help avoid test
flakiness.

The vocabulary associated with flaky tests contains
words such as job, table, and action, many of which

are associated with executing tasks remotely
and/or using an event queue.

6 DISCUSSION
6.1 Threats to Validity
Threats to the construct validity are related to the appropriate-
ness of the evaluation metrics we used. We report precision, recall,
F1-score, MCC (Matthews correlation coefficient), and AUC (area
under the ROC curve), which have been used in many software
engineering tasks that require classification (e.g., [14]). Our conclu-
sions are mostly based on precision and F1-score since these two
metrics capture the usefulness of a recommender system that could
warn developers when they are about to introduce a flaky test.

Threats to the internal validity compromise our confidence in
establishing a relationship between the independent and dependent
variables. While we have evidence for the flakiness of the test cases
that we consider as flaky, it is possible that some of the test cases
that we consider as non-flaky are actually flaky. When performing

What is the Vocabulary of Flaky Tests? MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

our first experiment (running the test cases of 24 Java projects
100 times to find flaky tests), we noticed that 55% of the test cases
passed 99 times, and failed just once. This result suggests that
the strategy of rerunning tests several times to detect flakiness
could miss cases of flakiness as tests could have been insufficiently
executed. Consequently, considering our experiment, in particular,
we could have detected more cases of flaky tests if we executed each
test more times. This threat can be mitigated only by performing
additional, more extensive, experiments. Another internal validity
threat may be related to the parameters chosen for applying the
algorithms investigated. This threat was mitigated by tuning the
parameters with values that are standard in this kind of work.

Threats to external validity relate to the ability to generalize
our results. We cannot claim generalization of our results beyond
the particular test cases studied. In particular, our findings are in-
trinsically limited by projects studied, as well as their domains.
Although the studied projects are mostly written in Java, we do not
expect major differences in the results if another object-oriented
programming language is used instead, since some keywords may
be shared among them. Nevertheless, future work will have to in-
vestigate to what extent our findings generalize to software written
in other programming languages and software of different applica-
tion domains. We are also eager to validate our results on a much
larger selection of flaky tests. Curiously, we noticed in the exper-
iment of RQ1 (Section 5.1) that all projects manifesting flakiness
are IO-intensive. We should revisit that hypothesis by looking for
IO and non-IO-intensive projects in the future. The validity of that
hypothesis would enable us to find other projects with flaky tests
as to augment our data set. Due to the limited size of the data set,
we did not attempt within-project classification. Future work will
investigate the extent to which this is possible as well as the differ-
ences between classifiers trained on different projects. Moreover,
one might wonder why can the words used in test cases predict
flaky tests so well. Table 5, which shows for several keywords how
often they appear in flaky and non-flaky tests, might help answer
this question. For some of these keywords, the differences are ex-
treme, e.g., "job" occurs in 524 flaky tests and in 4 non-flaky tests. A
classifier guessing that all tests containing the term "job" are flaky
would by definition already achieve a precision of 99.2% (524/528).
With similar ratios for other keywords and the power of Random
Forest and Support Vector Machine, respectively, these differences
translate into an excellent performance of the classifiers in terms
of precision.

6.2 Lessons Learned
We elaborate in the following the main lessons we learned from
this work.

On the observed results. We used the same set of machine learn-
ing algorithms for the classification of test cases that have been
used in many previous studies (e.g., [6]). The finding that our best
performance was achieved by Random Forest (all metrics but recall)
and Support Vector Machines (recall) is in line with previous text
classification studies in software engineering (e.g., [1, 28]). The
observed performance of the classifiers was very good (F1-measure
= 0.95), which is a better result than obtained in most other text
classification problems for software engineering. This suggests that

source code identifiers carry much of the information needed to
determine whether a test case is flaky.

On the efficiency of the approach. In this work the efficiency of
our approach was not measured experimentally. We will conduct
such a study as part of our future work and we expect it will confirm
our expectation that the overhead of our approach is minimum.
Being a completely static approach, most of the steps are completed
in negligible time. Conceptually, the cost of predicting whether
a test is flaky or not consists of (1) extracting tokens from a test
case (i.e., parsing), (2) post-processing the tokens (e.g., splitting
words using their camel-case syntax), and (3) predicting the class
of the exemplar using the previously-computed model. The cost of
building themodel is also relatively very low. For the 2,250 test cases
in our training set (80% of 1,403 flaky and 1,403 non-flaky tests),
preparing the test cases was instantaneous (remove stop words,
collect tokens, split identifiers, etc.) and training the Random Forest
classifier with 100 iterations took 11.81 seconds. When new test
cases are added to the project, or when existing ones are updated
or removed from the test suite, our current approach would require
re-training the model. For larger sets of training data, in future
work, we will explore the use of models that can easily be updated.

Feature Selection. Our results showed that some of the pre-
processing steps such as stemming and stop word removal only had
negligible impact on the classifier performance. However, the way
that source code identifiers were split affected the performance. In
our current approach, each distinct token (after pre-processing) is
considered as a separate feature and we employ feature selection
based on information gain to reduce the number of features in the
classifier. While machine learning algorithms implicitly take into ac-
count relationships between these tokens, future work could make
this more explicit. For example, we found anecdotal evidence for
tokens such as “job” and “action” to co-occur in test cases. Future
work could explicitly consider investigating the importance of such
combination for the prediction of flakiness. Interestingly, we found
split identifiers (e.g., “id”, “job”) as well as complete identifiers (e.g.,
“getid”, “coordinatorjob”) among the features with the highest in-
formation gain, suggesting that there is no clear rule as to whether
or not split identifiers are more useful for classification than com-
plete ones. We expect similar conclusions to apply to scenarios of
co-occurrence of source code identifiers.

On the rerunning strategy. Rerunning failing test cases for identi-
fying flaky tests can be very costly. During the process of building
our data set we noticed that many of the projects (e.g., jackrabbit-
oak and hadoop) take hours to run the whole test suite. For instance,
for hadoop, one execution of a test suite takes about 94 minutes
on an Intel Xeon machine (ES-2660) with 40 processors (2.20GHz)
with 251GB of main memory. Repeating the execution many times
would not be doable in many industrial environments. Even big
companies with enormous computational resources (e.g., Google)
cannot afford rerunning every failing test on every commit [22].
That said, the rerunning strategy remains an interesting alternative-
unless we can derive approaches that are effective in identifying
flaky tests while remaining efficient. Our approach is an attempt
of providing such an effective and efficient solution for the flaki-
ness problem. Note that static detection of flakiness could be used

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pinto et al.

to reduce cost of rerunning test cases on failures. For example, a
continuous integration system could be triggered to rerun a test
only when that test becomes suspicious as per the output of the
prediction models proposed in this paper.

6.3 Implications
This work has implications to both research and practice.

Research. In this work we noticed that an arbitrary number of
re-executions might not be the best solution for finding flaky tests.
Researchers could take advantage of this finding and explore other
approaches, such as experimenting with a dynamic threshold to
more sophisticated techniques such as finding an optimal threshold
using search based optimization. Moreover, researchers could use
the vocabulary of flaky tests and conduct additional experiments
with them. For instance, researchers could investigate the propor-
tion of builds failing in continuous integration systems that happen
to have any of the features observed in our work. Researchers could
also propose other machine learning algorithms that could be more
suitable to work with flaky test data.

Practice. Practitioners could also take advantage of our findings.
When learning from the top 20 features, developers could keep one
eye open when writing their tests and try to avoid such terms (and
eventual related terms). Similarly, code reviewers could easily spot
such terms and suggest developers to propose another solution.
Testing framework maintainers could also take advantage of this
finding by proposing mocking frameworks that could introduce
(or even recommend) mock strategies tailored to deal with flaky
scenarios. Still, tool builders couldwarn developers when suspicious
flaky-terms are used in the software development process.

7 CONCLUSION
Flaky tests are test cases that sometimes pass and sometimes fail,
without any obvious change in the test code or in its execution
environment. Unfortunately, the non-deterministic behaviour of
flaky tests could severely decrease the value of an automated regres-
sion suite. For instance, when dealing with flaky tests, developers
may not trust the outcome of these tests and ultimately may start
ignoring if a test failure is due to a real bug or its non-deterministic
behaviour. In the last few years, research on test flakiness has gained
significant momentum. Prior work focused on characterizing what
is a flaky or identifying the root cause of flaky tests. However, lit-
tle effort has been placed on how to efficiently recognize a flaky
test. This paper focuses on the question of whether there are pro-
gramming identifiers (e.g., method and variable names) that could
be used to automatically recognize flaky tests. More precisely, the
paper proposes to answer the question: Is there a programming
vocabulary that could distinguish flaky tests from their non-flaky
relatives?

To answer this question, we started by extracting test cases from
a well-known data set of flaky tests [3]. Since we needed to have
flaky and non-flaky tests and the data set only provided flaky data,
we decided to rerun the Java projects studied in this data set, but
now keeping an eye open for finding flaky tests. We then ran 100
times the 64k test cases of the 24 studied Java projects. We flag a
test as flaky if there was disagreement in the test outcomes. After

the identification of flaky tests, we extract all identifiers from the
test cases using traditional tokenization procedures. Finally, the
pre-processed flaky and non-flaky test cases were used as input to
five machine learning algorithms.

Based on this data and approach, we could observe several inter-
esting findings. First, we were able to find six projects with flaky
tests, and a total of 86 flaky tests. More interestingly, however, is the
fact that 55% of these flaky tests failed just once, meaning that the
100 threshold might have limited the observation of flaky tests (i.e.,
it is likely that we could find more flaky tests if we run many other
executions). Second, we observed that the five machine learning
algorithms used had good performance in distinguishing flaky from
non-flaky tests. In particular, Random Forest had the best preci-
sion (0.99), while Support Vector Machine slightly outperformed
Random Forest in terms of recall (0.92 vs 0.91). Third, in terms of
the features used in the classifiers for improving performance, we
noticed that, for both Random Forest and Support Vector Machine,
perhaps surprisingly, most of the features in the classifier did not
have a visible impact on the results. Finally, regarding the vocab-
ulary of flaky tests, we noticed that words such as job, table, or
action (which are often associated with remote work) are among
the features with the highest information again.

Future work. We have plans for several other works along the
lines of this work. First, we plan to create tools that could help
developers in identifying flaky tests. Initially, these tools could
receive as input the features we found with the highest information
gain. These tools could also allow developers to confirm whether
a test is flaky or not, and based on this decision, these tools could
interactively improve their own dictionary of flaky-related words.
We also plan to study how combination of different features could
help improve accuracy of our prediction models. Although many
machine learning algorithms analyze such combinations internally,
proposing combination features explicitly may be helpful.

We also plan to do a qualitative study (using not only coding
techniques, but also instrumentation and debugging techniques)
over the sample of flaky tests we found, in order to properly rea-
son about the flakiness. Still, we also have plans to reproduce the
DeFlaker work [3]. In this paper, we found a very small number of
flaky tests, when compared to the DeFlaker work. A careful repro-
duction would enable us to understand why we observed so few
flaky tests and, consequently, how we could improve our approach
for finding flaky tests.

Acknowledgements. This research was partially funded by INES
2.0, FACEPE grants PRONEX APQ 0388-1.03/14 and APQ-0399-
1.03/17, CAPES grant 88887.136410/2017-00, and CNPq (grants
465614/2014-0, 309032/2019-9, 406308/2016-0). It was also supported
by FAPESPA, UFPA, and by a gift from a Facebook Research 2019
TAV (Testing and Verification) award.

REFERENCES
[1] Syed Nadeem Ahsan, Javed Ferzund, and Franz Wotawa. 2009. Automatic soft-

ware bug triage system (bts) based on latent semantic indexing and support
vector machine. In 2009 Fourth International Conference on Software Engineering
Advances. IEEE, 216–221.

[2] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In 2012 28th IEEE International Conference
on Software Maintenance (ICSM). IEEE, 56–65.

What is the Vocabulary of Flaky Tests? MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

[3] Jonathan Bell, Owolabi Legunsen, Michael Hilton Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. Deflaker Dataset. http://www.deflaker.org/icsecomp/.

[4] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: automatically detecting flaky tests. In
Proceedings of the 40th International Conference on Software Engineering. ACM,
433–444.

[5] Antonia Bertolino, Emilio Cruciani, Breno Miranda, and Roberto Verdecchia.
2020. Know Your Neighbor: Fast Static Prediction of Test Flakiness. https:
//doi.org/10.32079/ISTI-TR-2020/001

[6] Lucas BL de Souza, Eduardo C Campos, and Marcelo de A Maia. 2014. Ranking
crowd knowledge to assist software development. In Proceedings of the Interna-
tional Conference on Program Comprehension. ACM, 72–82.

[7] Hyunsook Do. 2016. Recent Advances in Regression Testing Techniques. Ad-
vances in Computers 103 (2016), 53–77. https://doi.org/10.1016/bs.adcom.2016.04.
004

[8] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding Flaky Tests: The Developer’s Perspective (ESEC/FSE 2019). As-
sociation for Computing Machinery, New York, NY, USA, 830–840. https:
//doi.org/10.1145/3338906.3338945

[9] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test depen-
dency detection. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 1–11.

[10] Vahid Garousi, Baris Kucuk, and Michael Felderer. 2018. What we know about
smells in software test code. IEEE Software 36, 3 (2018), 61–73.

[11] Mark Harman and Peter W. O’Hearn. 2018. From Start-ups to Scale-ups: Oppor-
tunities and Open Problems for Static and Dynamic Program Analysis. In Proc.
SCAM’18.

[12] Kim Herzig. 2016. Let’s assume we had to pay for testing. Keynote at AST 2016.
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/

[13] Kim Herzig and Nachiappan Nagappan. 2015. Empirically Detecting False Test
Alarms Using Association Rules (ICSE ’15). 39–48.

[14] Sunghun Kim, E James Whitehead Jr, and Yi Zhang. 2008. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering 34, 2 (2008),
181–196.

[15] Tariq M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. 2018. Towards
a Bayesian Network Model for Predicting Flaky Automated Tests. In 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, 100–107.

[16] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root Causing Flaky Tests in a Large-scale Industrial Setting
(ISSTA 2019). ACM,NewYork, NY, USA, 101–111. https://doi.org/10.1145/3293882.
3330570

[17] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies: A
Framework for Detecting and Partially Classifying Flaky Tests. In 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST). IEEE, 312–322.

[18] Jeff Listfield. 2017. Where do our flaky tests come from? https://testing.
googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html.

[19] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proc. FSE’14.

[20] JohnMicco. 2016. Flaky tests at Google and howwemitigate them. https://testing.
googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html. Accessed:
2020-01-15.

[21] John Micco. 2016. Flaky Tests at Google and How We Mitigate Them. https:
//testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html.

[22] John Micco. 2017. The State of Continuous Integration Testing @Google.
[23] F. Palomba and A. Zaidman. 2017. Does Refactoring of Test Smells Induce Fixing

Flaky Tests?. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 1–12. https://doi.org/10.1109/ICSME.2017.12

[24] Fabio Palomba and Andy Zaidman. 2019. The smell of fear: On the relation
between test smells and flaky tests. Empirical Software Engineering (2019), 1–40.

[25] Fabio Palomba, Andy Zaidman, and Andrea De Lucia. 2018. Automatic test
smell detection using information retrieval techniques. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 311–322.

[26] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An Empirical Study of
Flaky Tests in Android Apps. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 534–538.

[27] Huynh Khanh Vi Tran, Nauman Bin Ali, Jürgen Börstler, and Michael Unterkalm-
steiner. 2019. Test-Case Quality–Understanding Practitioners’ Perspectives. In In-
ternational Conference on Product-Focused Software Process Improvement. Springer,
37–52.

[28] Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack overflow. In Proceedings of the International Conference
on Software Engineering. IEEE, 392–403.

[29] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical investiga-
tion into the nature of test smells. In 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 4–15.

[30] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An Empirical Study
of Bugs in Test Code. In Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME) (ICSME ’15). IEEE Computer Society,
USA, 101–110. https://doi.org/10.1109/ICSM.2015.7332456

[31] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001). 92–95.

[32] Matias Waterloo, Suzette Person, and Sebastian Elbaum. 2015. Test Analysis:
Searching for Faults in Tests (ASE ’15). 149–154.

[33] Ian H Witten and Eibe Frank. 2002. Data mining: practical machine learning
tools and techniques with Java implementations. Acm Sigmod Record 31, 1 (2002),
76–77.

[34] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivanç Muslu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In International Symposium on Software Testing and Analysis, ISSTA
’14, San Jose, CA, USA - July 21 - 26, 2014. 385–396.

http://www.deflaker.org/icsecomp/
https://doi.org/10.32079/ISTI-TR-2020/001
https://doi.org/10.32079/ISTI-TR-2020/001
https://doi.org/10.1016/bs.adcom.2016.04.004
https://doi.org/10.1016/bs.adcom.2016.04.004
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3338906.3338945
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/
https://doi.org/10.1145/3293882.3330570
https://doi.org/10.1145/3293882.3330570
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
https://doi.org/10.1109/ICSME.2017.12
https://doi.org/10.1109/ICSM.2015.7332456

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Objects of Analysis
	5 Evaluation
	5.1 Answering RQ1: How prevalent and elusive are flaky tests?
	5.2 Answering RQ2: How accurately can we predict test flakiness based on source code identifiers in the test cases?
	5.3 Answering RQ3: What value do different features add to the classifier?
	5.4 Answering RQ4: Which test code identifiers are most strongly associated with test flakiness?

	6 Discussion
	6.1 Threats to Validity
	6.2 Lessons Learned
	6.3 Implications

	7 Conclusion
	References

