
Automated Query Reformulation for Efficient
Search based on Query Logs From Stack Overflow

Kaibo Cao†, Chunyang Chen‡∗, Sebastian Baltes§, Christoph Treude§, Xiang Chen¶∗
†Software Institute, Nanjing University, China

‡Faculty of Information Technology, Monash University, Australia
§School of Computer Science, University of Adelaide, Australia

¶School of Information Science and Technology, Nantong University, China
imkbcao@gmail.com, chunyang.chen@monash.edu, {sebastian.baltes, christoph.treude}@adelaide.edu.au, xchencs@ntu.edu.cn

Abstract—As a popular Q&A site for programming, Stack
Overflow is a treasure for developers. However, the amount of
questions and answers on Stack Overflow make it difficult for
developers to efficiently locate the information they are looking
for. There are two gaps leading to poor search results: the gap
between the user’s intention and the textual query, and the
semantic gap between the query and the post content. There-
fore, developers have to constantly reformulate their queries by
correcting misspelled words, adding limitations to certain pro-
gramming languages or platforms, etc. As query reformulation
is tedious for developers, especially for novices, we propose an
automated software-specific query reformulation approach based
on deep learning. With query logs provided by Stack Overflow,
we construct a large-scale query reformulation corpus, including
the original queries and corresponding reformulated ones. Our
approach trains a Transformer model that can automatically
generate candidate reformulated queries when given the user’s
original query. The evaluation results show that our approach
outperforms five state-of-the-art baselines, and achieves a 5.6%
to 33.5% boost in terms of ExactMatch and a 4.8% to 14.4%
boost in terms of GLEU .

Index Terms—Stack Overflow, Data Mining, Query Reformu-
lation, Deep Learning, Query Logs

I. INTRODUCTION

Stack Overflow is the most popular question and answer
(Q&A) site for programming-related knowledge sharing and
acquisition. Over the past decade, Stack Overflow has accu-
mulated a large amount of user-generated content, making it a
valuable repository of software engineering knowledge. When
developers encounter a specific programming question such
as how to use this library?, what is the difference between
two languages? [1], or how to understand this concept? [2],
[3], they tend to use Stack Overflow to find answers [4]. To
assist developers in finding the knowledge they are looking
for in such a large-scale knowledge repository, Stack Overflow
provides a search engine1, which supports free text search as
well as an advanced search with metadata filters.

However, even using the provided search engine, it is still
not easy for developers to effectively find what they want [5],
[6]. There are two reasons for unsatisfactory search results.
First, there exists a certain semantic gap between the users’

∗ Corresponding Authors
1https://stackoverflow.com/search

query intention and input queries. This means that it is difficult
for users to accurately express their query intention with a few
keywords [7], [8]. For example, a developer wants to search
for the usage of nested lists. However, they may not know
how to express this concept accurately and may use a term
like “list in list” as the query. This query is imprecise, and
this kind of semantic gap can pose a significant challenge
to the search engine of Stack Overflow. Second, a certain
semantic gap exists between the users’ queries and the text
content in the relevant posts. It means the same meaning may
be described in different ways with few overlapping words.
For example, a developer may input the query “sorting in
linear time”. However, the relevant post titled “sorting with
O(n) complexity” cannot be retrieved by the search engine.
Moreover, abbreviations, synonyms, or even misspelling [9],
[10] can also lead to this kind of semantic gap.

To alleviate the above semantic gaps, developers may
constantly reformulate their queries until the query reflects
their real query intention and leads to relevant posts. By
analyzing users’ query logs provided by Stack Exchange Inc.,
the company behind Stack Overflow, we find that 24.62% of
the queries are reformulated before visiting a post, and that
developers reformulate their queries 1.46 times on average
before clicking on a result. Fig. 1 shows an illustrative
example. The user first performs the query “do and while in
java”, which yields a large number of irrelevant results. The
reason is that the search engine uses or to connect all the words
in the query, and the search engine cannot distinguish “do” and
“while” as domain-specific keywords. Then, the user adds the
word “loop” to this query to make it more explicit, which
leads to a potentially desired post. The process of modifying
a given query to find a satisfactory search result [11] is called
query reformulation. Understanding query reformulation [12]–
[16] has become an important issue in designing effective
information retrieval systems.

To investigate how developers reformulate their queries, we
first perform a formative study on the users’ activity logs
from Stack Overflow. Based on the logs from 2,216,219 users
between December 2017 and November 2018, we extract
4,631,756 queries from 3,125,427 sessions. After analyzing
these queries, we find that query reformulation has certain

ar
X

iv
:2

10
2.

00
82

6v
2

 [
cs

.S
E

]
 1

0
Fe

b
20

21

https://stackoverflow.com/search

Query: do and while in java
Search Results Advanced Search Tips

Results for do and while in java

35,563 results Newest More

A: “Thinking in AngularJS” if I have a jQuery background?
 the same thing, but the AngularJS version anyone looking at the template knows what's supposed

to happen. Whenever a new member of the development team comes on board, she can look at this
… the reason you don't that is that this is like half-jQuery, half-AngularJS, no good. The problem
here is that the developer is trying to " jQuery" the context of AngularJS. That's never …

do in
and

do and
do in

answered by Feb 21 '13 Josh
David Miller

Relevance

7178
votes

Reformulation: do and while loop in java
Search Results Advanced Search Tips

Results for do and while loop in java

4,419 results Newest More

answers
8

Q: How do I make a delay in Java?
I am trying to something I need something to wait / delay for an amount of seconds a

 . (true) { if (i == 3) { i = 0; } ceva[i].setSelected(true …); // I need to wait here
ceva[i].setSelected(false); // I need to wait here i++; } I want to build a step sequencer I'm new to

. Any suggestions? …

do in Java and in
while loop while

and
Java

 java wait sleep thread-sleep asked by Jun 8 '14 ardb

Relevance

votes
327

Visiting Post: While loop in method Java

answers
2

Q: While loop in method Java
I want to achieve this menu to keep looping to receive input when i enter the wrong input other than 1,2,3.
How where to put my / ? I am new . After the user input … other
than 1,2 or 3 it should prompt the menu again. May i know how? Thanks. How where to put my

 / ? import java.util.*; public class InputMenu { public void …

and while loop do while loop in JAVA
and

while loop do while loop

 java loops while-loop do-while asked by Jan 6 '18 Syamil Fuad

votes
 0

Root Event ID Event ID Event Time Event Type URL
482722974 482722974 2018/8/7 22:33 Questions List /questions/tagged/java
482722974 482683842 2018/8/7 22:33 Search /search?q=do+and+while+in+java
482722974 482666879 2018/8/7 22:33 Search /search?q=do+and+while+loop+in+java
482722974 482644886 2018/8/7 22:34 Post /questions/48128271/while-loop-in-method-java

Fig. 1: An illustrative example of query reformulation in the
users’ activity logs

common patterns (in Section III-B). For example, users may
fix misspellings, such as revising “serive” to “service”; they
may generalize their queries to expand the scope, such as
revising “open calendar react native” to “open other app react
native”; they may add constraints of programming languages
or platforms to the query, such as revising “read file” to “java
read file”; they may remove information that is too detailed
for retrieving relevant posts, such as revising “Unable to
import module ’copy’: /var/task/psycopg2/_psycopg.so: ELF
file’s phentsize not the expected size” to “ELF file’s phentsize
not the expected size”.

As the query reformulation process is tedious for develop-
ers, especially for novices, we propose a Software-spEcific
QUEry Reformulation approach (SEQUER) based on deep
learning to help automatically reformulate their queries. Based
on large-scale query logs from Stack Overflow provided under
a non-disclosure agreement, we first extract query reformula-
tion pairs consisting of original and reformulated queries and
then adopt an attention-based Transformer to automatically
learn the query reformulation patterns based on the extracted
query reformulation pairs. Given the original query, the trained
model can suggest a list of candidate reformulated queries.
We evaluate the quality of the reformulated queries of our ap-
proach with large-scale archival manual reformulation results.
The evaluation results show that, in terms of ExactMatch@10
and GLEU , our approach achieves 12.48% and 7.79% im-
provement on average compared with the sequence model
based baselines (i.e., seq2seq with attention [17] and HRED-
qs [18]), achieves 30.79% and 6.61% improvement compared

with Google Prediction Service [19], and achieves 33.5%
and 14.41% improvement compared with grammatical error
correction tools.

In summary, we make the following contributions:
• We distill unique insight into developers’ query reformu-

lation patterns based on large-scale real-world query logs
from Stack Overflow.

• According to the insights from our empirical study, we
propose a software-specific query reformulation approach
SEQUER based on an attention-based Transformer.

• We evaluate the quality of the reformulated queries gen-
erated by our approach SEQUER with large-scale archival
manual reformulation results.

• We implement a browser plugin2 for supporting auto-
mated software-specific query reformulation in practice.

II. DATA COLLECTION

The dataset we used is based on a larger dataset containing
all internal HTTP requests processed by Stack Overflow’s
web servers within one year (747,421,780 requests from
December 2017 to November 2018). Internal means that the
dataset only contains requests with a referrer URL from
stackoverflow.com. If a user, for example, reached a
Stack Overflow post by clicking on a Google search result and
then triggered a search within Stack Overflow, only the second
(internal) search request would be included in the dataset, not
the request for the post having a Google-related referrer. For
each HTTP request, the dataset provides an anonymized user
identifier that represents logged-in registered users as well as
users identified by a browser cookie or users identified by
their IP address. This dataset also assigns certain event types
to the requests (e.g., searching, post visiting, or question list
browsing), depending on their target URL.

Before extracting the event sequences relevant to this study,
we preprocess the data as follows. First, we group all events
per user identifier and then order them chronologically. Sec-
ond, we utilize heuristics based on the timestamps and request
targets to filter out bot traffic and event sequences merely
consisting of page refreshes. Third, to distinguish between
individual sessions, we group the events into sequences of
events that are not more than six minutes apart, following
Sadowski et al.’s approach [20]. Finally, we add an additional
filtering step to avoid gaps in the data caused by the focus
on internal requests. A user may, for example, follow external
links in Stack Overflow posts and then navigate back to Stack
Overflow or open multiple posts in parallel browser tabs. For
our analysis of query reformulation on Stack Overflow, we
focus on complete linear navigation sequence, that is sequence
where the referrer of one request matches the target URL of
the previous request.

After the above data preprocessing, we get a dataset of
complete linear navigation sequences. As shown in the ta-
ble in Fig. 1, each event is represented by one row with
five attributes: RootEventId, EventId, EventTime, EventType,

2https://github.com/kbcao/sequer

https://github.com/kbcao/sequer

and URL. Specifically, the RootEventId refers to the Even-
tId of the first event in the session, the EventId is a
unique ID that can identify an event, the EventTime indi-
cates the UTC time when the event occurred, the EventType
shows the type of the event (possible values of event type
are {Search,Post,QuestionsList,Home,Tags,PostHistory}), the
URL is the web request that triggers this event, which contains,
for example, the query content or the post ID, depending on
the EventType.

Our dataset contains 42,173,522 events from 16,164,506
sessions generated by 9,712,878 users, in which 9,046,179
events are queries. On Stack Overflow, the post visit event
and the query event are the two most common operations
performed by the users, accounting for 46.21% and 21.45% of
the events respectively. Users often reach a post in three ways:
links in the post (58.75%), search (17.25%), and question list
(5.69%). That is, in addition to the navigation between posts,
search is the most common way for the users to find a post.

From the session perspective, 30.82% of the sessions con-
tain query event(s), and the users perform an average of 1.82
queries in these sessions. Fig. 2 shows the distribution of the
number of sessions and their average session duration in terms
of the number of queries contained in the session. In this
figure, we can find as the number of queries in the session
increases, the number of such sessions decreases exponentially,
while the session duration increases linearly.

0

500

1000

1500

2000

2500

3000

0
1
2
3
4
5
6
7
8

0 5 10 15 20 25 30 35 40 45 50 55

Se
ss

io
n

Du
ra
�o

n

)stnuoc noisses(01 goL

Number of queries in one session

Sessions Dura�on

Se
co

nd
s

Fig. 2: The distribution of sessions number and duration in
terms of the number of queries contained in the session

To train our query reformulation model, we obtain the query
reformulation records (i.e., the user’s process of transforming
an original query into a better one) from the user’s navigation
sequence. We call these processes the query reformulation
threads. We first remove the sessions that do not contain a
query event or of which the last event is not a post visit.
The latter limitation is to ensure that the users finish the
query reformulation with a desired results. This yields a
dataset containing 8,546,915 events from 3,125,427 sessions
generated by 2,216,219 users, in which 4,631,756 events are
queries. We adopt a pattern-based method to extract the query
reformulation threads from each session following a greedy
approach:
· · · , q1, q2, · · · , qi, p1(optional), qi+1, · · · , qn, pm · · ·
In this pattern, we use qi to denote the i-th query event and

use pi to denote the i-th post visit event. All the events are
ordered chronologically. We conjecture that qn is a relatively

better query compared to the queries from q1 to qn−1. Some-
times users may need to visit posts in the query results to
determine whether a particular result is what they want, and
they may reformulate their queries again after visiting those
posts to get better results. Therefore, to make the pattern more
versatile and avoid misrecognition of reformulated queries,
post visit event is allowed in the sequence of query events.
More details on extracting query reformulation threads can be
found in Section IV-B.

III. EMPIRICAL STUDY OF QUERY REFORMULATION ON
STACK OVERFLOW

In this section, to motivate the required tool support, we
perform a formative study to understand the characteristics of
query reformulation by analyzing the Stack Overflow log data.

A. What are the characteristics of queries?

Query content analysis. We analyze the query strings to
investigate what the users are searching for on Stack Overflow.
First, we collect all query strings and apply traditional text
processing steps (i.e., removing punctuation, transforming to
lower case, excluding stop words) to them. Then, we identify
the most popular n-grams in the queries.

Table I shows the top-10 most frequent 1-grams, 2-grams,
3-grams, and 4-gram in the users’ queries. Programming
languages such as Python and Java, platforms such as Android,
data types such as string, and data structures such as array are
the most frequently queried terms. At the same time, “how
to” is the most frequently used phrase in the queries. Almost
every 3-gram starts with “how to”, next comes “what is” and
programming language qualifiers such as “in python” and “in
java”. It is worth noting that some Java and Python error
logs appear in the top ten 4-grams. The reason is that the
developers often paste these error logs directly into the search
box to perform queries, and logs like “exception in thread
"main"” and “ImportError: No module named” are the most
common error types.

TABLE I: The top-10 most frequent n-grams in the users’
queries

Rank 1-gram 2-gram 3-gram 4-gram

1 python how to how to use how to create a
2 java in python how to get how to make a
3 file what is how do i how do i use
4 string in java how to create exception in thread "main"
5 android failed to how to make ImportError: No module named
6 c# in swift could not find how to get the
7 error in r how to change no such file or
8 array unable to how can i how to add a
9 sql how do how to find how to check if

10 list not found how to install such file or directory

Query length analysis. The users may intentionally limit a
query’s length to avoid returning a few or even empty results
when using traditional search engines [21]. To investigate
whether this phenomenon exists when the users perform
queries on Stack Overflow, we use whitespaces as the separator
to compute the query length (i.e., word count). Note that we
treat words synthesized by CamelCase or underscore_case as

one word since these words often appear in code snippets
and can be regarded as the identifiers of variables, classes,
or methods.

Fig. 3 shows the distribution of query length via a box plot.
The median, mean, 25th percentile, and 75th percentile of
the length are 3, 3.6, 2, and 4 respectively. The distribution
shows that users do intentionally limit the length of their
queries to get better search results. However, we can also
easily find that the query length span of the outliers is very
large, and all values from 8 to 25 correspond to outliers. For
these queries, it is difficult for the search engine of Stack
Overflow to return satisfactory results. Because most search
engines are optimized only to handle common requests, they
use exact-match techniques in which all query words must
match a web page for web page retrieval [22]. A longer query
means lower matching probability and leads to lower-quality
search results. After manual analysis, we find that most of
these queries contain error messages or code snippets.

0 5 10 15 20 25

words

Fig. 3: The distribution of query length by using box plot
(note a few outliers with more than 25 words are removed)

Advanced search methods analysis. We notice that some of
the queries in the log are structured, which means the users
use advanced search methods3. Advanced search methods can
provide users with a convenient way to filter search results.
For example, the users can narrow the search results by
only considering the posts with the tag python or the posts
that have a minimum score of 500. Stack Overflow provides
29 advanced search methods to help the users filter search
results. We first apply regular expressions to the users’ queries
to identify the used advanced search method(s). Then we
calculate the ratio of the queries using advanced search and
the proportion of each advanced search method.

The result shows that 8.74% of the queries use the advanced
search. The top-10 most frequently used advanced search
methods, an illustrative example, and their proportions can be
found in Table II. Tag filtering, user filtering, and declaring
specific phrases are the top-3 most commonly-used advanced
search methods, accounting for 73.53%, 10.35%, and 10.00%
respectively.

B. Why are queries reformulated?

The users reformulate their queries for many reasons. For
example, the queries may not specify the corresponding pro-
gramming language, or some words in the queries may be
misspelled. We use the provided dataset to analyze why the
users reformulate their queries. We manually classify 384

3https://stackoverflow.com/help/searching

TABLE II: The top-10 most frequently used advanced search
methods

Type Example Proportion

tag [powershell] job output 73.53%
user user:8945947 10.35%
declare specific phrase ios "save to files" 10.00%
exclude phrase accordion -jquery 3.88%
Wildcard [xamarin*] does not support... 0.74%
question only is:question powershell version 0.44%
#answers answers:0 firebase 0.28%
multiple tags [scipy] or [numpy] array vs matrix 0.26%
score safari cache score:3 0.19%
creation date oauth read gmail created:05-04-2015.. 0.06%

randomly collected query reformulation threads4 into four
categories. The first and second author classified these 384
threads independently. For the cases without an agreement,
the final classification result is determined through discussions.
For the threads with more than two queries, if multiple query
reformulation types are identified, the type of reformulation
from the first query to the last query is used as the final
classification result. The Kappa inter-rater agreement [24] is
0.83, which shows the high agreement of classification.

Table III shows the manual classification results. In this ta-
ble, we can see that adding new information to the query is the
most common query reformulation operation, which accounts
for 40.1% of all threads, then comes modifying the query
(33.59%), and deleting information from the query (23.18%).
In the category of adding new information [25], we further
divide it into two sub-categories: (1) adding information about
specific programming languages or platforms, (2) adding new
requirements for the question or more detailed content. In the
category of modifying, we further divide it into three sub-
categories: (1) spelling and syntax checking [26], (2) simpli-
fying and refining the query to reformulate it into the most
commonly-used expression, (3) modifying to other content
related to the original query. In the category of deleting, we
further divide it into three sub-categories: (1) deleting some
unnecessary or less informative words, (2) deleting specific
information in error messages or code snippets (such as file
path, URL, function names, etc.), (3) deleting punctuation and
some mistyped symbols.

Based on the classification result, we can observe many
different types of query reformulation operations (such as
adding information, deleting information, and modifying their
expressions). Previous studies [27]–[30] mainly use rule-based
methods to perform automated query reformulation. However,
each of these methods can only target query reformulation
for a specific reason. Different rules need to be designed for
each situation and then implemented with different methods,
which is inefficient and difficult to achieve. For example,
for the query reformulation in the category of modifying,

4The number is the minimum number to be statistically representative of
a large dataset with a confidence level of 95% and error margin of 5% via a
commonly-used sampling method [23].

https://stackoverflow.com/help/searching

TABLE III: Categories of query reformulation

Category Sub-category Example Proportion

Add
Software or platform why to use sha1 => why to use sha1 in android 21.61%
Detailed requirement db file => open db file 18.49%

Category subtotal 40.10%

Modify
Spelling and syntax check .net string.emptyp => .net string.empty 19.01%

Simplify and refine list inside list for sightly => nested list in sightly 12.50%
Turn to related information python program freezes => python program hangs 2.08%

Category subtotal 33.59%

Delete
Detailed or unnecessary words C# update a keypairvalue in a Dictionary => C# update Dictionary 15.10%

Specific information in error message
Property ’getData’ does not exist on type ’ReactInstance’ =>

does not exist on type ’ReactInstance’
6.51%

Symbols or web links := dbms_datapump.open => dbms_datapump.open 1.56%
Category subtotal 23.18%

Others 3.13%

the user may completely change the expression of a query
(e.g., from “how to cut youtube embedded videos” to “how
to make embedded videos that only play certain parts”). It
is challenging to implement this type of reformulation by
using rule-based methods. Therefore, we find it necessary to
propose a general query reformulation approach, which is the
motivation of this study.

C. What is the scale of changes that query reformulation
involves?

In Section III-B, we find that when reformulating a query,
the users may add, remove, or replace some words in the
original query. To understand the scale of changes that query
reformulation involves, we measure the similarity between the
original query and the reformulated query. For each query
reformulation thread, n − 1 pairs of reformulation samples
(original, reformulated) can be extracted, that is {(q1, qn),
(q2, qn), · · · , (qn−1, qn)}. The first query original in the
pair is the initial query performed by the user, and the
second query reformulated is the user’s manual reformulated
query, which meets their requirement. We use a text-matching
algorithm with improved dynamic programming [31] to find
the character-level Longest Common Subsequence (LCS) be-
tween original and reformulated. Then the similarity between
original and reformulated can be defined as follows:

similarity(original, reformulated) =
2×Nmatch
Ntotal

(1)

where Nmatch is the number of characters in the LCS, and
Ntotal is the sum of the number of characters in original and
reformulated. The similarity score is in the range of 0 to 1.
The higher the similarity score, the fewer changes between
original and reformulated.

As shown in Fig. 4, among 1,121,185 query reformulation
pairs, 58.07% of the pairs are very similar (i.e., the similarity
score is larger than 0.7) with an average of 6.73 character level
modifications, which corresponds to 1.14 words according
to the average length of query words. The analysis result
indicates that most of the query reformulations only involve
minor changes.

0.84% 1.75%
3.75%

5.07%
6.84%

10.12%

13.57%

17.21%

22.59%

18.26%

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Co

un
ts

Th
ou

sa
nd

s

Similarity

Similarity

Fig. 4: Distribution of the similarity score of query
reformulation pairs

D. Summary and implications

Our empirical study shows that: (1) On Stack Overflow,
most of the users’ queries are simple and short with only 2
to 4 words, but there are also very long queries containing
error logs, code snippets, and structured queries with advanced
search patterns. (2) The users perform query reformulation for
various reasons, making it difficult to design a general query
reformulation model by only using rule-based methods. (3)
Most query reformulations only involve minor changes.

Considering the diversity of query reformulation patterns,
it would require significant effort to manually develop a
complete set of reformulation patterns, which is both time-
consuming and error-prone. Unlike enumerating all the rules,
the deep learning method [32] can automatically learn the
latent features from the dataset and these latent features are
helpful for downstream tasks.

Based on the above findings, we believe it is necessary
and feasible to propose an automated query reformulation ap-
proach based on deep learning. Our proposed approach would
benefit the developers and the Stack Overflow community.
In particular, the developers can use our automated query
reformulation tool to refine their queries and get better search
results, which can alleviate the effort of manual reformula-
tion. The Stack Overflow community can also use the query
reformulation model to enhance the users’ search experience.

IV. AUTOMATED QUERY REFORMULATION

A. Overview of SEQUER

Our formative study has shown a wide variety of query
reformulation behaviors. Since not all reformulation patterns
are amenable to automated tool support, we focus on query
reformulations that trigger minor changes to the original query
to develop our automated query reformulation approach. In
this work, we formulate query reformulation as a machine
translation problem, in which an original query is “translated”
into a reformulated query. We solve the problem using the
Transformer model [33].

The overall workflow of SEQUER is shown in Fig. 5.
SEQUER first extracts query reformulation threads for sam-
pling original queries and corresponding reformulated ones.
Then a large corpus of query reformulation pairs is gathered
for training the model, each of which contains the original
query and the corresponding reformulated one that triggers
only minor changes (in Section IV-B). To model the patterns
of query reformulation (such as spelling correction, expression
refinement, unnecessary word deletion), SEQUER trains a
Transformer-based model with a large parallel corpus of query
reformulation pairs (from Section IV-C to Section IV-E). Given
the users’ original queries, the trained model can suggest a list
of reformulated candidates for selection.

B. Collection of query reformulation pairs

Based on the description in Section II, query reformulation
threads can be extracted from the users’ navigation sequences
by pattern matching. The most important thing for the pattern
is how to ensure that qi and qi+1 are issued for the same
purpose, rather than two independent queries. Two constraints
are applied: (1) The character-level similarity between qi and
qi+1 must be greater than 0.7 by using Equation (1). (2)
The browsing time of the post p1 cannot be greater than 30
seconds. The first constraint can limit the change scale since
a large-scale change is likely to introduce a new query. The
second constraint can guarantee the post p1 is not what the user
wants, since a previous study [34] shows for an unsatisfactory
post, the user would not spend more than 30 seconds on it.

We set the minimum number of query events before the final
post visiting event in the thread to 2. After identifying all the
query reformulation threads, we perform the following data
cleaning steps. For consecutive identical queries in the thread,
we only keep one of these identical queries and remove the
rest to avoid generating duplicate query reformulation pairs.
We also remove threads containing queries with non-English
words, since non-English words are not encouraged to be used
on Stack Overflow5. After the above data cleaning, we pair
each query between q1 to qn−1 with qn (i.e., (q1, qn), (q2, qn),
· · · , (qn−1, qn)) as the training instances. From the provided
dataset, we extract a total of 1,121,185 query reformulation
pairs.

Some of these reformulation pairs are hard-to-predict due
to their large-scale modifications. After randomly sampling

5https://stackoverflow.blog/2009/07/23/non-english-question-policy/

reformulation pairs with different similarity, we carry out a
pilot study to determine the similarity threshold, which can
be used to identify large-scale modifications. The results show
that reformulation pairs with a similarity score higher than 0.7
are predictable, while the remaining pairs (i.e., reformulating
by large-scale modifications) cannot be predicted even by
humans. As analyzed in Section III-C, 58.06% of the query
reformulations involve minor modifications with a similarity
of at least 0.7. Therefore, we only consider these similar-
enough query reformulations, which results in 651,036 query
reformulation pairs.

C. Byte pair encoding

Traditional word segmentation methods include whitespace-
separated word level and character level segmentation. How-
ever, word-level embedding cannot handle the Out-Of-
Vocabulary (OOV) problem [35], and the character level is too
fine-grained, resulting in the loss of high-level information.
Therefore, we adopt the BPE (Byte Pair Encoding) [36],
which can effectively interpolate between word-level inputs
for frequent symbol sequences and character-level inputs for
infrequent symbol sequences.

The BPE algorithm contains multiple iterations. In each
iteration, it calculates each consecutive byte pair’s frequency
and finds the most frequent one, then merges the two byte
pair tokens into one token. This encoding approach can divide
words into sub-words like encoding the common words at the
word level while encoding the rare words at the character level.
Since the form of the users’ queries on Stack Overflow varies,
using BPE can better identify the content of the users’ queries.
For example, misspelled words can be divided into several
correctly spelled sub-words to alleviate the OOV problem’s
impact. Words with camel-case style can be separated into
several sub-words and then each sub-word can be identified.
Besides, using BPE to separate words with their affixes can
help the model learn the relationships between them. After
applying the BPE algorithm on the corpus, we get a vocabulary
composed of sub-words, which is used as the dictionary for
our model.

D. Transformer

With the introduction of the attention mechanism [37], many
neural machine translation approaches integrate the attention
mechanism with sequence transduction models like Convo-
lution Neural Network (CNN) and Recurrent Neural Network
(RNN) to improve their performance. Even so, the CNN-based
network architectures require many layers to capture long-
term dependencies, leading to high computational cost, and
operations in RNN-based network structures cannot be par-
allelized, resulting in low efficiency. To address these issues,
Transformer [33] is proposed, which is the first transduction
model entirely relying on the attention mechanism and has
shown competitive performance on various tasks (such as
machine translation [33], image captioning [38], document
generation [39], and syntactic parsing [40]).

https://stackoverflow.blog/2009/07/23/non-english-question-policy/

Activity Data
Query

Sequence

Original
Query

Reformulated
Query

Pattern based
Data Extraction

Alignment

Preprocessing

Training Data

Preprocessing

Training Data

Byte Pair
Encoding

Byte Pair
Encoding

Training
Reformulation

Model

Original
Query

Reformulated
Query

Data Cleaning

Transformer
Decoder

Transformer
Encoder

Fig. 5: The overall workflow of our approach SEQUER

The most significant difference between Transformer and
other sequence transduction models like CNNs and RNNs is
that it relies entirely on self-attention (called “Scaled Dot-
Product Attention”) to obtain global dependencies, and the at-
tention weights are defined by how each word of the sequence
is influenced by all the other words in the sequence. The
self-attention mechanism creates shortcuts between the current
token and all the other context tokens to determine the current
token vector for the final input representation. As weights of
these shortcuts are customizable, the self-attention mechanism
is able to capture global dependencies without using many
layers of convolution and pooling in CNN-based models. At
the same time, the calculation in self-attention is implemented
with highly optimized matrix multiplication, and thus resolves
the low efficiency caused by the RNN-based models, which
sequentially encode the input tokens. Intuitively, for an input
sequence, first, a neural network is employed to map the input
into three matrices: query Q, key K, and value V . Then, the
dot products of the queries Q with all keys K is divided
by
√
dk (dk is the dimension of the queries), and a softmax

function is applied to obtain the weights for the values. Finally,
the weighted value is used as the representation of each input.

Attention (Q,K, V) = softmax

(
QKT

√
dk

)
V (2)

Instead of performing a single self-attention function, the
Transformer employs a multi-head self-attention, which lin-
early projects the queries Q, keys K and values V h times
with different, learned linear projections respectively, where h
is the number of heads. To obtain the temporal relationship of
the words, the Transformer adds positional embedding to the
input embedding.

Self-attention can be regarded as a basic calculation in
Transformer. The Transformer model comprises an encoder
and a decoder, which are actually multiple identical encoder
and decoder blocks stacked on top of each other with the same
number of units. Each encoder block has one layer of multi-
head self-attention followed by another layer of Feed Forward
Network (FFN). On the other hand, each decoder has an extra
masked multi-head self-attention, which prevents the model
from seeing the generated words during parallel training. On
the encoder side, the multi-head self-attention layer’s input is
the input embedding with temporal information, and the layer
output is normalized and sent into an FFN, which consists of
two linear transformations with a ReLU activation. The output

of the encoder on the top of the stack is a set of attention
vectors K and V , which are used by the decoder to determine
the token it should pay attention to. On the decoder side,
the previous output is used as the input to the masked multi-
head self-attention layer. After that, another multi-head self-
attention layer with subsequent FFN generates decoder output
ht by getting the query matrix Q from the masked multi-head
self-attention layer, the key K and value V matrices from the
output of the encoder stack. Finally, the output of the decoder
stack ht is sent to a fully connected neural network to get
the logits vectors, and then a softmax layer to predict the
probabilities of the next token.

P (wt+1|w1, · · · , wt) = softmax(htW + b) (3)

where ht is the output of the decoder stack.

E. Beam search

During decoding, for each time step t, the Transformer
model will output the word with the highest conditional
probability yt = argmaxy∈D P (y|y1, · · · , yt−1) via greedy
search from |D| number of words, where D represents all
the words in the word dictionary. Since we calculate the
conditional probability of generating an output sequence based
on the input sequence

∏T
t=1 P (yt|y1, · · · , yt−1), where T is

the maximum length of the output sequence, the main problem
with greedy search is that there is no guarantee that the optimal
sequence will be obtained. The reason is that although the
greedy strategy ensures that the output candidate with the
highest probability is picked up for each time step, it cannot
ensure that the conditional probability of the entire output
sequence obtained is the highest.

Beam search [41] is an improved algorithm of greedy
search, and beam size k is its hyper-parameter. The decoding
process using beam search is as follows: At time step 1, k
words with the highest probability are selected as the first word
of k candidate output sequences cs1. Then, at time step i, k
output sequences with the highest conditional probability csi
will be selected from k|D| possible output sequences based on
csi−1. After T iterations, k sequences with the highest score
will be selected from CS as the beam search result, where T
is the maximum number of tokens of the output sequence, and
CS is the collection from cs1 to csi. Note, for each sequence,
portions including and after special end-of-sequence tokens
are discarded. The score is calculated as follows:

Fig. 6: A screenshot of our query reformulation plugin for
the search engine of Stack Overflow

1

Lα
logP (y1, · · · , yL) =

1

Lα

L∑
t=1

logP (yt|y1, · · · , yt−1)

(4)
where L is the length of the sequence in CS and α is the
length normalization parameter.

F. Implementation

In our implementation, the maximum vocabulary size for
BPE [36] is set to 10,000. For the Transformer, we use the
tensor2tensor library [42] developed by the Google Brain
team. The Transformer model contains four attention heads
with four encoder and decoder layers, with hidden_size = 512.
During the model training, the parameters are learned by
back propagation [43] with Adam optimizer [44] to minimize
the error rate. We train our model with batch_size = 256,
learning_rate = 0.0001 for 147 epochs on 4 Nvidia V100
GPU (32G memory) for about 8 hours. During decoding,
the hyper-parameter k of beam search is set to 10 to ensure
the probability of finding the optimal solution. The length
normalization parameter α is set to 0.6, which is a common
practice in neural machine translation [45].

To make our work more practical, we develop a browser
plugin6 based on Tampermonkey, which is a popular user-
script manager. The browser plugin will automatically analyze
the query content and recommend the top-10 query reformu-
lation candidates to the users for selection (a screenshot can
be found in Fig. 6). Although the plugin is designed to only
work on Stack Overflow now, it can be easily extended to
other software-specific Q&A sites.

V. QUALITY OF RECOMMENDED QUERY REFORMULATION

A. Dataset

From the 651,036 query reformulation pairs, we randomly
take 520,830 (80%) of these query pairs as the training set
to train the model, 65,103 (10%) as the validation set to tune
model hyper-parameters, and 65,103 (10%) as the testing set
to evaluate the quality of recommended reformulations.

6https://github.com/kbcao/sequer

B. Baselines

As analyzed in Section III-B, many queries are reformulated
to fix grammatical errors. Therefore, we first adopt a popular
grammatical error correction (GEC) tool as the baseline.
LanguageTool7 is an open-source proof-reading tool for more
than 20 languages. This tool’s style and grammar checker is
rule-based and has been developed for over ten years.

As our task is query reformulation, and Google is the
most popular search engine in the world, we choose Google
Prediction Service (GooglePS) [19] as a baseline. Google uses
a prediction service to help complete searches in the search
box or address bar within Chrome. These suggestions are
based on the real searches that happen on Google. Common
and trending queries relevant to the strings entered by the users
are shown in the drop-down bar for the users to choose8. Since
Google has accumulated a large-scale dataset of the users’
queries, GooglePS can efficiently and accurately reformulate
users’ queries, such as correcting misspelled words, complet-
ing words that the users are typing, and appending the next
possible word.

The query reformulation task can also be regarded as a
translation task (i.e., translating the original query into the
reformulated query). Therefore, we take the most classical
neural machine translation model seq2seq [17] as our baseline.
It contains one Long Short-Term Memory (LSTM) model [46]
as the encoder, which can encode the original query to an
embedding vector, and another LSTM model, which can
decode that embedding vector to the reformulated query. We
also add the seq2seq model with the attention mechanism as
another baseline.

Besides, there are many studies in information re-
trieval [47]–[50] about query suggestion. We select HRED-
qs [18] as one of our baselines, which is a representative
hierarchical and session-based query suggestion model with
full source code release. HRED-qs is trained with our dataset.
In particular, given a query in the session, HRED-qs first
encodes the information seen up to the position by a query-
level RNN encoder and a session-level RNN encoder. Then it
uses the following decoder to predict the next query. To keep
the setting of all baselines consistent, we only feed the last
query before the reformulated one in the session to HRED-qs.

To make a fair comparison, we employ the same data
preprocessing method and Byte Pair Encoding for seq2seq
and HRED-qs as SEQUER, and we perform hyper-parameter
optimization with grid search [51].

C. Evaluation metrics

Query reformulation is similar to the grammar error correc-
tion task (i.e., revising some words in the original sentence
for generating the target sentence). Therefore, we evaluate the
query reformulation with the metrics used in the GEC task
(i.e., GLEU , M 2 and ExactMatch).

7https://languagetool.org
8https://www.blog.google/products/search/how-google-autocomplete-

works-search

https://github.com/kbcao/sequer
https://languagetool.org

GLEU (General Language Evaluation Understanding) [52],
[53] is a customized metric from BLEU (BiLingual Eval-
uation Understudy) [54], which is a widely used metric to
measure the performance of machine translation approaches.
Since only part of the source sentence will be changed in
the GEC task, which is different from the machine translation
task, this motivates a small change to BLEU that computes
n-gram precision over the reference but assigns more weight
to n-grams that have been correctly changed from the source.
Therefore, compared with BLEU , GLEU is more suitable for
evaluating query reformulation in our study.

MaxMatch (or M 2) [55] is another widely used GEC
evaluation metric that computes the sequence of phrase-level
edits between a source sentence and a system hypothesis that
achieves the highest overlap with the gold-standard annota-
tion. These edits are scored by precision , recall , and F1 .
Specifically, in the scenario of query reformulation, M 2@P
represents the proportion of edits of the original query given by
an approach that appears in the user’s manual reformulation.
M 2@R represents the proportion of edits of the original query
by users that are correctly predicted by an approach. M 2@F1
is the harmonic mean of M 2@P and M 2@R.
ExactMatch (EM) evaluates the probability of a perfect

match between the query provided by a specific approach
and the user’s manually reformulated one. Since SEQUER
uses beam search during decoding, it can suggest multiple
reformulations for an original query, for the decoding results
of SEQUER with different beam size, we can calculate EM@1 ,
EM@5 , and EM@10 , where EM@n means one case will be
considered positive as long as one of n reformulation results
returned by beam search matches the ground truth.

D. Evaluation results

We report our evaluation results by answering the following
two research questions.

1) RQ1: Can our approach SEQUER generate better refor-
mulated queries than the baselines?:

Table IV shows the evaluation results of query reformulation
on the testing set of SEQUER and baselines in terms of all
the evaluation metrics. SEQUER outperforms all state-of-the-
art baselines by significant margins in terms of all metrics.
Compared with the best baseline seq2seq (with attention),
SEQUER achieves 5.6% and 4.75% improvement in terms of
EM@10 and GLEU . To better illustrate our results, Table V
lists examples of query reformulations by different approaches,
and more examples can be found on our project site9.

GEC tools perform well in correcting misspellings (“strin”
to “string” in Example 1), grammar issues (“playing” to “play”
in Example 2), and sentence format (“currentdate” to “current
date” in Example 3). However, they only achieve a 5.87%
exact match, as spelling errors only account for 19% of the
reasons for the users’ query reformulations (in Section III-B).
In addition, they have difficulty in detecting spelling errors
specific to the programming field. For example, they cannot

9https://github.com/kbcao/sequer

TABLE IV: Performance of automated query reformulation

Approach EM@1 EM@5 EM@10 GLEU M2@P M2@R M2@F1

LanguageTool — — 5.87 53.27 15.31 6.11 8.73
GooglePS 6.20 8.14 8.58 61.07 24.67 25.84 25.24
HRED-qs 10.40 17.63 20.01 56.85 31.80 25.82 28.50
seq2seq 11.02 23.11 28.23 61.30 36.30 25.62 30.04

seq2seq+Attn. 14.53 28.47 33.77 62.93 35.93 21.15 26.62
SEQUER 22.21 33.47 39.37 67.68 39.67 31.97 35.41

detect any misspelled words in “how to import bumpy array” where
the word “bumpy” is the wrong spelling of “numpy” (a Python
library). Instead, SEQUER can correct these software-specific
misspelled words by learning the domain knowledge from our
software-specific dataset (another example is from “C3” to
“C#” in Example 4).

GooglePS can perform complex reformulations by learning
from billions of queries Google processes every day, such as
adding important missing keywords (“loop” in Example 5) and
suggesting language/platform limitations (“python” in Exam-
ples 1 and 6). However, as a general-purpose search engine,
Google does not perform well in software-specific query refor-
mulation, especially for unpopular software-specific queries.
For example, GooglePS cannot reformulate the query “/us-
r/bin/ld: skipping incompatible libpthread.so” in Example 7, but
SEQUER can remove the file directory to make it more general.
As the file directory often varies between developers’ coding
environments, it should be removed to keep the query more
general, for retrieving more accurate results. By learning from
massive query reformulations, which are software-specific
from Stack Overflow, SEQUER can effectively revise such
queries by applying software-specific reformulation strategies
(similar examples in Examples 8 and 9).

Since using the same training data as SEQUER, the HRED-
qs, seq2seq and seq2seq with attention model can capture
software-specific semantics during query reformulation. This
is the reason why they achieve better performance than the
other baselines. However, since the goal of HRED-qs is ba-
sically “next query prediction”, the context-aware hierarchical
encoding does not enhance the ability of the decoder to gener-
ate a reformulated query, but may obscure the information of
the original query, causing a deviation of the decoder result.
For example, “comboox lost focus” should be reformulated to
“combobox lost focus”, but HRED-qs reformulates it to “iphone x
lost focus”. Besides, the problem for both HRED-qs and seq2seq
is that the input is encoded into one single vector representa-
tion, which may not be sufficient to store all the information,
especially for long queries. For example, “Allow user to paste url
with .ph and rpeturn clean url” should be reformulated to “Allow user
to paste url with .php and return clean url”. However, seq2seq model
can only reformulate it to “Allow user to paste url with php” due to
the query length. On the contrary, SEQUER does not have this
problem by using an attention-based Transformer model.

In addition to the types of query reformulations mentioned
above, SEQUER also outperforms baselines in more complex
reformulations such as revising with more commonly-used

https://github.com/kbcao/sequer

TABLE V: Examples of query reformulation by different approaches (“—” represents no reformulation suggestions)

ID Original Query GooglePS seq2seq + Attn. SEQUER

1 pandas delete last characters in strin python delete last characters in string pandas delete last characters in string python delete last characters in string
2 playing sound in swift3 playing sound in swift 3 — play sound in swift 3
3 swift grab currentdate — swift grab current date swift get current date
4 assign string to number C3 — assign string to number C# assign string to number C#
5 do and while in java do and while loop in java — do and while loop in java
6 requests negotiate requests negotiate python python requests negotiate [python] requests negotiate
7 /usr/bin/ld: skipping incompatible libpthread.so — libskipping incompatible libpthread.so /usr/bin/ld: skipping incompatible libpthread.so
8 subtracting the pandas series rf from all columns — subtracting the pandas series rf from all columns subtracting the pandas series rf from all columns
9 <trigger>Missing report definition</trigger> — <trigger>Missing report definition</trigger> <trigger> Missing report definition <trigger>
10 opencv scale image opencv scale image to 0 1 — opencv resize image
11 a* search a* search example a* search python a* star search
12 df -h show disk — — "df -h" show disk
13 resteasy how to support websocket — resteasy how to support websocket resteasy how to support websocket
14 volume control programatically android android volume control programmatically — volume control android

software-specific terms (e.g., “swift grab currentdate” to “swift get
current date” in Example 3, “opencv scale image” to “opencv resize
image” in Example 10), replace symbols with text (e.g., “a*
search” to “a star search” in Example 11) or enclose symbols that
will accidentally trigger advanced search in quotation marks
(e.g., “df -h show disk” to “"df -h" show disk” in Example 12 to
prevent showing results for “df show disk” and not containing
“h”), and simplify or refine the query (e.g., “resteasy how to support
websocket” to “resteasy websocket” in Example 13 and “volume
control programatically android” to “volume control android” in Example
14).

2) RQ2: What types of query reformulations are challeng-
ing for SEQUER to deal with?:

Although SEQUER can achieve the best performance com-
pared to state-of-the-art baselines, SEQUER also makes mis-
takes in some query reformulations. We manually check some
randomly sampled erroneous reformulations and identify two
main reasons why our reformulations do not match the ground
truth.

First, some queries are edited to add more information,
which is beyond the context of the original query such as
“python covert variable to integer” to “python convert hexadecimal to
integer” and “git commit -am” to “git commit -am vs git add”. Although
SEQUER can successfully revise the misspelling “covert” to
“convert”, it cannot guess the replacement of “variable” with
“hexadecimal” or adding “vs git add” by considering only
the local context of the query. To support such complicated
reformulation, we need to consider the broader context of the
search (e.g., previous queries) in the future.

Second, the same meaning may be expressed in different
ways. For example, given the original query “remove , from input”,
SEQUER recommends the reformulated query as “remove comma
from input”, however, the ground truth is “remove "," from input”.
Similarly, given the original query “read mouse cursor”, SEQUER
recommends the reformulated query as “c# read mouse cursor”,
however, the ground truth is “read mouse cursor in C#”. Although
the users’ reformulation results and our recommendations are
not exactly matched, they convey the same meaning. Some of
our recommendations are of higher quality than the users’ re-
formulation and may lead to better search results. That is also
why the performance of SEQUER is highly underestimated.

E. Discussion

In Section V-D, we evaluate the quality of reformulations
from different approaches by comparing them with users’
manual ones with the metrics used in the GEC task. However,

none of these metrics consider the model effectiveness (i.e.,
the ability of the reformulated query to retrieve the desired
post). Therefore, we further evaluate the retrieval effectiveness
of SEQUER in this section.

For each query reformulation thread (mentioned in Sec-
tion II), we collect pairs of users’ original query and finally-
visited post, which is assumed to be the target post. These
query-post pairs can be used to demonstrate the retrieval
effectiveness of the model. For each pair, we adopt both our
approach and baselines in Section V-B to reformulate the query
and check the ranking of the target post in all candidate posts
on Stack Overflow. All the 65,103 queries in the testing set
are paired with their corresponding finally-visited post as the
evaluation data.

We use MRR (Mean Reciprocal Rank) as the metric for
retrieval effectiveness evaluation. MRR is the average of the
reciprocal ranks (i.e., the multiplicative inverse of the target
post’s rank in the search result) of the search results for all the
queries. For example, given a query, if the target post ranks
fifth in the search result, the reciprocal rank is 1/5=0.2. A
higher MRR value indicates a better search result.

The comparison results between SEQUER and baselines in
terms of MRR can be found in Table VI. SEQUER achieves
the best performance (i.e., 129.33% boost in terms of MRR
to the original query). Even compared with the best baseline
seq2seq+Attn., SEQUER still achieves a 23.7% boost. This
result shows that the reformulated query given by SEQUER is
not only the closest to manual reformulation, but also has the
best retrieval effectiveness among all the baselines. Therefore,
SEQUER can effectively help users obtain better search results
via high-quality query reformulation.

TABLE VI: Evaluation result of retrieval effectiveness

Approach MRR Boost Rate

Original Query 0.075 —
LanguageTool 0.071 5.33% ↓

GooglePS 0.083 10.67% ↑
HRED-qs 0.108 44.00% ↑
seq2seq 0.127 69.33% ↑

seq2seq+Attn. 0.139 85.33% ↑
SEQUER 0.172 129.33% ↑

VI. RELATED WORK

Information Retrieval (IR) has been widely used in software
engineering (SE) tasks, such as traceability recovery [56], [57],

feature location [58], [59], library migration [2], [60], [61],
API search [62], [63] and GUI design seeking [64]–[66]. In
this section, we summarize the related works about query
reformulation in general IR and its application in SE domain.

A. Query reformulation in general information retrieval

To help users better refine their queries, there are many stud-
ies on query expansion [67], [68], query reformulation [69],
[70] and query suggestion [47]–[50] in information retrieval.
In detail, Jiang et al. [48] tried to provide query suggestions
based on previous queries in the session by introducing a
binary classifier and an RNN-based decoder as the query dis-
criminator and the query generator. Chen et al. [49] proposed
an attention-based hierarchical neural query suggestion model
that combines a session-level neural network and a user-level
neural network to model the users’ short and long term search
history.

However, most of these studies are session-based or user
profile-based and apply to general text search. Different from
general text search, search in the software engineering domain
is very specific, with domain-specific terms and code snippets,
which make general approaches not applicable in this scenario.
Therefore, we carry out this study based on domain-specific
dataset for providing a software-specific automated query
reformulator.

B. Query reformulation for document search in SE

The performance of document search in software engineer-
ing relies on the domain-specific query reformulation. Haiduc
et al. proposed several metrics to measure query difficulty [71],
query specificity [72], and query quality [73] for concept loca-
tion. Based on these metrics, they [74], [75] further developed
a machine learning model to adopt one of four strategies to
recommend revised queries. Rahman et al. [76] proposed a
word-embedding based method to extract semantically similar
terms from questions on Stack Overflow, hence suggesting
semantically relevant queries. Li et al. [77] shared a similar
idea by building a software-specific domain lexical database
based on tags on Stack Overflow and optimized the input
queries to help search software-related documents. Chen et
al. [78] reformulated the Chinese queries to English ones for
searching related posts on Stack Overflow.

Most of these previous studies generate query reformulation
based on heuristic rules or lexical databases, which depends
greatly on the quality and size of the rules or the database.
In contrast, SEQUER is fully data-driven, which is based on
large-scale real-world developers’ queries on Stack Overflow.
We believe that SEQUER can automatically learn reformulation
patterns, and generate better reformulation result.

C. Query reformulation for code search in SE

Code search plays an important role in software engineering,
many previous studies focused on query reformulation for code
search. Sisman et al. [30] proposed a query reformulation
framework by enriching the users’ queries with certain spe-
cific terms drawn from the highest-ranked retrieved artifacts.

Howard et al. [79] leveraged similar word pairs in comments
and method signatures, which are semantically similar in
software engineering to reformulate users’ queries. Lu et
al. [68] took a similar method, i.e., identifying each term in
the original query and extends with synonyms generated from
WordNet. Nie et al. [67] identified software-specific expansion
words from high-quality pseudo relevance feedback question
and answer pairs on Stack Overflow. Rahman et al. [80]
identified terms from the source code using a novel term
weight-CodeRank, and then suggested effective reformulation
of the original query by exploiting the source document
structures, query quality analysis, and machine learning. They
further proposed a query reformulation technique that suggests
a list of relevant API classes for a natural language query by
exploiting keyword-API associations from the questions and
answers on Stack Overflow [70]. Similarly, Sirres et al. [81]
augmented the original query with structural code entities by
mining questions and answers from Stack Overflow.

Different from code search, our study mainly focuses on
software-specific document search. Moreover, SEQUER can
complement these code search approaches to reformulate the
users’ queries better.

VII. CONCLUSION

Constructing an efficient query to search through a large
amount of programming knowledge is a challenging task for
developers, especially for novices. Our empirical study on a
large scale real-world query records on Stack Overflow indi-
cates that developers always reformulate their queries to obtain
the desired results. To assist with developers’ efficient search,
we propose a deep learning-based approach SEQUER to learn
query reformulation patterns from query logs provided by
Stack Overflow. Given the original query, it can automatically
recommend a list of reformulation candidates for selection.
Evaluation on large-scale archival query reformulations veri-
fies the superiority of SEQUER compared with five state-of-
the-art baselines.

In the future, we will further improve the performance of
SEQUER by incorporating more contextual information such as
the users’ profile, query history, and their post visiting history.
Moreover, we plan to take our approach one step further by
directly recommending posts for the query. Based on users’
queries and corresponding clicked posts provided by Stack
Overflow, we could develop a domain-specific model to learn
the relationships between them.

ACKNOWLEDGEMENT

The authors would like to thank Stack Exchange Inc. for
sharing the dataset, and the anonymous reviewers for their
insightful comments and suggestions. This work is supported
in part by the National Natural Science Foundation of China
(Grant Nos. 61872263, 61702041 and 61202006), the Open
Project of State Key Laboratory for Novel Software Technol-
ogy at Nanjing University (Grant No. KFKT2019B14), and
the Australian Research Council (DE180100153).

REFERENCES

[1] Y. Huang, C. Chen, Z. Xing, T. Lin, and Y. Liu, “Tell them apart: distill-
ing technology differences from crowd-scale comparison discussions,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 214–224.

[2] C. Chen and Z. Xing, “Mining technology landscape from stack over-
flow,” in Proceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, 2016, pp. 1–10.

[3] C. Chen, Z. Xing, and L. Han, “Techland: Assisting technology land-
scape inquiries with insights from stack overflow,” in 2016 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2016, pp. 356–366.

[4] R. Abdalkareem, E. Shihab, and J. Rilling, “What do developers use the
crowd for? a study using stack overflow,” IEEE Software, vol. 34, no. 2,
pp. 53–60, 2017.

[5] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What
do developers search for on the web?” Empirical Software Engineering,
vol. 22, no. 6, pp. 3149–3185, 2017.

[6] C. Chen and Z. Xing, “Towards correlating search on google and asking
on stack overflow,” in Proceedings of 2016 IEEE 40th Annual Computer
Software and Applications Conference. IEEE, 2016, pp. 83–92.

[7] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas,
influences, and trends of the new age,” ACM Computing Surveys, vol. 40,
no. 2, pp. 1–60, 2008.

[8] Z.-J. Zha, L. Yang, T. Mei, M. Wang, Z. Wang, T.-S. Chua, and X.-
S. Hua, “Visual query suggestion: Towards capturing user intent in
internet image search,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 6, no. 3, pp. 1–19, 2010.

[9] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 450–461.

[10] X. Chen, C. Chen, D. Zhang, and Z. Xing, “Sethesaurus: Wordnet
in software engineering,” IEEE Transactions on Software Engineering,
2019.

[11] B. J. Jansen, D. L. Booth, and A. Spink, “Patterns of query reformulation
during web searching,” Journal of the american society for information
science and technology, vol. 60, no. 7, pp. 1358–1371, 2009.

[12] M. Sloan, H. Yang, and J. Wang, “A term-based methodology for query
reformulation understanding,” Information Retrieval Journal, vol. 18,
no. 2, pp. 145–165, 2015.

[13] L. Bing, W. Lam, T.-L. Wong, and S. Jameel, “Web query reformulation
via joint modeling of latent topic dependency and term context,” ACM
Transactions on Information Systems (TOIS), vol. 33, no. 2, pp. 1–38,
2015.

[14] J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng, “Learning user
reformulation behavior for query auto-completion,” in Proceedings of the
37th international ACM SIGIR conference on Research & development
in information retrieval, 2014, pp. 445–454.

[15] S. Y. Rieh et al., “Analysis of multiple query reformulations on the web:
The interactive information retrieval context,” Information Processing &
Management, vol. 42, no. 3, pp. 751–768, 2006.

[16] J. Huang and E. N. Efthimiadis, “Analyzing and evaluating query
reformulation strategies in web search logs,” in Proceedings of the 18th
ACM conference on Information and knowledge management, 2009, pp.
77–86.

[17] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of Advances in neural information
processing systems, 2014, pp. 3104–3112.

[18] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. Grue Simonsen, and J.-Y.
Nie, “A hierarchical recurrent encoder-decoder for generative context-
aware query suggestion,” in Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, 2015, pp.
553–562.

[19] R. C. Cornea and N. B. Weininger, “Providing autocomplete sugges-
tions,” Feb. 4 2014, uS Patent 8,645,825.

[20] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: a case study,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 191–201.

[21] P. Mahdabi, M. Keikha, S. Gerani, M. Landoni, and F. Crestani,
“Building queries for prior-art search,” in Proceedings of Information
Retrieval Facility Conference. Springer, 2011, pp. 3–15.

[22] D. Downey, S. Dumais, D. Liebling, and E. Horvitz, “Understanding
the relationship between searchers’ queries and information goals,” in
Proceedings of the 17th ACM conference on Information and knowledge
management, 2008, pp. 449–458.

[23] R. Singh and N. S. Mangat, Elements of survey sampling. Springer
Science & Business Media, 2013, vol. 15.

[24] A. J. Viera, J. M. Garrett et al., “Understanding interobserver agreement:
the kappa statistic,” Fam med, vol. 37, no. 5, pp. 360–363, 2005.

[25] C. Chen, X. Chen, J. Sun, Z. Xing, and G. Li, “Data-driven proactive
policy assurance of post quality in community q&a sites,” Proceedings
of the ACM on human-computer interaction, vol. 2, no. CSCW, pp. 1–22,
2018.

[26] C. Chen, Z. Xing, and Y. Liu, “By the community & for the community:
a deep learning approach to assist collaborative editing in q&a sites,”
Proceedings of the ACM on Human-Computer Interaction, vol. 1, no.
CSCW, pp. 1–21, 2017.

[27] J. Ooi, X. Ma, H. Qin, and S. C. Liew, “A survey of query expansion,
query suggestion and query refinement techniques,” in Proceedings
of 2015 4th International Conference on Software Engineering and
Computer Systems. IEEE, 2015, pp. 112–117.

[28] W. B. Croft, “Approaches to intelligent information retrieval.” Informa-
tion Processing and Management, vol. 23, no. 4, pp. 249–54, 1987.

[29] X. Wang and C. Zhai, “Mining term association patterns from search
logs for effective query reformulation,” in Proceedings of the 17th ACM
conference on Information and knowledge management, 2008, pp. 479–
488.

[30] B. Sisman and A. C. Kak, “Assisting code search with automatic query
reformulation for bug localization,” in Proceedings of 2013 10th Working
Conference on Mining Software Repositories. IEEE, 2013, pp. 309–318.

[31] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” in Proceedings Seventh International Sym-
posium on String Processing and Information Retrieval. SPIRE 2000.
IEEE, 2000, pp. 39–48.

[32] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” IEEE Computational
IntelligenCe Magazine, vol. 13, no. 3, pp. 55–75, 2018.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of Advances in neural information processing systems, 2017, pp. 5998–
6008.

[34] C. Liu, R. W. White, and S. Dumais, “Understanding web browsing
behaviors through weibull analysis of dwell time,” in Proceedings of the
33rd international ACM SIGIR conference on Research and development
in information retrieval, 2010, pp. 379–386.

[35] K. Cao and M. Rei, “A joint model for word embedding and word
morphology,” arXiv preprint arXiv:1606.02601, 2016.

[36] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[38] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhu, G. Li, and J. Wang, “Unblind
your apps: Predicting natural-language labels for mobile gui components
by deep learning,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 322âC“334.
[Online]. Available: https://doi.org/10.1145/3377811.3380327

[39] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and
N. Shazeer, “Generating wikipedia by summarizing long sequences,”
arXiv preprint arXiv:1801.10198, 2018.

[40] N. Kitaev and D. Klein, “Constituency parsing with a self-attentive
encoder,” arXiv preprint arXiv:1805.01052, 2018.

[41] P. Koehn, “Pharaoh: a beam search decoder for phrase-based statistical
machine translation models,” in Proceedings of the Conference of the
Association for Machine Translation in the Americas. Springer, 2004,
pp. 115–124.

[42] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws,
L. Jones, L. Kaiser, N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer,
and J. Uszkoreit, “Tensor2tensor for neural machine translation,” CoRR,
vol. abs/1803.07416, 2018.

[43] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

https://doi.org/10.1145/3377811.3380327

[45] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
“Learning deep transformer models for machine translation,” arXiv
preprint arXiv:1906.01787, 2019.

[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[47] W. U. Ahmad, K.-W. Chang, and H. Wang, “Context attentive document
ranking and query suggestion,” in Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2019, pp. 385–394.

[48] J.-Y. Jiang and W. Wang, “Rin: reformulation inference network for
context-aware query suggestion,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management,
2018, pp. 197–206.

[49] W. Chen, F. Cai, H. Chen, and M. de Rijke, “Attention-based hierar-
chical neural query suggestion,” in The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, 2018,
pp. 1093–1096.

[50] W. U. Ahmad, K.-W. Chang, and H. Wang, “Multi-task learning for
document ranking and query suggestion,” in International Conference
on Learning Representations, 2018.

[51] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in neural information
processing systems, 2011, pp. 2546–2554.

[52] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, “Ground truth for
grammatical error correction metrics,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
2: Short Papers), 2015, pp. 588–593.

[53] ——, “Gleu without tuning,” arXiv preprint arXiv:1605.02592, 2016.
[54] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method

for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[55] D. Dahlmeier and H. T. Ng, “Better evaluation for grammatical error
correction,” in Proceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2012, pp. 568–572.

[56] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the equiv-
alence of information retrieval methods for automated traceability link
recovery,” in Proceedings of 2010 IEEE 18th International Conference
on Program Comprehension. IEEE, 2010, pp. 68–71.

[57] C. McMillan, D. Poshyvanyk, and M. Revelle, “Combining textual and
structural analysis of software artifacts for traceability link recovery,” in
Proceedings of 2009 ICSE Workshop on Traceability in Emerging Forms
of Software Engineering. IEEE, 2009, pp. 41–48.

[58] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance
feedback in ir-based concept location,” in Proceedings of 2009 IEEE
International Conference on Software Maintenance. IEEE, 2009, pp.
351–360.

[59] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating information
retrieval, execution and link analysis algorithms to improve feature
location in software,” Empirical Software Engineering, vol. 18, no. 2,
pp. 277–309, 2013.

[60] C. Chen, Z. Xing, and Y. Liu, “What’s spain’s paris? mining analog-
ical libraries from q&a discussions,” Empirical Software Engineering,
vol. 24, no. 3, pp. 1155–1194, 2019.

[61] C. Chen and Z. Xing, “Similartech: automatically recommend analogical
libraries across different programming languages,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 834–839.

[62] C. Chen, Z. Xing, Y. Liu, and K. L. X. Ong, “Mining likely analogical
apis across third-party libraries via large-scale unsupervised api seman-
tics embedding,” IEEE Transactions on Software Engineering, 2019.

[63] C. Chen, “Similarapi: mining analogical apis for library migration,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion). IEEE, 2020, pp. 37–
40.

[64] J. Chen, C. Chen, Z. Xing, X. Xia, L. Zhu, J. Grundy, and J. Wang,
“Wireframe-based ui design search through image autoencoder,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 29, no. 3, pp. 1–31, 2020.

[65] C. Chen, S. Feng, Z. Xing, L. Liu, S. Zhao, and J. Wang, “Gallery
dc: Design search and knowledge discovery through auto-created gui

component gallery,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, pp. 1–22, 2019.

[66] C. Chen, S. Feng, Z. Liu, Z. Xing, and S. Zhao, “From lost to found:
Discover missing ui design semantics through recovering missing tags,”
Proceedings of the ACM on Human-Computer Interaction, vol. 4, no.
CSCW2, pp. 1–22, 2020.

[67] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based
on crowd knowledge for code search,” IEEE Transactions on Services
Computing, vol. 9, no. 5, pp. 771–783, 2016.

[68] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion
via wordnet for effective code search,” in Proceedings of 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering. IEEE, 2015, pp. 545–549.

[69] M. M. Rahman, C. K. Roy, and D. Lo, “Automatic query reformulation
for code search using crowdsourced knowledge,” Empirical Software
Engineering, vol. 24, no. 4, pp. 1869–1924, 2019.

[70] M. M. Rahman and C. Roy, “Effective reformulation of query for code
search using crowdsourced knowledge and extra-large data analytics,”
in Proceedings of 2018 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2018, pp. 473–484.

[71] S. Haiduc and A. Marcus, “On the effect of the query in ir-based concept
location,” in Proceedings of 2011 IEEE 19th International Conference
on Program Comprehension. IEEE, 2011, pp. 234–237.

[72] S. Haiduc, G. Bavota, R. Oliveto, A. Marcus, and A. De Lucia,
“Evaluating the specificity of text retrieval queries to support software
engineering tasks,” in Proceedings of 2012 34th International Confer-
ence on Software Engineering. IEEE, 2012, pp. 1273–1276.

[73] S. Haiduc, G. Bavota, R. Oliveto, A. De Lucia, and A. Marcus,
“Automatic query performance assessment during the retrieval of soft-
ware artifacts,” in Proceedings of the 27th IEEE/ACM international
conference on Automated Software Engineering, 2012, pp. 90–99.

[74] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Men-
zies, “Automatic query reformulations for text retrieval in software
engineering,” in Proceedings of 2013 35th International Conference on
Software Engineering. IEEE, 2013, pp. 842–851.

[75] S. Haiduc, G. De Rosa, G. Bavota, R. Oliveto, A. De Lucia, and
A. Marcus, “Query quality prediction and reformulation for source code
search: The refoqus tool,” in Proceedings of 2013 35th International
Conference on Software Engineering. IEEE, 2013, pp. 1307–1310.

[76] M. M. Rahman and C. K. Roy, “Quickar: automatic query reformulation
for concept location using crowdsourced knowledge,” in Proceedings of
2016 31st IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 2016, pp. 220–225.

[77] Z. Li, T. Wang, Y. Zhang, Y. Zhan, and G. Yin, “Query reformulation
by leveraging crowd wisdom for scenario-based software search,” in
Proceedings of the 8th Asia-Pacific Symposium on Internetware, 2016,
pp. 36–44.

[78] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language
vector space for domain-specific cross-lingual question retrieval,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2016, pp. 744–755.

[79] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker, “Automati-
cally mining software-based, semantically-similar words from comment-
code mappings,” in Proceedings of 2013 10th Working Conference on
Mining Software Repositories. IEEE, 2013, pp. 377–386.

[80] M. M. Rahman and C. K. Roy, “Improved query reformulation for con-
cept location using coderank and document structures,” in Proceedings of
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 2017, pp. 428–439.

[81] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and
Y. Le Traon, “Augmenting and structuring user queries to support effi-
cient free-form code search,” Empirical Software Engineering, vol. 23,
no. 5, pp. 2622–2654, 2018.

	I Introduction
	II Data Collection
	III Empirical Study of Query Reformulation on Stack Overflow
	III-A What are the characteristics of queries?
	III-B Why are queries reformulated?
	III-C What is the scale of changes that query reformulation involves?
	III-D Summary and implications

	IV Automated Query Reformulation
	IV-A Overview of SEQUER
	IV-B Collection of query reformulation pairs
	IV-C Byte pair encoding
	IV-D Transformer
	IV-E Beam search
	IV-F Implementation

	V Quality of Recommended Query Reformulation
	V-A Dataset
	V-B Baselines
	V-C Evaluation metrics
	V-D Evaluation results
	V-D1 RQ1: Can our approach SEQUER generate better reformulated queries than the baselines?
	V-D2 RQ2: What types of query reformulations are challenging for SEQUER to deal with?

	V-E Discussion

	VI Related Work
	VI-A Query reformulation in general information retrieval
	VI-B Query reformulation for document search in SE
	VI-C Query reformulation for code search in SE

	VII Conclusion
	References

