APl Method Recommendation via Explicit Matching of
Functionality Verb Phrases

Wenkai Xie* Xin Peng" " Mingwei Liu"
Fudan University Fudan University Fudan University
China China China
Christoph Treude Zhenchang Xing Xiaoxin Zhang’
The University of Adelaide Australian National University Fudan University
Australia Australia China
Wenyun Zhao*
Fudan University
China
ABSTRACT KEYWORDS

Due to the lexical gap between functionality descriptions and user
queries, documentation-based API retrieval often produces poor
results. Verb phrases and their phrase patterns are essential in both
describing API functionalities and interpreting user queries. Thus
we hypothesize that API retrieval can be facilitated by explicitly
recognizing and matching between the fine-grained structures of
functionality descriptions and user queries. To verify this hypothe-
sis, we conducted a large-scale empirical study on the functionality
descriptions of 14,733 JDK and Android API methods. We identi-
fied 356 different functionality verbs from the descriptions, which
were grouped into 87 functionality categories, and we extracted 523
phrase patterns from the verb phrases of the descriptions. Building
on these findings, we propose an API method recommendation
approach based on explicit matching of functionality verb phrases
in functionality descriptions and user queries, called PreMA. Our
evaluation shows that PreMA can accurately recognize the func-
tionality categories (92.8%) and phrase patterns (90.4%) of function-
ality description sentences; and when used for API retrieval tasks,
PreMA can help participants complete their tasks more accurately
and with fewer retries compared to a baseline approach.

CCS CONCEPTS

« Software and its engineering — Documentation; Software de-
velopment techniques; « Information systems — Query repre-
sentation; Document representation.

“W. Xie, X. Peng, M. Liu, X. Zhang and W. Zhao are with the School of Computer
Science and Shanghai Key Laboratory of Data Science, Fudan University, and the
Shanghai Institute of Intelligent Electronics & Systems, China.
X. Peng is the corresponding author (pengxin@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3409731

1015

API Retrieval, API Documentation, Functionality Description

ACM Reference Format:

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing,
Xiaoxin Zhang, and Wenyun Zhao. 2020. API Method Recommendation
via Explicit Matching of Functionality Verb Phrases. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’20), November 8—
13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3368089.3409731

1 INTRODUCTION

Finding the right APIs that provide the desired functionalities is
essential in many software development tasks. Popular API libraries
such as JDK and Android provide reference documentation which
includes functionality descriptions for API classes and methods.
However, due to the lexical gap between functionality descrip-
tions provided by API developers and search queries by API users,
documentation-based API retrieval often produces poor results.

Researchers [27, 44] have tried to use word embedding tech-
niques to bridge the lexical gap by learning the statistical relevance
between words, such as “convert” and “transform”, “image” and
“color”, “JSON” and “XML”. However, these methods do not explicitly
parse the fine-grained structures of functionality descriptions and
user queries, neither do they explicitly match the semantic roles
of different parts of functionality descriptions and user queries.
As such, these methods may lead to poor matching results when
fine-grained linguistic details of functionality descriptions and user
queries must be taken into account to produce satisfactory match-
ing. For example, existing methods cannot distinguish “convert
Integer to String” from “convert String to Integer”, because they do
not understand the source and goal roles [11] of the two descrip-
tions.

To battle this issue, some methods [21] use more advanced deep
learning models (e.g., Recurrent Neural Network) to learn sequential
patterns of natural language descriptions and API call sequences.
They map the query-API matching problem as a machine translation
task. However, these methods are supervised learning methods
which require large-scale training data (pairs of method comments

https://doi.org/10.1145/3368089.3409731
https://doi.org/10.1145/3368089.3409731
https://doi.org/10.1145/3368089.3409731

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

and API call sequences), and can capture only the most frequent
queries and API usage patterns. Therefore, for the long tail of less
frequently used APIs, developers still have to resort to other means,
such as documentation-based retrieval.

The lexical gap between API functionality descriptions and user
queries is much wider than just sequence mismatching. For example,
the API java.lang.Integer.parselnt(String) is the correct API for the
query “convert String to Integer”. Unfortunately, the functionality
description of this API is “Parses the string argument as a signed
decimal integer””. None of the deep learning methods can handle this
wide gap between the functionality description and the user query.
To match functionality descriptions and user queries on either side
of this gap, we must understand the fine-grained structures of the
sentences and the semantic roles of their parts, for example, the key
verb phrases and the semantic roles “{source}” and “{goal}” involved
in the phrases “convert {source} to {goal}” and “parse {source} as
{goal}”. Some researchers have attempted to address this gap by
demanding external resources (e.g., Stack Overflow discussions) to
augment user queries, for example Biker [27] and QECK [35], but
these can only capture the most discussed APIs in external resources
and suffer from information noise in these external resources.

In this work, we consider that verb phrases and their phrase
patterns are essential in both describing the functionality of API
methods and interpreting user queries. We call the verbs used to de-
scribe the method functionalities functionality verbs. Consequently,
we argue that user queries and API descriptions should be matched
in terms of functionality verbs and phrase patterns, according to
the semantics they express rather than their lexical similarity. Pre-
vious research has also considered the importance of verb-object
structures in source code identifiers [22, 24-26, 28, 29], and for
software documentation, Treude et al. [40] focused on extracting
development tasks, which are described by verbs from a predefined
list, associated with a direct object and/or a prepositional phrase.
However, little is known about how verb phrases are used in API
functionality descriptions and user queries, and how inconsisten-
cies in their use influence API retrieval.

We hypothesize that most API functionalities can be described
with a limited number of commonly used functionality verbs and
that the functionalities can be further classified into a small number
of functionality categories. For example, the verb “return”, when
used in the phrase “return {source} as {goal}”, expresses the function-
alities of transformation and conversion, and these functionalities
can be classified into the same category. We further hypothesize that
the functionality categories and phrase patterns of user queries and
API descriptions can be automatically recognized. Finally, we argue
that fine-grained matching can be performed between user queries
and API descriptions by aligning their functionality categories and
phrase patterns. For example, both the query “convert String to
Integer” and the API description “parses the string argument as a
signed decimal integer” can be classified into the same function-
ality category “convert/transform/turn” and the participants (i.e.,
“{source}” and “{goal}”) of their phrase pattens can be aligned by
explicit matching.

In order to verify our hypotheses, we conduct an empirical study
to investigate the functionality verbs and functionality categories
as well as the phrase patterns present in the API functionality de-
scriptions from the reference documentation of JDK and Android.

1016

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao

We manually analyzed the functionality descriptions of 14,733 JDK
and Android API methods. These descriptions contain 356 different
functionality verbs, and these verbs can be grouped into 87 function-
ality categories based on their semantics in the description context.
Each functionality category contains 1 to 28 (4.71 on average and
2.5 on median) different functionality verbs. For all functionality
categories, 80% of the API descriptions are described by 1-5 phrase
patterns (mean 2.3, median 2).

Building on our empirical findings on functionality verbs, we pro-
pose an API method recommendation approach based on explicit
matching of functionality verb phrases in user queries and API de-
scriptions, which is called PreMA. The approach trains a classifier
to predict the functionality categories (summarized in our empirical
study) of API descriptions. It then matches the description sen-
tences with the phrase patterns of the corresponding functionality
categories to determine the adopted phrase patterns. To recommend
API methods, PreMA parses the API query issued by the user in the
same way. It then matches the parsed user query with the parsed
API description sentence by aligning their functionality categories
and phrase patterns. Finally PreMA returns completely or partially
(e.g., the same functionality categories but different operation ob-
jects) matched APIs as the query results, together with a linguistic
explanation of the matching.

We evaluated the sentence analysis accuracy of PreMA based
on the data annotated in the empirical study. The results show
that the accuracy of functionality category classification and phrase
pattern recognition is high (92.8% and 90.4% respectively). We also
evaluated the performance of PreMA in documentation-based API
retrieval by comparing it with a Word2Vec [33] based approach.
The results show that the participants using PreMA completed their
tasks more accurately (0.77 versus 0.54) with fewer retries (2.16
versus 3.30) and using less time (98.29s versus 113.42s).

Overall, this paper makes the following contributions:

e We conducted a large-scale empirical study on the function-
ality descriptions of 14,733 JDK and Android API methods.
We identified 356 commonly used functionality verbs, 87
functionality categories, and 523 phrase patterns from the
descriptions.

e We propose an API method recommendation approach based
on explicit matching of functionality verb phrases in user
queries and API descriptions.

e We evaluated the proposed approach in terms of the accu-
racy of API functionality description analysis and the per-
formance of API retrieval.

The data and analysis results of the empirical study and evalua-
tion are included in the replication package [7].

2 DEFINITIONS

We define the main concepts and relationships used for the explicit
modeling of API functionality descriptions as shown in Figure 1.
The reference documentation contains for each API method a
description of its main purpose. We call this description the API func-
tionality description (or f_description for short). The f description
may include several sentences that describe the functionalities of
the method, which we call functionality sentences (or f_sentences).
Each f sentence may include several verbs or verb phrases, but

API Method Recommendation via Explicit Matching of Functionality Verb Phrases

exactly one functionality verb (or f verb), which denotes the main
action of the functionality. For example, the f sentence “Attempts
to cancel the execution of this task” includes two verbs (“attempt”
and “cancel”), while only “cancel” is the f verb. For a compound
sentence that describes multiple functionalities we can split it into
several f sentences, each describing only one functionality.

- . . B (. .
API Functionality | include | Functionality | include | Functionality
Description ! L*{_ Sentence J! L Verb
T+ 1 T —
Phrase follow] M Functionality
include 1
Pattern - Category

Figure 1: Terminology Model

1

*

1.

A f sentence can be classified into a functionality category (or
f _category), based on the meaning of its f verb in the current
context. For example, the API org.omg.CosNaming.NamingContext-
ExtOperations.to_name(String) contains this f_sentencein its f_descri-
ption: “This operation converts a Stringfield Name into an equiva-
lent array of Name Components.” It includes the “convert” f verb
(underlined) and belongs to the “convert/transform/turn” f_category,
defined as “transform something into other forms”.

Two f sentences may be classified into two distinct f categories,
even if they share the same f verb. That is because the f verb may
have different meanings in different contexts. For example, “return”
is widely used in f sentences as f verbs with different meanings,
that are denoting different f categories, such as: “get/return/obtain”
(e.g., “Returns the state of this thread”), “check/test/determine” (e.g.,
“Return if the Type is a cube map”), or “convert/transform/parse”
(e.g., “Returns the BigDecimal as a character array”). At the same
time, one f category can correspond to several distinct f verbs that
share meaning in different contexts. For example, in the JDK and
Android reference documentation there are many f_verbs with the
meaning captured by the “create/build/construct” f category, such
as: “create”, “build”, “produce”, “construct”, “generate”, “establish”,

2 .

“make”, “instantiate”, etc.

The f sentences from a f~ category share a set of phrase patterns
(or p_patterns) and each sentence conforms to one of them. A
p_pattern consists of the following elements: 1) a f category, e.g.,
“convert/transform/turn”; 2) prepositions, e.g., “in”, “at”, “from”; 3)
semantic roles which depict conceptual relations among partici-
pants in the p_pattern, e.g., “location”, “patient”, “source”, “goal”; 4)
clause leaders, e.g., “that”, “whether”; 5) clauses, e.g., a clause led by
“whether”; 6) infinitives (e.g., “to be called”) and gerunds (e.g., “read-
ing a file”). For example, the f sentence “This operation converts a
Stringfield Name into an equivalent array of Name Components.”
follows the “V {source} to/as/into {goal}” p_pattern, where “V” indi-
cates the f category, while “{source}” and “{goal}” denote semantic
roles. Note that semantic roles are consistent despite the alterna-
tions in the syntax [11], thus it is possible to align the semantic
roles between different p_patterns.

VerbNet [10] is a domain-independent and broad-coverage verb
lexicon for English. It contains about 5,800 verbs. They are classified
into over 270 classes and each class contains a set of syntactic frames
that the members of the class commonly use. We did not use the
VerbNet classes and frames as our f _categories and p_patterns for the

1017

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

following two reasons. First, some verbs used in the API f_sentences
(e.g., “unmarshal”, “iterate”) are not included in VerbNet. Second,
the VerbNet classes are not defined by the meanings of verbs. For
example, “open” and “close” are both in the same class “crane” in
VerbNet, but are classified into different f categories. We decided
to annotate our own f categories and p_patterns, but use the 12
semantic roles defined in VerbNet: “duration”, “location”, “goal”,
“source”, “patient”, “instrument”, “beneficiary”, “attribute”, “theme”,
“material”, “topic”, “product”.

3 EMPIRICAL STUDY

We conducted an empirical study to understand what f verbs, p_pa-
tterns, and f_categories are present in API f sentences. Specifically,
we focus on answering the following research questions:

e RQ1. What verbs are used in the API f sentences?

e RQ2. What f categories can the f sentences be classified into?

e RQ3. What p_patterns are used in the f sentences from each
f_category?

We focus on JDK and Android APIs based on the reference doc-
umentation of JDK 1.8 [6] and Android 27 [1]. We present and
analyze the results of the empirical study, in order to answer the
three research questions. Complete data and analysis results cor-
responding to the empirical study are included in the replication
package [7], including complete f sentences, f_verbs, f_categories
and p_patterns.

3.1 Study Design

3.1.1 Verb Analysis (RQ1). From the semi-structured API decla-
rations in the JDK and Android reference documentations, we ex-
tracted 38,819 and 29,125 API methods (including constructors)
respectively using BeautifulSoup [4]. We filtered out the methods
that have no f description or with a f_description that meets one of
the following conditions: (1) stating a method overriding, e.g., “Over-
rides hashCode”; (2) stating a method deprecation, e.g., “Deprecated.
Use getTimeToLive instead”; (3) suggesting to check the description
of another AP, e.g., “See getenv()”; (4) suggesting another API with
the same functionality, e.g., “Same as charCount(int)”. After the
filtering, we obtained 54,256 methods (31,618 JDK and 22,638 An-
droid). For each remaining method we extract the first sentence of
its description from the reference documentation as its f sentence.
If the sentence is a compound sentence, we split it into multiple
f_sentences.

We used SpaCy [8] (an open-source library for natural language
processing) to parse the f~ sentence of each API method and iden-
tify the verbs used in the sentence. If a f sentence includes more
than one verb, we considered all of them for answering the first
research question. We used SpaCy to lemmatize the identified verbs
to their normal forms. Once extracted, we analyze the frequency
and distribution of the verbs.

3.1.2 Functionality Category Analysis (RQ2). The identification
of the f categories and f verbs from JDK and Android was done
via the qualitative analysis of the f sentences, using open coding.
The coding was done in two phases: coding protocol definition
phase and annotation phase. In the first phase experts identified
and defined a set of f_categories (i.e., codes) based on a subset of API

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

descriptions. In the annotation phase, a larger group of annotators
were trained to use the coding protocol developed in the first phase
to code a larger set of f sentences.

Selecting random f_sentences for annotation would likely result
in a large number of sentences with “get/set” verbs, given their
prevalence. Instead, for the first coding phase, we randomly sampled
10 f_sentences for each of the 116 most frequently used verbs at the
root of the parse tree (i.e., the verbs of the main clause). We focus
on these verbs, as they are more likely to be f verbs (remember that
RQ1 considered all verbs in the f sentences). This number of verbs
(i.e., 116) is selected based on the results of RQ1 (see Section 3.2).
These verbs cover 84% of the f sentences used in RQ1 - all of the 116
most frequent verbs identified in RQ1 are root-node verbs. After
eliminating duplicates we obtained 1,139 f sentences (590 from JDK
and 549 from Android), used for the initial coding phase.

For the annotation phase we randomly sampled another 20,000
API f sentences regardless of the frequency of the verbs. To have a
more balanced dataset (i.e., not too many “get/set” sentences) we
further refined the samples, based on their root-node verb. If a root-
node verb appears in more than 1,000 of the sampled f sentences,
then we randomly selected and kept 1,000 of those f sentences. We
kept all the f sentences for the root-node verbs that occur in fewer
than 1,000 samples. In this way, f_sentences using unpopular verbs
may also be included. Finally, we obtained 13,635 f_sentences for
the annotation phase (7,716 from JDK and 5,919 from Android).

The initial coding was done by three of the authors, who are
experts in Java and Android development, as follows. First, an API
f_sentence is randomly allocated to an annotator. Second, the anno-
tator examines the API and its f sentence and identifies the f verb
used in it. Third, the annotator attempts to classify (i.e., annotate)
the API f sentence into an existing f category (i.e., existing code).
If no code is found, then a new code (i.e., f_category) is created
and a definition provided. A special code “Unknown” is created
to accommodate the sentences that were not actually f sentences
(e.g., “Equivalent to the codePointCount(char[], int, int) method, for
convenience”). Each f sentence is coded by two annotators indepen-
dently and if their annotations (f_verb or f category) are different,
then a third annotator is assigned to resolve the conflict. The above
process was repeated until all the samples were annotated.

The annotation was done by 10 students (2 PhD and 8 MS stu-
dents), who are familiar with Java and Android development. Before
annotation, the students were trained by the experts who defined
the coding instrument. The training was conducted in group and
took more than one hour. More material about training, including
examples, is available in the replication package [7]. The annota-
tion was done using the codes (i.e., f_categories) identified in the
coding protocol definition phase and followed the same process.
As in the first phase, the annotators could create new codes, when
needed. The code for each f category is one of the f verbs (named
the label f verb), which is frequently used (but not necessarily the
most frequently used), best reflects the meaning of the f category,
and is not used to label another f category.

To facilitate the coding, we developed a web based annotation
tool. The GUI of the annotation tool is available on the web [2].

3.1.3 Phrase Pattern Analysis (RQ3). As mentioned above, in order
to capture the functionality of a method, the f verb is not enough,

1018

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao

and p_patterns are important to establish the context. We investi-
gate the p_patterns used in each f category, identified in RQ2, by
annotating all the 14,774 (initial coding phase 1,139 and annotation
phase 13,635) f_sentences. For each f_sentence, two authors anno-
tated the p_pattern independently based on the VerbNet annotation
guidelines [11]. If the annotations are different a third author was
assigned to resolve the conflict by majority voting strategy.

3.2 Verb Analysis Results (RQ1)

We identify 931 different verbs from the f sentences of the 54,256
JDK and Android API methods. Table 1 shows the top 30 most
frequently used verbs and their occurrences. “Return” is by far the
most used verb, followed by “set” and “get”. These are not surpris-
ing, based on our experience with the code and documentation. An
interesting observation is that these top 30 verbs are not domain
specific, which implies that we expect them to occur in other li-
braries, from different domains, as well. We inspected all the verbs
and we found that most of them are not domain specific (to Android
or Java). For example, “dial” is a domain specific verb to Android.
Followings are some of the identified domain specific verbs and
their frequency: (“mute”, 3), (“denigrate”, 7), (“suffix”, 7), (“prefix”,
5), (“negotiate”, 3), (“dial”, 3), (“snooze”, 1), (“absorb”, 1), (“advertise”,
7), (“roam”, 6), (“introspect”, 5).

Table 1: Top 30 Most Frequently Used Verbs

Verb | #Occu Verb #0ccu Verb #0Occu
return | 16,268 indicate 730 do 478
set 5,406 | determine 691 retrieve 458
get 3,624 write 676 give 446
call 2,472 change 602 contain 436
have 2,034 obtain 599 support 403
create | 1,898 read 558 specify 400
use 1,837 check 524 convert 396
add 1,259 insert 520 update 390
remove | 1,067 | perform 518 | describe | 387
invoke 877 start 508 notify 383

Figure 2 shows the distribution of the 931 verbs (Y-axis in log
scale). The distribution analysis reveals that the 87 (9.34%) most
frequent verbs appear in 80% of the API f sentences. If we exclude
“return” as outlier, then the 115 (12.37%) most frequent verbs appear
in 80% of the API f sentences that do not include “return”. If we
include “return”, then the 116 (12.46%) most frequent verbs appear
in 84.28% of the API f sentences. In other words, a relatively small
number of verbs covers almost all API f sentences.

3.3 Functionality Categories (RQ2)

Given the number of annotators and codes, we used Cohen’s Kappa
coefficient [32] to measure the agreement rate between the an-
notators. For the initial coding phase Kappa is 0.724 and for the
second annotation phase it is 0.700. The annotators identified 87
f_categories (not including “Unknown”), of which 50 were identi-
fied in first coding phase and 37 in the second one. Among the 87
f_categories, 65 cover both JDK APIs and Android APIs, 10 cover
only JDK APIs, and 12 cover only Android APIs.

API Method Recommendation via Explicit Matching of Functionality Verb Phrases

Occurrence Number(logy)

Figure 2: Distribution of the Verb Occurrences

The 87 f_categories contain 356 f verbs, eight of which appear in
more than two f categories. “Return” appears in seven f categories,
“determine” appears in six f categories, “indicate" appears in five,
“tell”, “retrieve”, and “give" appear in four, while “get" and “no-
tify" appear in three. There are 26 f verbs that appear in two
f_categories. All other 322 appear in a single f category. On av-
erage, a f category contains 4.71 f verbs (median 2.5). The “con-
vert/transform/..." f category contains the most f verbs (ie., 28),
while 30 (34.48%) f _categories contain a single f verb. Note that
unpopular verbs may be included in a f category together with
popular verbs.

We compared the 356 f verbs with the list of 202 programming
actions published by Treude et al. [40]. Their programming tasks
have similar semantics to our f verbs, but are based on a much
smaller data set. We find that 121 of our 356 f_verbs (34.0%) were
also identified by them as programming actions, while our empirical
study identified an additional 235 f verbs.

We define the label f verb as a representative f verb of one
f_category. For each f category, three of the co-authors chose the
one f verb from all f verbs in this f category as the label f verb
of this f category through discussion. Two heuristics were used
for choosing the label f verb: (1) The co-authors check f verbs in
the f category by frequency from high to low until the label f verb
is determined. (2) A f verb is only considered as label f verb if
its meaning covers the meaning of the f category and there is no
confusion with another f category.

The top 10 f categories based on the number of f sentences and
their label f verbs are shown in Table 2.

3.4 Phrase Patterns (RQ3)

Two annotators were considered to reach an agreement if their
p_pattern annotations for a f sentence are the same. As a result,
the agreement rate for p_pattern annotation is 90.2% (i.e., almost
perfect agreement). The p_patterns identified from the f sentences
of the same f category are aggregated to get the p_patterns of
each f category. Note that p_patterns that belong to the same
f_category and only differ in prepositions or clause leaders were
merged into one, for example “V {source} to/as/into {goal}” for the
“convert/transform/parse” f_category.

1019

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Table 2: Top 10 Most Frequently Used f categories

f_categories Label f verb | #f sentences
get/return/obtain/... get 3021
set/control/configure/... set 1303
check/test/determine/... check 977
create/build/construct/... create 784
append/add/insert/... append 777
call/invoke/notify/... call 762
perform/execute/run/... perform 409
convert/transform/parse/... convert 393
remove/delete/exclude/... remove 348
write/record/output /.. write 293

15

135 7 9 1113151719 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87

W the number of p_patterns ——the number of p_patterns accounting for 80% f_sentences

Figure 3: Distribution of p_pattern over f categories

Figure 3 shows the distribution of p_pattern numbers over f cate-
gories. The number of p_patterns for each of the 87 f categories
varies between 1 and 25 (mean 6, median 4). The top 3 f_categories
that have the most p_patterns are “set/control/configure” (25), “ap-
pend/put/add” (24), and “get/return/obtain” (23). There are 18 f cate-
gories that have only one p_pattern, e.g., “lock”, “touch/press”, “col-
lect/recycle/sample”.

For each f category we analyzed the number of p_patterns that
cover 80% of the f sentences, indicated by the red line in Figure 3.
We found that, for all the f categories 80% of the f sentences are
described by 1-5 p_patterns (mean 2.3, median 2). For example, the
“append/add/insert” f category has 24 p_patterns, while 4 of them
cover 80% of the f sentences.

The identified p_patterns have 0-4 semantic roles. The numbers
of p_patterns that have 0, 1, 2, 3, 4 semantic roles are 28 (5.4%), 166
(31.7%), 216 (41.3%), 110 (21.0%) and 3 (0.6%), respectively. We can
see that 73% of p_patterns are simple ones with 1 or 2 semantic
roles. An example of p_patterns with 3 semantic roles is “V {patient}
from {source} as/into/to {goal}” for the “convert/transform/parse”
f_category; a f sentence following this p_pattern is “Convert a long
datetime from the given time scale to the universal time scale”.

4 APPROACH

Our empirical study shows that most of the JDK and Android API
functionality sentences can be classified into a limited set of 87
f_categories with 1-5 p_patterns (2.33 on average) used for each
f_category. These findings imply how verb analysis can be used

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

for matching between an API query and a f_sentence: first recog-
nize their f categories and p_patterns; then align them based on
f _categories and p_patterns for fine-grained matching between cor-
responding participants.

Based on this idea we propose an approach PreMA for match-
ing of API functionality descriptions as shown in Figure 4. Given
f_sentences from API reference documentation, the approach parses
the sentences by analyzing their f categories and p_patterns. The
parsed f_sentences are then stored for further analysis. When used
for API searching, PreMA parses the API query issued by the devel-
oper in a similar way. It then matches the parsed API query with
the parsed f sentences by aligning them based on f categories and
p_patterns. The API matching results include completely or partially
(e.g., the same f categories but different participants) matched APIs
and their f sentences, together with explanations of the matching.

Our implementation uses BeautifulSoup to parse the HTML
pages of API reference documentation. It extracts all API meth-
ods with their f description and filters out invalid API methods
using rules (same as in Section 3.1.1). For each remaining method,
we extract the first sentence of its description from the reference
documentation as its f sentence for functionality sentence parsing.

Functionality Sentence Parsing

Functionality Category
Classification
Phrase Pattern Analysis

Figure 4: Overview of PreMA

API

Parsed API
Functionality

Sentences
Sentence

Alignment
and AP
Matchin;

API Matching

API Reference
D Results

2

Parsed API Query

API Query
—_—

Developer

4.1 Functionality Category Classification

The 87 f categories and 14,774 annotated f_sentences provided by
our empirical study enable automated classification of f_sentences
into f categories. We treat f category classification as a text clas-
sification task and use the f sentence annotation data to train a
classifier for the task. The classifier takes a sentence (f_sentence
or query) as input and returns one of the 87 f categories or the
category “Unknown” as the output.

We implement the classifier based on BERT [18] (Bidirectional
Encoder Representations from Transformers), a state-of-the-art
language model. The model is used for learning representations of
sentences: it takes as input a sequence of words, and outputs the
distributed vector representation of the word sequence [41]. Google
provides two pre-trained BERT models (BERT-base, BERT-large),
which were trained on a large-scale unlabelled corpus to capture
rich semantic features. The pre-trained models can be customized
by adding an output layer and fine-tuned based on labelled data
for specific NLP (Natural Language Processing) tasks such as text
classification and question answering. We use the pre-trained BERT-
base model and add a classification layer (fully-connected layer)
with the f categories identified in our empirical study, and then
fine-tune the model based on a set of training data consisting of
f_sentence-f _category pairs.

1020

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao

4.2 Phrase Pattern Analysis

Given a sentence (f_sentence or query) and its f_category, phrase
pattern analysis determines the p_pattern used in it. As our empiri-
cal study has identified a set of p_patterns for each f category, the
analysis only needs to match the sentence with the p_patterns of
the f category that it belongs to. We use Spacy [8], which performs
well on Java API documentation [13], to do POS (Part of Speech)
tagging and dependency parsing of the sentence. After that, we
identify the f verb used in the sentence and then the p_pattern.

4.2.1 Functionality Verb Identification. The functionality category
classification does not identify the f verb used in the sentence, so
we need to identify the f verb based on POS tagging and depen-
dency parsing. Our empirical study identified a set of f verbs for
each f category and multiple of them may appear in the sentence.
Thus functionality verb identification just needs to choose from
the f verbs of the f category that the given sentence belongs to.
We use a heuristic-based approach to choose from the candidate
verbs. Given a sentence we traverse its dependency tree in preorder.
The first candidate verb that is traversed is considered as the f verb
of the sentence. If no candidate verb is found after traversing the
entire dependency tree, the first verb traversed in the sentence is
considered as the f verb, indicating a new f verb for the f category
that was not identified in the empirical study. Figure 5 shows a
dependency tree used as an example of functionality verb identifi-
cation. The sentence belongs to the f category “get/return/obtain”.
The arrows from a token indicate the syntactic children that appear
before and after the token and the labels on the arrows indicate the
dependency types. For example, “dobj”, “pobj” and “xcomp” refer
to direct object, object of the preposition, and open clausal com-
plement respectively. This sentence has two verbs (i.e., “use” and
“get”). When traversing the dependency tree in preorder, “use” is
the first traversed verb as it is the root node, but it is not in the
f_verb set of the f category “get/return/obtain”; “get” is the second
traversed verb and it is in the f verb set of the f category, so we
choose it as the f verb of the sentence.

obj

det. %

@

given type

ADJ NOUN

mpoun
default
NOUN

this
oET

the
DET

for a
ADP DET

method to
PART

use
ROOT

get

VERB

sensor

NOUN NOUN

Figure 5: An Example of Functionality Verb Identification

4.2.2 Phrase Pattern ldentification. To identify the p_pattern we
need to match the given sentence with the p_patterns of the f_category
that the sentence belongs to.

To do so we need to first identify the core clause of the given
sentence that describes the functionality of the API method. This
can be done by finding the subtree of the dependency tree rooted
at the f verb. For example, for the f sentence shown in Figure 5,
the “get” clause (underlined) is the core clause that describes the
functionality. Then from the core clause, we extract the syntactic
pattern SP by analyzing the dependency tree of the core clause.
We replace the words in the core clause with a placeholder for

API Method Recommendation via Explicit Matching of Functionality Verb Phrases

syntactic components using the following rules: 1) replace verb with
“V”; 2) replace nouns and noun phrases with “NP”; 3) replace the
object clause and adverbial clause with “S”; 4) replace gerunds with
“S_ING”; and 5) replace infinitive with “S_INF”. Clause leaders (e.g.,
“that”, “whether”) and prepositions (e.g., “in”, “at”, “t0”) in the core
clause are retained. The replacement is done by recursively visiting
the subtree of the core clause. For example, the syntactic pattern
identified for “This method will start profiling if isProfiling() returns
true” is “V S_ING if S” (Rule 1, 3 and 4); and the syntactic pattern
identified for “Registers the parameter named parameterName to
be of JDBC type sqlType.” is “V NP S_INF” (Rule 1, 2 and 5).

After obtaining the syntactic pattern SP of a sentence, we find
the most similar p_pattern among candidate p_patterns which are all
p_patterns of the f category. We split SP and p_patterns into small
components for this comparison. Prepositions with subsequent
“NP” or semantic roles are considered as a component. For example,
“V {patient} for {beneficiary}” can be split into three components
“V”, “{patient}” and “for {beneficiary}”. We compare each p_pattern
with SP by the order of components to get the matching number of
components in the SP. “NP” could match with any semantic role in
p_pattern. If not all components in p_pattern could be matched in SP,
we remove this p_pattern from the candidate p_patterns. Finally, we
choose the p_pattern from the candidate p_patterns with the highest
number of matching components as the p_pattern of the sentence.
For example, for the sentence in Figure 5, after matching “V NP for
NP” with all p_patterns in the f category “get/return/obtain’, we
obtain two candidates “V {patient}” and “V {patient} for {beneficiary}”
and the matched number of components is 2 and 3, respectively.
Thus, we choose “V {patient} for {beneficiary}” as the p_pattern.

4.3 Sentence Alignment and API Matching

Given a parsed API query Q we match it with each parsed f_sentence
FS and calculate their matching score by aligning them based on
f_categories and p_patterns. The matching score is calculated with
Equation 1 by combining three different similarities: f category
similarity, semantic role similarity, and text similarity. Then we
rank API methods by matching score and generate the explanation
for each method.

Score(Q, FS) = Simc(Q, FS) + Simg(Q, FS) + Simp(Q,FS) (1)

4.3.1 Functionality Category Similarity Calculation. The f category
similarity Simc(Q, FS) measures whether the f categories of Q and
FS are the same. If Q and FS are classified into the same f category,
SimC(Q, FS) = 1; otherwise, SimC(Q, FS) = 0.

4.3.2 Semantic Role Similarity Calculation. The semantic role simi-
larity Simg(Q, FS) measures the similarity between corresponding
semantic roles of Q and FS using entity based matching. If Q and
FS are classified into different f categories, SimR(Q, FS) = 0. Other-
wise, we calculate Simg(Q, FS) in three steps, i.e., entity alignment,
entity linking, and entity matching.

First, we align the corresponding entities between Q and FS
based on semantic roles. An entity is a noun phrase in Q or FS. An
entity Eg in Q and an entity Epg in FS can be aligned if and only
if they play the same semantic role in Q and FS. Figure 6 shows an
example of entity alignment. In this example, “the string argument”

1021

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Query 1: How do I convert a String to an int?

source ,/ goal >~

the string argument as a sigr_)éa decimal integer.
goal .

f sentence: Parses arg
- source™ -~

String?

Query 2: How to convert a data type ﬁ’&rﬁ@ to
‘patient source goal

Figure 6: An Example of Entity Alignment

in the f sentence is aligned with “a String” in Query 1 and “int” in
Query 2; “a signed decimal integer” in the f sentence is aligned with
“an int” in Query 1 and “String” in Query 2. In this way it is easy
to determine that Query 1 matches better with the f sentence than
Query 2. If an entity Eg in Q has two corresponding entities Epg;
and Ergy in FS, Eg is aligned with both Erg; and Efs3, and vice
versa.

Second, we link entities in Q and FS to the corresponding en-
tities in a general knowledge graph (Wikidata [42] in the current
implementation). Based on the linking we can use the knowledge
in the general knowledge graph to calculate the similarity between
the entities in Q and FS. For example, Wikidata provides knowledge
like “string is a sequence of characters and a data type” and “str is
an alias of string”. To consider the linking between an entity Eg in
Q or FS and an entity Eyy in the general knowledge graph, we first
do preprocessing (tokenization, stop word removal, and lemmati-
zation) on the noun phrase of Es and then calculate the following
two similarities between Eg and Eyy: 1) morphological similarity
that can be measured based on the minimum edit distance between
the preprocessed noun phrase of Eg and any alias of Eyy: 2) con-
text similarity that can be measured by the text similarity between
the sentence that Eg appears in (i.e., Q or FS) and the definition
sentences of Eyy provided by the general knowledge graph. Finally
Es is linked to an entity in the general knowledge graph that has
the highest combined similarity with Eg.

Third, we match between the aligned entities based on entity
linking results. For an entity Eg in Q and an aligned entity Efg in
FS, we calculate their matching score in the following way: 1) if
Eg and EFg are linked to the same entity in the general knowledge
graph (e.g., “string” and “char sequence”), they are equal and their
matching score is 1; 2) if Eg and Efg are linked to two entities
with hyponymy (e.g., “instance of ”, “subclass of”, or “part of”)
relationship in the general knowledge graph (e.g., “int” and “primary
type”), their matching score is 1; 3) if one of Eg and EFg is the prefix
or suffix of the other one (e.g., “Integer value” and “Integer”), they
are in a hyponymy relationship and their matching score is 1; 4)
otherwise, the matching score is 0.

Finally, Simg(Q, FS) is calculated by summing the matching
scores of all the aligned entity pairs between Q and FS. Note that if
an entity E in Q (or FS) has several aligned entities in FS (or Q) we
only consider the entity pair that has the highest matching score.

4.3.3 Text Similarity Calculation. The text similarity Simr(Q, FS)
measures the overall text similarity between Q and FS to cover
other sentence parts (e.g., clauses, gerunds, and infinitive). The
similarity is calculated based on the Word2Vec [33] model. We use
a 100-dimensional Word2Vec model pre-trained on the Wikipedia
corpus [12] and tune the model based on the corpus of all f_sentences
extracted in our empirical study using gensim [5]. Then we calculate
the similarity in the following way: 1) preprocess Q and FS by

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

tokenization, stop word removal, and lemmatization; 2) generate
a vector for Q and FS respectively by averaging the vectors of
all their words produced by the Word2Vec model; 3) calculate the
normalized cosine similarity between the vectors of Q and FS.

4.3.4 Matching Result Generation. Given a query we rank the
f_sentences by their matching scores from high to low. For each
f _sentence, we generate a linguistic explanation for matching by
describing: 1) the f category that the query and the f sentence be-
long to, 2) the semantic roles in the query and the f sentence, and 3)
all matched entity pairs and their matching degrees. For example,
one matching result for the query “How do you crash a JVM?” [9]
would be “Terminates the currently running Java Virtual Machine”
of java.lang.System.exit(int). We can explain this matching as fol-
lows: both belong to the f category “stop/quit/terminate”; “JVM”
matches with “Java Virtual Machine” at an “Equal” level, and they
share the semantic role “patient”.

5 EVALUATION

Our evaluation includes two parts. In the first part, we evaluate the
accuracy of f sentence parsing, including f category classification
and p_pattern analysis. In the second part, we evaluate the perfor-
mance of PreMA in documentation-based API retrieval tasks by
comparing it with a deep learning based approach.

5.1 Accuracy of Functionality Sentence Parsing

To evaluate the accuracy of the f category classification, we used
the 14,774 f_sentences annotated in the empirical study to do a 5-fold
cross validation. The average accuracy on the test set is 92.8% (with
92.6% minimum accuracy). Our analysis shows that most of the
misclassified f_sentences use rare verbs such as “pin” and “compile”,
which have very few samples in the annotated f~_sentences.

To evaluate the accuracy of the p_pattern analysis, we removed
those belonging to the “Unknown” f category from the 14,774
f_sentences and used the remaining 11,074 f sentences and their
annotated p_patterns as the data set. For each f sentence, we used
our approach to identify the p_pattern and compared it with the
annotation. The results show that the accuracy of the p_pattern
analysis is 90.4%. Our analysis shows that most of the mistakes were
caused by the POS tagging and dependency parsing implemented
by Spacy. For example, gerunds are sometimes recognized as noun
phrases, e.g., “Starts looping playback from the current position”,
and “to” in an infinitives is sometimes recognized as preposition,
e.g., “Marshals to output the value in the Holder”.

The above evaluation is based on the f sentences extracted from
the JDK and Android reference documentation. To confirm whether
the classifier and analyzer can be applied to other libraries, we fur-
ther evaluate the accuracy of f sentence parsing on Apache POI
(a Java library for processing Microsoft Office documents) [3]. We
randomly selected 100 f sentences from the POI reference documen-
tation and invited three MS students to annotate their f categories
and p_patterns in a similar way to the empirical study. The an-
notation process did not produce new f categories. We used all
the 14,774 f_sentences annotated in the empirical study to train a
f_category classifier and used it to classify the 100 POI sentences.
The f category classification accuracy on POI sentences is 97%. We

1022

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao

further use PreMA to analyze the p_patterns of the 100 POI sen-
tences and the accuracy is 95%. The results show that the f category
classifier and the p_pattern analyzer trained on JDK and Android
reference documentation also work well for POL

Table 3 shows results of functionality sentence parsing produced
by PreMA, where the bold italic words and subscripts in f sentences
denote the skeletons and semantic roles (clauses) of p_patterns. We
can see that f sentences with the same f verbs (e.g., “return”) can
be classified into different f categories. The p_patterns of the same
f_categories may have different numbers of semantic roles, for ex-
ample the f category “convert/transform/turn” has both p_patterns
with 2 and 3 semantic roles. Based on the recognized p_patterns the
participants of different f _sentences of the same f categories can be
aligned based on semantic roles (e.g., source, goal) and clauses.

5.2 Performance of API Method Retrieval

We implemented a deep learning based approach as the baseline
tool for API method retrieval. The tool uses Word2Vec [33] to pro-
duce vector representation of words and sentences. It matches a
user query with an API description without explicit analysis of func-
tionality verb phrases. It uses a 100-dimensional Word2Vec model
pre-trained on the Wikipedia corpus [12] and tunes the model based
on the corpus of all f sentences using gensim [5]. It generates a vec-
tor for the user query by averaging the vectors of all its words after
preprocessing (i.e., tokenization, stop word removal, and lemmati-
zation) and a vector for the API description in a similar way. Finally
it calculates the cosine similarity between the vector of the query
and the vector of the description of each API method, and ranks the
candidate API methods by the similarity. We tried and tested two
strategies for API matching, i.e., using the full description of each
API method or only the first sentence of its description, based on a
manually constructed dataset of user query and API method pairs.
The results show that the implementation using the first sentence
of each method description has better performance, thus we chose
it as the baseline. We did not consider BERT-based approach as
baseline, as we need to train a binary classifier for query-document
relevance based on fine-tuned BERT model and additional training
data of relevant/irrelevant query-document pairs.

We selected API retrieval tasks from Stack Overflow questions
that are tagged with “Java” or “Android” based on the following
criteria: the questions ask for APIs implementing specific function-
alities and have at least one accepted answer that recommends
a single JDK or Android API method. We ranked the questions
meeting the above criteria by their votes and randomly selected 30
questions from the highly ranked ones. For each selected question
we generated an API retrieval task that uses the question title and
body as the task description.

We invited two PhD and ten MS students who are familiar with
Java and Android development to complete the 30 tasks. For each
task they can formulate and try different queries based on their
understanding of the task description. Both PreMA and the baseline
approach return the top-10 API methods together with their class
descriptions as the context for the user to select. The participants
finish a task when they find an API method that matches the task
description. They were divided into two groups (G1 and Gz) based

API Method Recommendation via Explicit Matching of Functionality Verb Phrases

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Table 3: Examples of Functionality Sentence Parsing

API Method f_sentence [_category Library
Jjavax.xml.transform.Transformer.transform() Transform {the XML Source}s to{a Result}g. convert/transform/turn | JDK
android.graphics.Color. HSV ToColor() Convert {HSV components}s to {an ARGB color}g. convert/transform/turn | Android
org.apache.poi.hpsf.PropertySet.toInputStream() Returns {the contents of this property set stream}s as {an input stream}g. convert/transform/turn | POL
android.icu.util. UniversalTimeScale.from() Convert {a long datetime};, from {the given time scale}s to {the universal time scale}g. convert/transform/turn | Android
Jjava.text.Characterlterator.getBeginlndex() Returns {the start index of the text}p. get/return/obtain JDK
Jjava.sql.Statement.getResultSet Type() Retrieves {the result set type}, for {ResultSet objects generated by this Statement object},. | get/return/obtain JDK
org.apache.poi.ss.formula.eval. AreaEval.containsColumn() Returns {true}p, if {the specified col is in range}c. check/test/determine POI
org.apache.poi.xssf.usermodel XSSFWorkbook.isSheetHidden() | Check whether {a sheet is very hidden}. check/test/determine POI

Participants of p_patterns: s (source), g (goal), p (patient), b (beneficiary), ¢ (clause).

on a pre-experiment survey on their programming experience, bal-
ancing the experience in both groups. The 30 tasks were randomly
divided into two groups (T; and Tz). The experiment was conducted
in two phases. In the first phase, the participants in G; and G were
asked to complete the tasks in T; with PreMA and the baseline tool
respectively. In the second phase, the two groups exchanged the
tools to complete the tasks in T. All participants were required to
run a full-screen recorder to record their API retrieval processes.

For each task we recorded the correctness, number of retries, and
completion time of each participant and calculated the accuracy
(i.e., the ratio of participants who selected the right API for the task)
and average number of retries and completion time of the two par-
ticipant groups. Figure 7 shows the performance of the groups using
PreMA and the baseline tool over the 30 tasks. Participants using
PreMA completed the tasks more accurately, required fewer retries,
and used less time than those using the baseline tool. On average,
the accuracy, number of retires, and completion time (by seconds)
of the participants using PreMA and the baseline tool are 0.77, 2.16,
98.29 versus 0.54, 3.30, 113.42 respectively. We used Welch’s T-test
for verifying the statistical significance of the differences and the
p-values for accuracy, number of retires, and time are 0.0032, 0.0064,
and 0.2832 respectively. We can see the differences in accuracy and
number of retires are statistically significant (p << 0.05), while the
difference in time is not significant.

s 2505
2005
i

[premA
[Word2vec

#Retry Time

Figure 7: Performance of API Method Retrieval

The analysis of the screen recordings revealed that our tool
performs particularly well for tasks that are order-sensitive. For
example, for the task “converting array to list in Java”, participants
were able to find correct APIs quickly with our tool while the results
returned by the baseline tool included APIs that turn lists into ar-
rays (i.e., the reverse order). For tasks that involve concepts related
to the software domain, our approach can also recommend better
results. For example, for the task “how do you crash a jym”, our tool
can correctly recommend the APIs java.lang.System.exit(int) and
Jjava.lang.Runtime.halt(int) while the results returned by the base-
line tool are not related to “jvm”. We also found f_categories to be
helpful for solving tasks. For example, for the task “check whether

1023

a string is not null and not empty”, the f sentences recommended
by our tool are in the same f category “check/test/determine” as
the question. However, f sentences recommended by the baseline
tool tend to contain the keyword “null”, and the verb used in the
question is ignored.

One concern is that our approach may not be able to search for
APIs that use unpopular verbs. Some unpopular verbs express do-
main specific meanings (e.g., “mute”, “roam”, “dial”) and can be eas-
ily discriminated by themselves. Some other unpopular verbs can be
categorized together with more popular verbs and thus can also be
supported. Among the 30 tasks, there are 3 tasks whose correspond-
ing APIs (i.e., java.util. Collections.sort(), java.lang.System.exit(), java.-
lang.String.split()) use unpopular verbs (i.e., “sort”, “terminate”,
“split”). These verbs have been included in the identified f_categories,
for example “terminate” is included in a f category with popular
verbs “stop” and “end”.

From interviewing participants after the experiment, we learned
that they perceived our tool to provide them with correct and rel-
evant answers more easily while the baseline tool required more
queries. A participant said that our tool could understand queries
better than the baseline tool. For example, when participants en-
tered “check” as part of a query, our tool is able to recommend APIs
whose f sentences contain verbs such as “test” and “determine”. Par-
ticipants also suggested improvements to the tool, such as better
ranking of results and showing all variants of overloaded methods.

6 THREATS TO VALIDITY

Internal validity. A potential threat to internal validity stems
from the use of the natural language processing library, SpaCy.
Some of our analyses are based on SpaCy’s natural language pro-
cessing of sentences (e.g., RQ1 and RQ3). No natural language
processing library achieves 100% accuracy on any large data set,
and SpaCy’s perfomance was found to be on par with the state
of the art [17] and outperforming other libraries when applied to
software documentation [13]. SpaCy was not designed specifically
for software text, i.e., text containing code elements, incomplete
sentences, or grammar errors which are common on Stack Overflow.
Currently there is no natural language processing tool specialized
for parsing software development related text and we have to rely
on general-purpose natural language processing tools. To mitigate
this threat, we use heuristic rules to correct some common mistakes.
This process is similar to related work [40].

Another threat may arise from the scale of the open coding. For
the analysis of f categories in RQ2, we only coded the f sentences
of 14,733 JDK and Android API methods, not all of the 54,256
f _sentences. One concern is that the f verbs and f categories we
identified may not cover all f verbs and f categories in JDK and

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Android. Open coding of the full set is beyond our capabilities, and
we try our best to cover as many f verbs and f _categories as possible
by our sampling strategy. Based on the findings of RQ1, the 116
most frequent verbs appear in approximately 84% of the f sentences.
Thus, in the initial coding phase, we sample 10 sentences for each of
the 116 most frequent verbs to cover as many common f verbs and
f_categories as possible with a relatively small sampling size (1,139).
In the second phase, we create a larger random sample (13,635) to
cover uncommon f verbs and f categories that were not covered by
the first sample.

An additional threat is related to the quality of open coding. We
mitigate this by separating the two phases of coding and training
all coders before coding. We report Cohen’s Kappa for all open
coding to provide evidence that our coding results are reliable.

External validity. A major concern is the extent to which our
automated detection tools are generalizable. We provide evidence
for their generalizability by evaluating them on JDK and Android
f_sentences, Stack Overflow questions, and POI f sentences. New
f _categories and f_patterns may need to be revealed using similar
empirical study process when using our approach for other libraries.

7 RELATED WORK
7.1 Knowledge about Functionality

Functionality is an important knowledge type required for software
development tasks such as features implementation and mainte-
nance. Kirk et al. [30] studied the “reuse problems” faced when
developing applications based on a framework and identified four
main categories of framework reuse problems—“Functionality” is
one of them. Erdos and Sneed [19] identified seven questions devel-
opers need to ask during software maintenance tasks. All questions
are about understanding the behavior of the program and therefore
about functional knowledge.

Other related work targets functionality descriptions in software
documentation. Maalej and Robillard [31] reported on a study of
knowledge patterns in API documentation, such as Functionality,
Concepts, and Directives. The authors found that functionality
accounts for a large part of API documentation, but they do not
offer further categorization of the functionality descriptions in API
documentation. Based on Maalej and Robillard’s results, Fucci et
al. [20] attempted to use machine learning techniques to classify the
knowledge types of sentences in API documentation. They reported
that the most frequent knowledge types are Functionality and Non-
information. In our work, we focus on the most common knowledge
type—Functionality—and classify and analyze API functionality
descriptions based on functionality verbs.

7.2 Verb Phrases in Software Engineering

In many programming languages, method names are used to de-
scribe the implementation of a method at a high level. Past research
has found that source code will be more readable if every method
has an appropriate name [25]. Since the method name usually con-
sists of verb phrases, Host and @stvold [24] constructed a lexicon
containing frequently used verbs in Java method names and re-
ported characteristics of method names based on their verbs. Hayase
et al. [22] built a domain-specific dictionary of verb-object relations

1024

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao

from identifiers appearing in source code files. Kashiwabara et
al. [29] focused on recommending similar verbs for a method name
so that developers can use consistent verbs for method names. How-
ever, their focus was on method names instead of natural language
descriptions of methods.

Shepherd et al. [38] proposed an approach for query expansion
and code search. This method uses <verb, direct object> (V-DO)
pairs from method signatures and comments to find actions that
cross-cut object-oriented systems. Hill et al. [23] proposed an ap-
proach to automatically extract and generate noun, verb, and prepo-
sitional phrases from method and field signatures, capturing word
context of natural language queries for maintenance and reuse.

Treude et al. [40] focused on natural language descriptions and
extracted development task phrases from software documentation.
However, they extracted all task phrases from sentences. In their
work, one sentence can contain more than one task phrase and
they did not distinguish them based on importance. Also, they only
used a small set of predefined verbs to define task phrases and did
not consider synonyms in a systematic way. In this work, we focus
on functionality descriptions of Java and Android API methods
from API reference documentation and classify functionality verbs
into functionality categories, thus providing a systematic way for
exploring synonyms in a functionality category.

7.3 API Recommendation

Current API recommendation approaches typically use context
information to recommend APIs, e.g., API dependency graphs [16],
feature request history [39], and question-and-answer websites and
documents [27, 37]. Current approaches can not only recommend
API methods and classes from third-party libraries [27, 37], but also
support project-specific APIs [43].

Rahman et al. [37] proposed an approach called RACK and also
constructed a corpus to map keywords from Stack Overflow ques-
tions to API documentation. Based on this corpus, RACK can rec-
ommend APIs for a given query. Huang et al. [27] combined Stack
Overflow knowledge with API documentation and proposed BIKER,
which can also recommend APIs for a given query. However, these
approaches can only work for APIs which have been discussed
extensively on sites such as Stack Overflow and suffer from infor-
mation noise in these external resources. Previous work has shown
that Stack Overflow tends to be slow at covering new APIs [36] and
can ignore significant parts of an APL In contrast, our approach
does not rely on external resources.

The approach by Hill et al. [23] can automatically categorize ex-
tracted phrases into a hierarchy based on partial phrase matching,
to help software maintainers quickly discriminate between relevant
and irrelevant search results and reformulate queries. However,
their approach can not deal with the problem of lexical gaps be-
tween queries and documentation.

Other approaches in the area of API recommendations do not
focus on recommending methods, but for example on code snip-
pets [15, 34, 35, 45] or parameters [14] instead.

8 CONCLUSION

In this paper, we conducted a large-scale empirical study on the
functionality descriptions of 14,733 JDK and Android API methods.

API Method Recommendation via Explicit Matching of Functionality Verb Phrases

We identified 356 different functionality verbs from the descriptions,
and these verbs can be grouped into 87 functionality categories based
on their semantics in the description context. We also extracted 523
phrase patterns from the verb phrases of the descriptions. Building
on these findings, we propose an API method recommendation ap-
proach based on explicit matching of functionality verb phrases in
functionality descriptions and user queries, which is called PreMA.
We conducted experimental studies to evaluate the functionality
analysis accuracy and API retrieval performance of PreMA. The
results show that PreMA can accurately recognize the functionality
categories (92.8%) and phrase patterns (90.4%) of functionality de-
scription sentences; and the participants using PreMA completed
their tasks more accurately (0.77 versus 0.54) with fewer retries
(2.16 versus 3.30) and using less time (98.29s versus 113.42s).

Future work will be devoted to applying the approaches for auto-
matically recognizing functionality categories and associated func-
tionality verbs and phrase patterns to other software engineering
problems, such as documentation quality and information retrieval.
In addition, we will further improve the context analysis capability
(e.g., by considering the class descriptions and method descriptions
beyond functionalities) PreMA to achieve more precise API match-
ing. All data from this work will be turned into archived open data
after acceptance.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of
China under Grant No. 61972098.

REFERENCES

[1] 2020. Android 27 Reference Documentation. Retrieved September 10, 2020 from
https://developer.android.com/reference/packages

2020. Annotation Tool GUIL Retrieved September 10, 2020 from https://ilolinet/
2019/05/12/5cd7d3ed9a2e6.png

2020. Apache POIL Retrieved September 10, 2020 from https://poi.apache.org/
2020. BeautifulSoup. Retrieved September 10, 2020 from https://www.crummy.
com/software/BeautifulSoup/

2020. gensim. Retrieved September 10, 2020 from https://radimrehurek.com/
gensim/

2020. JDK 1.8 Reference Documentation. Retrieved September 10, 2020 from
https://docs.oracle.com/javase/8/docs/api/overview-summary.html

2020. Replication Package. Retrieved September 9, 2020 from https://fudanselab.
github.io/Research-FSE2020-FuncVerb/

2020. SpaCy. Retrieved September 10, 2020 from https://spacy.io

2020. Stack Overflow Question 65200. Retrieved September 10, 2020 from https:
//stackoverflow.com/questions/65200/

2020. VerbNet. Retrieved September 10, 2020 from http://verbs.colorado.edu/
~mpalmer/projects/verbnet.html

2020. VerbNet Annotation Guidelines. Retrieved September 10, 2020 from https:
//verbs.colorado.edu/verb-index/VerbNet_Guidelines.pdf

2020. word2vec-api. Retrieved September 10, 2020 from https://github.com/3Top/
word2vec-api

Fouad Nasser A Al Omran and Christoph Treude. 2017. Choosing an NLP Library
for Analyzing Software Documentation: A Systematic Literature Review and a
Series of Experiments. In Proceedings of the International Conference on Mining
Software Repositories. 187-197.

Muhammad Asaduzzaman, Chanchal K. Roy, Samiul Monir, and Kevin A. Schnei-
der. 2015. Exploring API method parameter recommendations. In 2015 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2015,
Bremen, Germany, September 29 - October 1, 2015, Rainer Koschke, Jens Krinke,
and Martin P. Robillard (Eds.). IEEE Computer Society, 271-280.

Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code Snippet
Content Assist via Natural Language Tasks. In 2017 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September
17-22, 2017. IEEE Computer Society, 628-632.

Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API
subgraph via text phrases. In 20th ACM SIGSOFT Symposium on the Foundations

(15

[16]

1025

[17

(18

=
o)

[20]

[21

~
£,

[23

[24

[25

[27

[28

[29]

[30

[31

[32

[33

[35

[36

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November 11 -
16, 2012, Will Tracz, Martin P. Robillard, and Tevfik Bultan (Eds.). ACM, 10.
Jinho D. Choi, Joel R. Tetreault, and Amanda Stent. 2015. It Depends: Dependency
Parser Comparison Using A Web-based Evaluation Tool. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. 387-396.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018).

Katalin Erd6s and Harry M. Sneed. 1998. Partial Comprehension of Complex
Programs (enough to perform maintenance). In 6th International Workshop on
Program Comprehension (IWPC °98), June 24-26, 1998, Ischia, Italy. IEEE Computer
Society, 98-105.

Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On using
machine learning to identify knowledge in API reference documentation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven
Apel, and Alessandra Russo (Eds.). ACM, 109-119.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016. 631-642.

Yasuhiro Hayase, Yu Kashima, Yuki Manabe, and Katsuro Inoue. 2011. Building
Domain Specific Dictionaries of Verb-Object Relation from Source Code. In 15th
European Conference on Software Maintenance and Reengineering, CSMR 2011, 1-4
March 2011, Oldenburg, Germany. 93-100.

Emily Hill, Lori L. Pollock, and K. Vijay-Shanker. 2009. Automatically capturing
source code context of NL-queries for software maintenance and reuse. In 31st
International Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings. IEEE, 232-242.

Einar W. Hest and Bjarte M. @stvold. 2007. The Programmer’s Lexicon, Volume
I: The Verbs. In Seventh IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2007), September 30 - October 1, 2007, Paris, France. 193-202.
Einar W. Hest and Bjarte M. @stvold. 2009. Debugging Method Names. In ECOOP
2009 - Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July
6-10, 2009. Proceedings. 294-317.

Einar W. Hoest and Bjarte M. @stvold. 2010. Canonical Method Names for Java
- Using Implementation Semantics to Identify Synonymous Verbs. In Software
Language Engineering - Third International Conference, SLE 2010, Eindhoven, The
Netherlands, October 12-13, 2010, Revised Selected Papers. 226—-245.

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018. 293-304.

Yuki Kashiwabara, Takashi Ishio, Hideaki Hata, and Katsuro Inoue. 2015. Method
Verb Recommendation Using Association Rule Mining in a Set of Existing Projects.
IEICE Transactions 98-D, 3 (2015), 627-636.

Yuki Kashiwabara, Yuya Onizuka, Takashi Ishio, Yasuhiro Hayase, Tetsuo Ya-
mamoto, and Katsuro Inoue. 2014. Recommending verbs for rename method
using association rule mining. In 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE
2014, Antwerp, Belgium, February 3-6, 2014. 323-327.

Douglas Samuel Kirk, Marc Roper, and Murray Wood. 2007. Identifying and
addressing problems in object-oriented framework reuse. Empirical Software
Engineering 12, 3 (2007), 243-274.

Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Trans. Software Eng. 39, 9 (2013), 1264-1282.
Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica 22, 3 (2012), 276-282.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composi-
tionality. In Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States. 3111-3119.

Anh Nguyen, Peter C. Rigby, Thanh Van Nguyen, Dharani Palani, Mark Karanfil,
and Tien N. Nguyen. 2018. Statistical Translation of English Texts to API Code
Templates. In 2018 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018. IEEE Computer
Society, 194-205.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. 2016. Query
Expansion Based on Crowd Knowledge for Code Search. IEEE Trans. Services
Computing 9, 5 (2016), 771-783.

Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.
Crowd documentation: Exploring the coverage and the dynamics of API discus-
sions on Stack Overflow. Georgia Institute of Technology, Tech. Rep 11 (2012).

https://developer.android.com/reference/packages
https://i.loli.net/2019/05/12/5cd7d3ed9a2e6.png
https://i.loli.net/2019/05/12/5cd7d3ed9a2e6.png
https://poi.apache.org/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://fudanselab.github.io/Research-FSE2020-FuncVerb/
https://fudanselab.github.io/Research-FSE2020-FuncVerb/
https://spacy.io
https://stackoverflow.com/questions/65200/
https://stackoverflow.com/questions/65200/
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
https://verbs.colorado.edu/verb-index/VerbNet_Guidelines.pdf
https://verbs.colorado.edu/verb-index/VerbNet_Guidelines.pdf
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

[37]

[38]

[39]

[40]

[41]

Mohammad Masudur Rahman, Chanchal Kumar Roy, and David Lo. 2016. RACK:
Automatic API Recommendation Using Crowdsourced Knowledge. In IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1. IEEE Computer
Society, 349-359.

David C. Shepherd, Zachary P. Fry, Emily Hill, Lori L. Pollock, and K. Vijay-
Shanker. 2007. Using natural language program analysis to locate and under-
stand action-oriented concerns. In Proceedings of the 6th International Confer-
ence on Aspect-Oriented Software Development, AOSD 2007, Vancouver, British
Columbia, Canada, March 12-16, 2007 (ACM International Conference Proceeding
Series, Vol. 208), Brian M. Barry and Oege de Moor (Eds.). ACM, 212-224.
Ferdian Thung, Shaowei Wang, David Lo, and Julia L. Lawall. 2013. Automatic
recommendation of API methods from feature requests. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, Ewen Denney, Tevfik Bultan, and Andreas
Zeller (Eds.). IEEE, 290-300.

Christoph Treude, Martin P. Robillard, and Barthélémy Dagenais. 2015. Extracting
Development Tasks to Navigate Software Documentation. IEEE Trans. Software
Eng. 41, 6 (2015), 565-581.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems 30: Annual Conference

1026

[42

[43

[45

]

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao

on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998-6008.
Denny Vrandecic. 2013. The Rise of Wikidata. IEEE Intelligent Systems 28, 4
(2013), 90-95.

Rensong Xie, Xianglong Kong, Lulu Wang, Ying Zhou, and Bixin Li. 2019. HiRec:
API Recommendation using Hierarchical Context. In 30th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2019, Berlin, Germany,
October 28-31, 2019, Katinka Wolter, Ina Schieferdecker, Barbara Gallina, Michel
Cukier, Roberto Natella, Naghmeh Ivaki, and Nuno Laranjeiro (Eds.). IEEE, 369—
379.

Xin Ye, Hui Shen, Xiao Ma, Razvan C. Bunescu, and Chang Liu. 2016. From
word embeddings to document similarities for improved information retrieval
in software engineering. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K. Dillon,
Willem Visser, and Laurie Williams (Eds.). ACM, 404-415.

Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott
Ge, and Wenxiang Hu. 2016. Bing developer assistant: improving developer
productivity by recommending sample code. In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-
Huang, and Zhendong Su (Eds.). ACM, 956-961.

