Empirical Software Engineering (2022) 27: 27
https://doi.org/10.1007/510664-021-10054-w

®

Check for
updates

An empirical study of developers’ discussions about
security challenges of different programming
languages

Roland Croft"2 @ . Yongzheng Xie' - Mansooreh Zahedi? - M. Ali Babar'-2 .
Christoph Treude3

Accepted: 24 September 2021 / Published online: 1 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Given programming languages can provide different types and levels of security support, it
is critically important to consider security aspects while selecting programming languages
for developing software systems. Inadequate consideration of security in the choice of a
programming language may lead to potential ramifications for secure development. Whilst
theoretical analysis of the supposed security properties of different programming languages
has been conducted, there has been relatively little effort to empirically explore the actual
security challenges experienced by developers. We have performed a large-scale study of
the security challenges of 15 programming languages by quantitatively and qualitatively
analysing the developers’ discussions from Stack Overflow and GitHub. By leveraging topic
modelling, we have derived a taxonomy of 18 major security challenges for 6 topic cat-
egories. We have also conducted comparative analysis to understand how the identified
challenges vary regarding the different programming languages and data sources. Our find-
ings suggest that the challenges and their characteristics differ substantially for different
programming languages and data sources, i.e., Stack Overflow and GitHub. The findings
provide evidence-based insights and understanding of security challenges related to dif-
ferent programming languages to software professionals (i.e., practitioners or researchers).
The reported taxonomy of security challenges can assist both practitioners and researchers
in better understanding and traversing the secure development landscape. This study high-
lights the importance of the choice of technology, e.g., programming language, in secure
software engineering. Hence, the findings are expected to motivate practitioners to consider
the potential impact of the choice of programming languages on software security.

Keywords Software security - Repository mining - Natural language processing -
Empirical software engineering

Communicated by: Andrea De Lucia

>4 Roland Croft
Roland.Croft@adelaide.edu.au

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10054-w&domain=pdf
http://orcid.org/0000-0001-5011-6587
mailto: Roland.Croft@adelaide.edu.au

27 Page2of52 Empir Software Eng (2022) 27: 27

1 Introduction

A recent successful cybersecurity attack on FireEye,' one of the World’s largest secu-
rity companies, is yet another indicator of the rapidly increasing security threats to digital
systems (Rafter 2019), which are enabled by software. To ensure the availability, confi-
dentiality and integrity of a software system, it is vital that organisations resolve software
security issues that may be introduced during development and/or evolution of a software
system (Shahriar and Zulkernine 2012). That is why there are increasing calls for putting
more emphasis on software security issues throughout software development and evolu-
tion by incorporating the principles, practices, and tools of software security (Mailloux
and Grimaila 2018). There is an important need to provide developers with valuable secu-
rity information sources and support to achieve secure software development; most novice
developers lack the required security expertise (Barnum and McGraw 2005).

Whilst developers play a key role in the choice of an implementation technology, e.g.,
programming language, for a software development project, developers may tend to con-
sider the choice of a programming language from the perspectives of project requirements,
personal experience, learning costs, language popularity, and the availability of toolk-
its/packages (Meyerovich and Rabkin 2013). Given that development security flaws and
weaknesses can cause major software security problems, it is important to consider the secu-
rity issues when choosing programming languages, which are known to provide different
types and levels of support for security (Shahriar and Zulkernine 2012). For example, the
C or C++ programming languages can have un-trapped memory management errors that
make them unsafe; however, the Java programming language provides static and dynamic
checks that ensure no un-trapped memory management errors can occur. We assert that it
is important to increase awareness and knowledge about the security issues encountered
while using different programming languages. Our research, reported in this paper, purports
to empirically identify the security challenges that developers experience while using dif-
ferent programming languages. We decided to analyse and synthesize software developers’
observations and experiences of security issues related to different programming languages
shared on Open Data platforms like Stack Overflow and GitHub.

To achieve this objective, we have conducted a large-scale study of developers’ discus-
sions about security issues related to popular programming languages using quantitative and
qualitative methods. For this study, we examine over 20 million issues from 27,312 GitHub
repositories and over 11 million posts from Stack Overflow, for 50 of the most popular pro-
gramming languages. We have then conducted an in-depth analysis of 136,400 issues from
7194 GitHub repositories and 143,498 Stack Overflow posts for 15 of the most popular
programming languages such as Java, C, Python, and PHP.

We assert that this study has gathered and analysed the largest amount of security
issue related data generated from developers’ discussions on Stack Overflow and GitHub.
This study also provides useful insights into three major software engineering aspects: the
projects, the problems and the users. Whilst a few efforts have performed exploratory anal-
ysis of the security topics discussed by developers on Stack Overflow (Yang et al. 2016)
and GitHub (Zahedi et al. 2018), there has been no effort aimed at empirically exploring the
security issues from a technology or programming language perspective. Furthermore, we
are the first to conduct comparative analysis of the experienced security challenges across
data sources and domains. Previous studies have similarly investigated the characteristics

Uhttps://www.nytimes.com/2020/12/08/technology/fireeye-hacked-russians.html

@ Springer

https://www.nytimes.com/2020/12/08/technology/fireeye-hacked-russians.html

Empir Software Eng (2022) 27: 27 Page3of52 27

of Stack Overflow security discussions (Bayati and Heidary 2016; Lopez et al. 2018; Lopez
etal. 2019), to better understand the nature and ways in which security knowledge is shared.
We extend this analysis by comparing the characteristics of specific security topics and
domains to investigate the explicit differences in the challenges by examining the discussion
popularity, difficulty, and expertise. The main findings from this study are:

— Opverall, the security challenges are increasing for most languages, except for PHP.
Newer languages (i.e., Swift and TypeScript) experience a constant rise in security
challenges after release.

— Security challenges and trends often cluster based on the tasks that the languages are
commonly used for. GitHub security issues of Web-oriented languages (e.g., JavaScript,
TypeScript and PHP) receive the most popularity, and GitHub users for Mobile-oriented
languages (e.g., Java, C#, Objective-C and Swift) have the highest level of security
expertise.

— Shell-based and Web-oriented languages experience significantly higher average rates
of security discussion. Julia, MATLAB and R (languages primarily for scientific
programming) exhibit exceedingly small numbers of security discussion.

— C/C++ are the only languages which prominently face challenges for memory manage-
ment, and their questions on Stack Overflow receive some of the most popularity and
attention from expert users. C/C++ users also have the most consideration for security
via the intent of their discussions.

— There is a disconnect in the nature of the language security challenges between Stack
Overflow and GitHub. In particular, Web-Development languages and Authentication
challenges are considered easier and less popular on Stack Overflow than they are on
GitHub.

The findings from this study are expected to provide better understanding and useful
insights about the security issues experienced when using different programming languages.
Software development practitioners can gain better understanding of the influence that pro-
gramming languages have on software security. Developers can be motivated to consider the
security issues associated with different programming languages when choosing and using
different programming languages in software development projects. The main contributions
of our work reported in this paper are as follows:

— It carries out a first of its kind empirical study of security issues for different program-
ming languages by quantitatively and qualitatively analysing the largest amount of data
of developers’ discussions on Stack Overflow and GitHub. The findings contribute to
the evidence-based body of knowledge about the security issues related to programming
languages.

— It identifies a taxonomy of 18 security topics and 6 security categories that are com-
monly discussed and faced by developers during software development. The identified
taxonomy can help categorize known security issues related to different programming
languages as a source of guidance for developers.

— It provides a method that enabled us to extract, cluster, and analyse a large num-
ber of domain specific discussions from both Stack Overflow and GitHub. The
reported method helped us to construct and make publicly available the largest, to
our knowledge, dataset of developers’ discussions about security issues of 15 popular
programming languages.?

2https://github.com/RolandCroft/Language- Security-Challenges/

@ Springer

https://github.com/RolandCroft/Language-Security-Challenges/

27 Page4of52 Empir Software Eng (2022) 27: 27

The rest of the paper is organized as follows. In Section 2, we discuss the background and
motivation of this study. In Section 3, we present the methodological and logistical details
for conducting this research. We report and analyse the results in Section 4. We discuss the
results and highlight the implications of this research for practitioners and researchers in
Section 5. The threats to validity and their implications are presented in Section 6. Section 7
draws some conclusions and indicates the possible future work.

2 Background and Motivations
2.1 Programming Language Software Quality Analysis

Programming language paradigms define the characteristics of a programming language
and provide classification (Pierce and Benjamin 2002). In Table 1, we categorize 15 popu-
lar programming languages using a classification system inline with previous works (Ray
et al. 2014; Zhang et al. 2019). We note that there are no commonly agreed definitions for
language types. It is also known that paradigms are often relative rather than absolute. We
define the type safety as whether a language prevents operations between mismatched types
(strong) or allows type inconsistency (weak) (Cardelli and Wegner 1985). Type checking
determines whether type errors are reported based on the source code (static) or the run-
time behaviour (dynamic) (Cardelli and Wegner 1985). Memory management refers to the
extent at which the programs handle memory safety, control and management; whether the
responsibility is on the user (manual) or not (managed) (Dhurjati et al. 2003).

Many studies have investigated various attributes and aspects of programming languages
(Horschig et al. 2018; Bhattacharya and Neamtiu 2011; Kleinschmager et al. 2012; Sestoft
2005; Hanenberg et al. 2014), through empirical analysis of historical software artefacts.
However, they fail to provide a developers’ perspective of the actual experienced challenges.

Only a few works aim to form a large-scale comparative analysis between programming
languages. Ray et al. (2014) investigated the impacts of programming language paradigms
on various code quality metrics, Kochhar et al. (2016) similarly investigated the effects
of multiple programming languages on code quality, and Zhang et al. (2019) analysed the
impacts of programming language on bug resolution characteristics. We aim to build upon
the previous works and provide a security perspective.

Similar to how previous works indicate that choice of a programming language may
impact code quality (Ray et al. 2014; Kochhar et al. 2016; Zhang et al. 2019), we extrapo-
late that programming language selection will also impact code security. For instance, type
safe languages (languages which check for type errors (Cardelli and Wegner 1985)) are usu-
ally considered resistant to errors such as Buffer Overflow, as they handle typing and other
memory management tasks automatically (Grossman et al. 2005). In contrast, a developer is
responsible for ensuring safety and protection in weak typed languages, which leaves them
more open to possible vulnerabilities and exploits. Thus, it is expected that the program-
ming paradigms would impact the relative security and safety of different programming
languages.

Khwaja et al. (2020) identify the different security vulnerabilities present in different pro-
gramming languages, and the languages’ support for prevention. Similarly, Cifuentes and
Bierman (2019) perform a theoretical analysis of different languages capabilities to handle
different vulnerabilities. However, they only consider a subset of vulnerabilities and their
analysis remains purely theoretical; security flaws do not directly equate to development
challenges.

@ Springer

Page50f52 27

Empir Software Eng (2022) 27: 27

cl0c 600T L861 900T ¥10¢ vwa So61 Nba 6861 0661 000¢ Se661 S661 S661 Qe uonear)
[enuepy

JuowaSeuR A
paSeuey K1owa
I i

onels adAy,
I -I I N
A A A A A A AA A A Bwns fiapesaddy

103918

1duogadAy, on [1od [PYSIoMOd YIMG D-aanoelqo Aqny ++D/D [eYs uomkd 4D duogeaer dHd vARf

soSen3ue[Sutunres3oxd rendod ¢ jo semmo3ale) | 3jqeL

pringer

A's

27 Page6o0of52 Empir Software Eng (2022) 27: 27

Furthermore, the security requirements and challenges of software are dependent on the
purposes it is used for (Sindre and Opdahl 2005). We would expect that network security
and access control are especially important for web development, whereas resource manage-
ment errors are more important for systems programming. However, different programming
languages are suited better to different development tasks and domains. We outline some
common development areas for 15 popular programming languages in Table 2, based on
the common uses and professions of each language described in popular online blogs.> 4
Hence, we anticipate that the relative security requirements and considerations differ for
each programming language based on the activities it is used for.

However, the extent to which these security requirements and challenges differ for each
programming language is presently unknown, and current knowledge is based on theory,
personal opinion, or anecdotal evidence. Hence, we aim to investigate developer knowl-
edge, views and experiences to help build an evidence-based body of knowledge about
programming language related aspects of secure software engineering.

2.2 Publicly Available Security Discussions

There exists an abundance of developer discussion and knowledge sharing in publicly avail-
able repositories. Question & Answering (Q&A) sites contain crowd-sourced knowledge on
a variety of software development related tasks and subjects. Repository hosting sites doc-
ument software development practices and issues. Thus, software researchers have started
mining these data sources with the aim of understanding software practices and improving
development processes.

Thus, we also utilize these two sources to obtain a snapshot of security-related developer
activities and knowledge. Due to the nature of these discussions, either asking for help
or identifying an issue, we refer to the topic of a discussion as a challenge. By obtaining
knowledge of the security challenges that practitioners individually face for development in
particular programming languages, we can form our comparative analysis of the manifested
challenges to identify differences in their nature and characteristics.

Stack Overflow is a Q&A website for software development. We select Stack Over-
flow for our data analysis as it is the most widely used source for Software Engineering
(SE) based knowledge sharing. As of December 2020, there have been over 20 million
questions and 30 million answers posted by over 13 million developers since the websites
inception in 2008. Each Stack Overflow post contains a unique id, owner, title, question
post, tag(s) and answer post(s) along with additional meta-information such as comments,
views, favorites and score. For the purposes of this study, we henceforth use the term
post to refer to a question and all its respective answers. Example Stack Overflow posts
are referenced in this paper via (SO, XXX) which can be accessed through a web browser
via https://stackoverflow.com/questions/XXX. Figure 1 shows an example Stack Overflow
question about preventing the security vulnerability SQL injection.

Stack Overflow is becoming of increasing focus to software researchers due to its diverse
and thorough body of knowledge. In a survey conducted by Ahmad et al. (2017) they dis-
covered over 500 papers related to mining Stack Overflow data. Le et al. (2020) construct a
tool named PUMiner with the explicit purpose of mining security related documents from

3https://raygun.com/blog/programming-languages/
“https://www.computerscience.org/resources/computer- programming-languages/

@ Springer

https://raygun.com/blog/programming-languages/
https://www.computerscience.org/resources/computer-programming-languages/

Page 7 of 52 27

Empir Software Eng (2022) 27: 27

>

e

>

\/

A QUI'T-pUBILIO))
pnoy
Q0UAIDS IR

>
S
>

SWAISAS
uoneorddy
Qe
9[1q0IN

A A qoM pug-3joeq
A QM pug-iuolf

SHOND
SH3S 3D

\/

yduogadAy,

oD

[od [[oySIomod

PIMg D-2an09[q0

Ay ++2/D

juowdo[orag

[12ys uoyikgq #O duogeaer dHd eAR[
ofen3ue]

soen3ue| Suruwel3oid rendod G| Jo surewop Judwdo[oAdp uowwo)) g ajqeL

pringer

A's

27 Page8of52 Empir Software Eng (2022) 27: 27

How can | prevent SQL injection in PHP?

Asked 11 years, 9 months ago Active 3 daysago Viewed 1.7m times

B This question's answers are a community effort. Edit existing answers to improve this post. It is

2773 not currently accepting new answers or interactions.

If user input is inserted without modification into an SQL query, then the application becomes
vulnerable to SQL injection, like in the following example:

$unsafe_variable = $§_POST['user_input'];

mysql_query("INSERT INTO “table” ("column’) VALUES ('$unsafe_variable')");

That's because the user can input something like value'); DROP TABLE table;-- , and the query
becomes:

INSERT INTO "“table® ("column®) VALUES('value'); DROP TABLE table;--')
What can be done to prevent this from happening?

php mysql sql security sql-injection

share follow edited Oct 1'16 at 8:08 community wiki
44 revs, 36 users 14%
Andrew G. Johnson

28 Answers Active | Oldest | Votes

Fig. 1 A Stack Overflow post about SQL injection prevention

Q&A sites like Stack Overflow. Whilst we do not explicitly adopt their tool, we derive heavy
inspiration for the method of our data collection.

GitHub is an open-source platform for software repository hosting. We select GitHub
as it is the most widely used public software development platform. As of December 2020,
there are over 58 million registered users,? and over 41 million publicly hosted repositories.®
Developers can stimulate discussion with other collaborators about ideas, enhancements,
tasks or bugs via GitHub issues. We focus on GitHub issues to observe and analyse the
problems and discussions that developers conduct during software development. An exam-
ple GitHub issue discussing the possibility of an SQL Injection vulnerability in the software
can be seen in Fig. 2. GitHub repositories also provide metadata about their programming
language composition, so we associate discussions with the main programming language
of that repository. We use the term issue to refer to a GitHub issue and all its associated
comments. In this study, we reference example GitHub issues as (GH,XXX) which can be
accessed through a web browser via https://github.com/XXX.

Shttps://github.com/search?q=type:user&type=Users
Shttps://github.com/search?q=is:public

@ Springer

https://github.com/search?q=type:user&type=Users
https://github.com/search?q=is:public

Empir Software Eng (2022) 27: 27 Page9of52 27

[Question] SQL injection potential flaw? #38

(©X T I opened this issue on May 13, 2020 - 1 comment

. I commented on May 13, 2020 © -

Just want to ask, does anyone check is Bulkinsert protected from SQL injections? | see that there are
raw strings that we send to DB. Am | right that it is important to validate all the data to prevent
security issues using that package?

. I comented on May 13, 2020 « edited ~ Collaborator = (2) ++-
Hi!

The raw strings are to write the placeholders (?) which is used to avoid injection. No value is ever
written as raw SQL in this library but are passed as values to exec . Also included in the raw string is
the column names but they're passed via Quote . The column names are from your structs so
they're not really affected by this, but if you named your columns to username; DROP TABLE users it
would still be at no risk.

| can't swear that gorm isn't vulnerable to injections but | think it looks fine. It's more than five
years old with nearly 20k stars so someone should've noticed that by now.

Fig.2 A GitHub issue about potential SQL injection

GitHub contains a much larger variety of data, and consequently its research applications
are much more diverse. Kalliamvakou et al. (2014) conduct an empirical analysis of GitHub
data and warn researchers of perils of mining GitHub for research purposes. In particular,
they find that the majority of repositories on GitHub are personal, inactive or not related to
software development. We attempt to avoid these perils by only considering the most starred
repositories. Pletea et al. (2014) present sentiment analysis of security related discussions
on GitHub. We build upon their method of data collection to extract security discussions
from GitHub.

There are also a few studies which aim to draw connections between Stack Overflow
and GitHub data. Vasilescu et al. (2013) investigate the activity correlation of users in Stack
Overflow discussions and committers in GitHub repositories. They find that active GitHub
users tend to ask fewer questions and provide more answers on Stack Overflow. A similar
study is conducted by Xiong et al. (2017) who create an algorithm for linking developer
identity on Stack Overflow and GitHub, and analyse their behaviour on both sites.

We observe Stack Overflow and GitHub to be two of the most prominent online sources
for developer community support, due to their size and popularity. Hence, to obtain a more
complete view of development security challenges, we intend to pull related insights from
the discussions of both Stack Overflow and GitHub.

@ Springer

27 Page 10 0of 52 Empir Software Eng (2022) 27: 27

2.3 Topic Modelling of Software Engineering

Topic modelling is a statistical Natural Language Processing (NLP) technique used to auto-
matically discover the topics of text corpora (Blei et al. 2003). Latent Dirichlet Allocation
(LDA) is the most widely used implementation of topic modelling (Chen et al. 2016), and
hence we also adopt it as the standard. LDA uses word frequencies and co-occurrence fre-
quencies in the input documents to build probabilistic word and document models that
uncover the hidden semantic structures of the text (Blei et al. 2003).

LDA has become a popular and effective tool for analysing large sets of software
engineering related text data. Like us, many previous researchers have used LDA to
automatically identify and cluster the topics of publicly accessible discussions on Stack
Overflow for a variety of domains and aspects. Barua et al. (2014), Zou et al. (2015), and
Allamanis and Sutton (2013) have all leveraged LDA to identify general topics and trends
in Stack Overflow data. This type of research has also been targeted towards a variety
of different domains: mobile (Linares-Vasquez et al. 2013; Rosen and Shihab 2016), web
development (Bajaj et al. 2014), concurrency (Ahmed and Bagherzadeh 2018), big data
(Bagherzadeh and Khatchadourian 2019), API usage (Campbell et al. 2013), machine learn-
ing (Bangash et al. 2019; Han et al. 2020), blockchain (Wan et al. 2019), and security (Yang
et al. 2016). Some studies have also aimed to analyse the discussions of GitHub repositories
like we do. Rahman and Roy (2014) apply LDA to repository pull requests in order to help
identify factors that contribute towards successful or unsuccessful pull requests. Zahedi et al.
(2018) apply LDA to issue discussions in GitHub repositories to identify the main security
issues that developers face. Due to its successful application to similar research domains as
ours, we also utilize LDA to cluster the discussions and identify the main challenges.

Whilst some of our topics overlap with the existing security-related LDA research (Yang
et al. 2016; Zahedi et al. 2018; Le et al. 2021), our overall taxonomy differs substan-
tially as we avoid technology specific topics and ensure generalizability for comparison.
Furthermore, due to the consideration of programming language our analyzed posts differ
substantially. Reproducing the method for data extraction from previous works, we find our
Stack Overflow dataset to be 1.5 times larger than the dataset obtained by Yang et al. (2016),
and only 0.4% of our sampled repositories overlap with Zahedi et al. (2018). Additionally,
our analysis of the challenges is more thorough as we also consider the popularity, diffi-
culty and expertise. Finally, we perform extensive comparative analysis of the topics across
programming languages and data sources.

3 Methodology
3.1 Research Questions

This study is designed to answer six major Research Questions (RQs) in order to provide
a thorough analysis and understanding of security challenges for different programming
languages.

— Programming Language Security Consideration. We first aim to provide a gen-
eral indication of how comparatively important security is for different languages. We
examine the overall amount of discussion for all languages to help select the most
popular programming languages for analysis in subsequent research questions.

@ Springer

Empir Software Eng (2022) 27: 27 Page 11 0f 52 27

RQ1. What is the rate of security discussion amongst programming languages on
Stack Overflow and GitHub?
This first research question aims to give a broad view of the security consid-
eration for a large number of languages, via the rate at which security-related
discussions occur.

— Programming Language Security Discussions. We answer three research questions
related to the content of security discussions. Specifically, we aim to identify what
security challenges are faced by developers for different programming languages and
why.

RQ2. What is the intention behind security discussions for different programming
languages?
This RQ seeks to identify why developers are discussing security topics for
particular languages. We analyse the intent, motivations and purpose of the
security questions and issues being posted on Stack Overflow and GitHub.
Through this knowledge we can better determine why security is discussed
differently, and the potential security information needs of developers.

RQ3. What are the major security challenges and topics discussed by developers for
different programming languages?
Through RQ3 we aim to identify and compare the major categories of
security challenges that developers face when using different programming
languages. We also analyse the relative significance of these categories
through their prevalence in developer discussions. Through this synthesis of
publicly available knowledge, we enable practitioners to better understand the
security issues commonly encountered for different languages, and provides
researchers with a taxonomy of key security topics.

RQ4. How do security discussion topics change over time for different programming
languages?
RQ4 aims to further this analysis by examining how the topics evolve over
time, which provides insights into whether certain challenges become more
or less important for specific languages as they update. RQ4 enables both
practitioners and researchers to observe the relative trends and importance of
the different security topics for different languages.

— Programming Language Security Support. Finally, we answer two research ques-
tions relating to the community support available for security challenges of different
programming languages. We aim to identify the characteristics of how security related
challenges are received and handled by the community. To achieve this, we use quanti-
tative metrics derived from discussion metadata for popularity, difficulty and expertise,
inspired from previous works (Yang et al. 2016; Ahmed and Bagherzadeh 2018; Tian
et al. 2019).

RQ5. What are the characteristics in terms of popularity and difficulty of different
programming languages and their identified security challenges?
RQS5 uses document-centric metrics to identify the relative popularity (engage-
ment and interest) and difficulty (complexity and labour). The combination of
these metrics gives an indication of how significant the security challenges are
when they occur.

@ Springer

27 Page 12 0f 52 Empir Software Eng (2022) 27: 27

RQ6. What is the level of security expertise of the users who answer security related
discussions for different programming languages?
RQ6 utilizes user-centric metrics to examine the relative expertise (knowledge
and skill) of users of different programming languages. These characteristics
help garner further insights into how the challenges are handled, i.e., is there
sufficient knowledge and enough experts to help resolve security challenges.
As such, we only consider the users who provide answers to the security
related discussions.

3.2 Data Collection

To conduct our study we collected a dataset of security and programming language related
discussions from Stack Overflow and GitHub. The workflow for the data extraction process
is shown in Fig. 3. Our data collection process follows three major steps. First, we identified
the programming languages commonly used by developers so that we could scope our study.
Secondly, we extracted a dataset of discussions relating to each programming language
from both GitHub and Stack Overflow. Thirdly, we filtered the datasets from step 2 to
security-related discussions. Step 2 and 3 are performed separately so that we can identify
the rate of security discussion as well as more general programming language discussion
characteristics.

To first identify the programming languages used by developers, we selected the 50 most
commonly used programming languages on GitHub in 2020 for consideration, as reported
by GitHut.” We then obtained a programming language specific dataset for each of these 50
programming languages from Stack Overflow and GitHub.

For Stack Overflow, we extracted programming language specific data based on the tags
of each post, similar to prior works (Yang et al. 2016). For the 50 identified programming
languages, we manually identified the appropriate Stack Overflow tag, as well as all tags
relating to different versions and releases of that language. The complete tag list can be
viewed in our online appendix.® Every post on Stack Overflow that contains one or more of
these tags is extracted; considering all data up to May 1st 2020.

If a post contains more than one language tag, it is included in each of the relevant lan-
guage datasets. However, C and C++ are both syntactically and semantically similar, and
have heavy overlap in their secure coding properties (Seacord 2005). Hence, this approach
causes redundancy in the individual datasets of C or C++. The C dataset contain 2641 posts
in comparison to the C++ dataset that contains 3136 posts. However, 323 of the 2641 C
posts (12%) are also contained in the C++ Stack Overflow dataset. Furthermore, reposito-
ries primarily written in C often also contain C++ code. Hence, to reduce the redundancy
in our analysis, we consider the dataset collected for C to sufficiently represent both the C
and C++ language, due to their natural overlap and similar semantic properties. This redun-
dancy was later confirmed in our results. When extracting topics for the C and C++ datasets
individually, the six topic categories that manifest for C Stack Overflow posts are also the 6
most dominant topic categories for C++ Stack Overflow posts.

For GitHub, we extracted language specific data based on the predominant language
of the repository. However, due to the substantially larger size of GitHub data, we were
unable to efficiently analyze all repositories. Hence, we decided to use a repository sampling

7https://madnight.github.io/githut
8https://github.com/RolandCroft/Language- Security-Challenges/tree/master/ Appendix/SOLangs Top50.txt

@ Springer

https://madnight.github.io/githut
https://github.com/RolandCroft/Language-Security-Challenges/tree/master/Appendix/SOLangsTop50.txt

Empir Software Eng (2022) 27: 27

Page 13 of 52 27

stack overflow

~ A\ 4 ~

~

Extract
programming
language related
threads

\

(

Extract security
tagged threads

Extract security
related posts

Security related

T

¢

T

Identify
programming
language tags

Identify security
related tags

Stack Overflow
security keyword
count and ratio
thresholds

GitHub security
keyword count and
ratio thresholds

~ A

=

v

Identify 50 most

Extract 1000 most

Extract all issues

Stack Overflow
threads

common 11| starred) fioih S46H Extract security | | Security related
programming repositories for : related issues GitHub threads
repository
languages each language
A _Step 2 Step 3)

) GitHub

Fig. 3 Workflow of retrieving security related posts and issues from Stack Overflow and GitHub

method similar to the previous work by Zahedi et al. (2018). We retrieved the top 1000
most starred repositories for each programming language. To ensure that we only sampled
high quality repositories for large scale software projects, only repositories with more than
100 stars are kept from the top 1000. For GitHub we extended the data collection time span
slightly to increase the amount of available data for each repository, considering data up to
July 1st 2020.

Thirdly, we filtered the programming language datasets to security-related discussions.
As we aim to identify the security challenges that are discussed, it is important that the dis-
cussions in our dataset are relevant and focused towards security. To achieve this, we utilized
both tag-based filtering and content-based filtering on our datasets; where applicable.

Tag-based filtering uses the tags of a post to identify the category of its content. This
approach is most commonly adopted by previous works (Yang et al. 2016; Ahmed and
Bagherzadeh 2018; Bagherzadeh and Khatchadourian 2019) due to its simplicity and preci-
sion, but it still requires the manual identification of appropriate tags. However, we cannot

Cross-Site Scripting Phishing Through Frames

Asked 10 years, 4 months ago Active 10 years, 4 months ago Viewed 2k times

how we can protect a website from "Cross-Site Scripting Phishing Through Frames" by php..

0 thanks
php

share follow

asked Jul 12 '10 at 6:43

Fig.4 A Stack Overflow post (ID: 3226374) with incomplete tags

@ Springer

27 Page 14 of 52 Empir Software Eng (2022) 27: 27

rely upon this approach alone as a reliable tagging system does not exist for GitHub issues.
Furthermore, tagging itself is unreliable as it is performed by the user, who can submit
incorrect or insufficient labels. For example, Fig. 4 depicts a Stack Overflow post which
is not tagged with any security tag despite stimulating discussion about cross-site scripting
and phishing.

Content-based filtering examines the actual content of a post to determine its relevance
to a particular category through a set of keywords. If a post contains a lot of keywords which
are representative of a particular topic (i.e., security), then the entire post can be considered
as related to this topic. Content-based filtering has also been used in previous works when
tag-based filtering could not be applied (Pletea et al. 2014; Zahedi et al. 2018) or to account
for the shortcomings of tag-based filtering (Le et al. 2020). However, as keyword matching
can produce false positives, content-based filtering requires threshold values to determine a
post as relevant or not. For example, we cannot consider any post containing the word cookie
as relating to web development, as this word may instead be referring to the tasty baked treat.
Thus, we use unique count (the number of unique keywords in a post) and ratio (the ratio of
keywords to the total number of words in a post) thresholds to ensure discussion relevance.

We use both the tag-list and keyword-list proposed by Le et al. (2020), as they are some
of the most extensive security keyword lists from the previous literature. Our tag list con-
sists of the tags: security, cryptography, csrf, passwords, sql-injection and xss, with the
security tag being sub-string matched and all others exact matched. Our keyword list origi-
nally contained 234 security keywords, which we updated with manually identified missing
variations to a total of 288 keywords.’

For content-based filtering all keywords and text are stemmed before keyword matching
is applied. We consider different matching forms (i.e., American/British and with/without
hyphen/space/stemming) to cope with various spellings. To reduce false positives we per-
formed exact matching for short (three-character) keywords (e.g., md5) and sub-word
matching otherwise (Le et al. 2020).

We empirically identified the suitable content thresholds for content-based filtering. For
Stack Overflow, we obtained the content thresholds from the median values of the security
tag filtered dataset; unique count = 4, ratio = 0.115. For GitHub, we first obtained all posts
that contain one or more of the security keywords in the title, similar to the method used by
Zahedi et al. (2018) and Pletea et al. (2014), and then manually examine a sample of 385 of
these issues. Of this sample, only 70% of the posts were able to be confidently labelled as
security-related by the authors, highlighting the need for stricter content thresholds. A range
of threshold values were tested until a sample was deemed as sufficiently security related
(>95% security-related); which uses a threshold of unique count = 2, ratio = 0.061.

Finally, we form our dataset of security related discussions for each language from each
data source. For Stack Overflow, we used the union (non-overlapping) of the tag-based
filtering set and content-based filtering set. For GitHub, we only used the content-based
filtering set as previously stated.

We manually examined a sample of documents to confirm the content and security rela-
tion of the datasets.!? We selected 385 documents from each source, for a confidence level
of 95% and a confidence interval of 5% (Cochran 2007). For Stack Overflow 100% of the
examined posts have a relation to security. For GitHub, 95% of the issues are considered as
security relevant, while the other 5% contain unclear content or no reference to security.

%https://github.com/RolandCroft/Language- Security-Challenges/tree/master/Appendix/security_keywords.
txt

10https://github.com/RolandCroft/Language- Security- Challenges/tree/master/ Appendix/dataset_samples

@ Springer

https://github.com/RolandCroft/Language-Security-Challenges/tree/master/Appendix/security_keywords.txt
https://github.com/RolandCroft/Language-Security-Challenges/tree/master/Appendix/security_keywords.txt
https://github.com/RolandCroft/Language-Security-Challenges/tree/master/Appendix/dataset_samples

Empir Software Eng (2022) 27: 27 Page 150f 52 27

For RQ1 we examine the collected data for all 50 languages. However, for subsequent
research questions we limit our study to the most popular programming languages which
have a substantial security consideration, to ensure that there is a sufficient amount of data to
analyse and provide a better comparison. We select these languages as any language with a
statistically significant number (>384) (Cochran 2007) of security related discussion posts
on both Stack Overflow and GitHub. Hence, we only perform our in-depth analysis of the
security challenges on a refined subset of 15 of the most dominant programming languages,
shown in Table 4.

3.3 Manual Discussion Analysis

To address RQ2, we perform manual analysis of our data to determine the nature and pur-
pose of the discussions. As the entirety of our dataset is naturally too large to manually
examine, we take a statistically significant sample (confidence level 90% +/-10%) (Cochran
2007) of 68 posts per language for each data source (n=1904). We then manually categorize
the purpose of each discussion based on the content of the question or issue. To define and
categorize discussion intent, we adopt the curated taxonomy of question categories curated
by Beyer et al. (2020). This taxonomy consists of seven question categories, as defined by
Beyer et al. (2020) in Table 3.

As GitHub issues discussions do not strictly follow the question/answer format of Stack
Overflow, we extend the taxonomy slightly to additionally account for the intent of GitHub
user discussions. Firstly, GitHub issues related to Bug Fixes or inclusion of missing critical
functionality are classified with the Errors category, as these issues are discussing fixes for
software errors. Secondly, GitHub issues which introduce new or additional functionality
(i.e., updates), are classified as Review as these issues are requesting for review, feedback
or approval of code. Otherwise, we follow the same manual classification technique as
described by Beyer et al. (2020). A post may relate to more than one category depending on
its content.

Table 3 The seven question categories as defined by Beyer et al. (2020)

Category Definition

API Usage “The posts falling into this category contain questions asking for suggestions on how to
implement some functionality or how to use an API. The questioner is asking for concrete
instructions.”

Discrepancy “The posts of this category contain questions about problems and unexpected behavior of

code snippets whereas the questioner has no clue how to solve it.”

Errors “Similar to the previous category, posts of this category deal with problems of exceptions
and errors. Often, the questioner posts an exception and the stack trace and asks for help
in fixing an error or understanding what the exception means.”

Review “Questioners of these posts ask for better solutions or reviewing of their code snippets.
Often, they also ask for best practice approaches or ask for help to make decisions, for
instance, which API to select.”

Conceptual “The posts of this category consist of questions about the limitations of an API and API
behavior, as well as about understanding concepts, such as design patterns or architectural
styles, and background information about some API functionality.”

API Change “These posts contain questions that arise due to the changes in an API
or due to compatibility issues between different versions of an APL.”

Learning “In these posts, the questioners ask for documentation or tutorials to learn a tool or
language. In contrast to the first category, they do not aim at asking for a solution or
instructions on how to do something. Instead, they aim at asking for support to learn on
their own.”

@ Springer

27 Page 16 0of 52 Empir Software Eng (2022) 27: 27

Two of the authors manually categorized each post to the above question categories.
The authors first independently labelled 100 posts (50 from each source) to ensure consis-
tent labelling. We calculated the Cohen’s kappa coefficient (Cohen 1960) to determine the
inter-rater agreement of the two authors, by calculating the kappa score for each label sepa-
rately and then averaging scores. An overall kappa score of 0.65 was achieved on the initial
set, implying substantial inter-rater agreement. Any initial disagreements in labelling were
resolved through discussion. The authors then individually labelled the remaining posts.

3.4 Topic Modelling

We used topic modelling to identify the security discussion topics in our data sources due to
its wide use on similar datasets and in related studies for both Stack Overflow (Yang et al.
2016; Barua et al. 2014; Zou et al. 2015; Allamanis and Sutton 2013) and GitHub (Zahedi
et al. 2018; Rahman and Roy 2014). LDA exhibits the ability to form models without the
need for labelled training data or pre-defined taxonomies. This suits our needs as Stack
Overflow and GitHub discussions are largely unlabelled, and these informal discussions do
not align with formal security taxonomies.

We used the Python Gensim library for the implementation of the LDA algorithm.!! As
Stack Overflow and GitHub discussions are naturally noisy (Barua et al. 2014; Zahedi et al.
2018), the pre-processing steps in Fig. 5 are applied. We use the union of the Sklearn and
NLTK stopword lists (Nothman et al. 2018), and the NLTK Porter-Stemmer Algorithm.

Treude and Wagner (2019) show that corpora sampled from different languages of
GitHub and Stack Overflow have varying characteristics and require different parameter
configurations. Hence, we consider each language-specific security related dataset from
each data source as a separate corpora, and trained the LDA models individually. In a related
study, Han et al. (2020) also adopt a similar approach that they title as Balanced LDA. This
method also removes any potential influence from the varying number of documents in each
corpora.

Topic model quality heavily relies on appropriate hyper-parameter tuning (Agrawal et al.
2018). Hence, we optimized the following three LDA hyper-parameters via grid search: the
number of topics k, the a-priori belief of each topic probability «, and the a-priori belief of
each word probability 8. For £, all values in the range 1 to 30 are tested. For « and g, we
tested the default configuration (@ = f = 1/k), the automatically optimized configuration
by Gensim, and the standard values from previous literature of « = 50/k and 8 = 0.01
(Ahmed and Bagherzadeh 2018; Bagherzadeh and Khatchadourian 2019; Yang et al. 2016).
A model is trained with every combination of settings for each corpora.

Topic coherence measures the semantic similarity of high probability words in a topic
(Mimno et al. 2011). This metric is selected for model evaluation, due to its ability to predict
topic interpretability (Mimno et al. 2011) and its prevalence in related studies (Ahmed and
Bagherzadeh 2018; Wan et al. 2019). The optimal model is chosen as the model with the
highest coherence value. In the event of similar coherence values, the lower number of
topics is chosen as it was empirically found that higher topic numbers produce more fine-
grained and less comparable topics. The optimal number of topics for each corpora is shown
in Table 4.

From the output of LDA, we obtain a set of K topics (21, ..., zk) from each of our N
corpora (ct, ..., ¢;). The symbols used to represent the topic attributes are summarized in

https://radimrehurek.com/gensim/

@ Springer

https://radimrehurek.com/gensim/

Empir Software Eng (2022) 27: 27 Page 17 of 52 27

Remove code Remove 4 Fonven 10 Remove
Raw snippets, HTML punctuation an A excessively long Processed
Documents tags, and markup digits:that are. o remove siop or short words Documents
language contained within words, perform (2<characters<12).
aword. stemming.

Fig.5 Pre-processing steps of Stack Overflow and GitHub documents

Table 5. Each topic is a distribution over the unique keywords of each corpora. For each post
d in the corpora we also obtain a topic probability vector which indicates the proportion of
words that come from each of the K topics (Blei et al. 2003). We denote the probability of
a particular topic zi for a particular post d; as 6(d;, zx). Note that Vi, k : 0 < 6(d;, zx) < 1
and Vi : Y %0(d;, zx) = 1.

Using the topic word distribution and topic probability vectors, topic labels are then
assigned through collaboration of two of the authors. The authors assign topic categories
using an open card sorting method (Fincher and Tenenberg 2005), in which the authors gen-
erate a dendogram of the items using self-generated labels. The authors first use the topic
words to infer the label based on their own security expertise and judgement. The authors
then examine documents in order of 6(d;, zx) (document-topic probability) to validate the
inferred label. The authors examine documents until they are confident with the label; at
least 10 documents were examined for each topic (provided the topic has more than 10
associated documents). If the authors are unconfident with the label after an examined por-
tion of posts, a larger portion is examined to help generate a new label. Topics that do not
implicitly relate to security or are too ambiguous to label are labelled as Other.

The first two authors first independently examined all topics to familiarize themselves
with the data and gain an understanding of the potential topics and themes. During this
process, each author tentatively assigned labels to each topic. The first two authors then

Table 4 The number of security-related Stack Overflow posts or GitHub issues and the optimal number of
topics for each corpora

Programming # Stack Over- # Stack Over- Stack Over-flow # GitHub # GitHub GitHub Model

Language flow Posts flow Topics Model Coherence Issues Topics Coherence
Java 35576 17 0.516 13647 14 0.538
PHP 32191 17 0.498 20398 19 0.502
JavaScript 22624 22 0.461 16246 17 0.489
C# 22151 23 0.485 11892 26 0.495
Python 11353 18 0.515 15368 20 0.566
Shell 5807 23 0.443 6395 11 0.567
C/C++ 2641 13 0.472 16794 19 0.545
Ruby 2514 9 0.450 14537 11 0.535
Objective-C 2093 3 0.439 2472 14 0.446
Swift 1859 21 0.428 2124 7 0.522
PowerShell 1782 7 0.384 4112 3 0.584
Perl 942 11 0.442 2188 2 0.582
TypeScript 856 8 0.437 10227 24 0.526
Go 809 3 0.402 24288 13 0.507

@ Springer

27 Page 18 of 52 Empir Software Eng (2022) 27: 27

Table 5 Topic attribute symbols

Symbol Meaning Specifics

(zk) Topic k A security topic.

(cj) Corpora j A security related programming language dataset
from Stack Overflow or GitHub.

(d;) Document i A Stack Overflow post or GitHub issue.

0(d;, zk) Document-Topic Probability The probability of a document belonging to a topic.

collaboratively discussed and refined the topic categories. Finally, to reduce potential
individual researcher bias during this manual process, the final topic labels are assigned
collaboratively by the first two authors in unison. The first author has over three years of
experience doing security related research in academia, whereas the second author has over
13 years of security experience working in industry. Disagreements are resolved through
discussion.

To assess the potential subjectivity of the topic labelling process, we used an approach
similarly performed in other works (Hata et al. 2019). Once, the final topic categories had
been defined, the first two authors independently annotated a random sample of 30 topics.
We then calculated the Cohen’s kappa coefficient (Cohen 1960) to determine the inter-
rater agreement of the two authors, by calculating the kappa score for each topic category
separately and then averaging scores. An overall kappa score of 0.79 was achieved on the
initial set, implying substantial inter-rater agreement. Based on this encouraging result, we
considered the topic labelling process to be sufficiently robust to potential researcher bias.

After all labels have been generated, topic grouping and categorisation is then conducted
using a bottom-up categorisation approach: beginning with the initially assigned specific
topic labels, sub-categories of topics are then identified, which are then further grouped
into final high level categories. Whilst individual topics and sub-categories can potentially
relate to numerous groupings, we assign them to the most relevant category. To reduce the
dimension of the data, we only consider (sub-)categories for analysis, and group individual
topics based on this.

We provide a full example of the labelling process here. One of the produced topics
for Java contains the keywords user, authentication, application, ldap, credentials, access,
login. Based on the context of these keywords we interpret the topic as being related to
user login and authentication. We confirm this interpretation by then examining associated
posts for this topic to see if they fit the context, e.g., “How can I allow my users to login
with Windows credentials?” (SO, 13927479). Once we have completed this process, we
then consider all topics, regardless of source and programming language, to create our topic
taxonomy. For each topic, we first assign a category based on other similar topics that have
manifested. Topics that have many other semantically similar topics become a category, and
are assigned a label that broadly captures the definition of all the topics. This example topic
we assign the Authentication category. Then once again after we have assigned all topics to
a category, we finally group the categories into higher-level definitions; in this case, Access
Control.

The security taxonomy that emerged from our data is presented in Table 6. We also show
the number of individual topics that was mapped to each category.

We define the dominance of a topic in a particular corpus via the Topic Share metric
(Barua et al. 2014). The topic share value measures the proportion of posts in a corpus (c;)

@ Springer

Empir Software Eng (2022) 27: 27 Page 19 of 52 27

Table 6 Our identified security taxonomy and topic mapping

Category Sub-Category # Topics
Cryptography Encryption 42
Encoding 12
Access Control Authentication 40
Tokens 25
Authorization 10
Network Security Digital Certificates 26
Client/Server 23
File Transfer 7
Data Security Password/Data Storage 23
Digital Signature 7
Software Vulnerabilities Network Exploits 18
Mitigation 5
Memory Management
Race Condition 4
Secure Development Implementation 57
Testing 25
Libraries/Configuration 39
GitHub/Reports 15
Other 11
Total 395
which contain a specific topic (zx):
1
share(zi,c;) = 100 x — Zﬁ(di,zk) (1)
|Cj | diec;

To evaluate the temporal trends of particular topics within the corpora for RQ4, we utilize
the topic impact metric, as used in similar works (Panichella et al. 2013; Rosen and Shihab
2016; Wan et al. 2019). The impact of a topic zx in month m is defined as:

> 0di.) @)

dieD(m)

impact (zx, m) = DOn)|

where D(m) is the set of documents within the corpus that were posted in month m. For
example, for a month in which 3 issues were posted which each relate to the same topic with
probabilities: 0.3, 0.4, 0.8, then the topic impact value of that topic for that month would
be: (0.3 4+ 0.4 4+ 0.8)/3 = 0.5. This gives us an indication of the each topic’s significance
per month, for the time range of January 2009 to May 2020. The topic impact score can be
considered as the topic share value over time.

3.5 Topicand Language Characteristics

We obtain various metrics of the posts and users for each language and its topic categories
to reveal aspects of their characteristics. These metrics inform us of the relative significance

@ Springer

27 Page 20 of 52 Empir Software Eng (2022) 27: 27

of the challenges when they occur, and the nature in which they are resolved by online
communities.

For RQS5, we focus on the attributes of the documents that make up the various topics and
languages. As it is difficult to determine the document-centric metrics for partial topics via
the topic share value, we cluster posts based on their topic probability vectors. We define the
dominant topic for each post to be the topic with the highest probability for that document
(Panichella et al. 2013; Rosen and Shihab 2016; Wan et al. 2019). This is formally defined
as:

dominant(d;) = zx : 0(d;, zx) = max(0(d;, z;)), 1 < j <K 3)
The size of a topic (|zx|) is the number of posts for which it is the dominant topic, i.e.,
> max(0(d;, zx)). To obtain the set of dominant topics for a category, we take the union
of document sets for each topic which forms that category. Similarly, we can calculate the
overall popularity or difficulty of a language through the set of all documents pertaining to
that language.

For Stack Overflow, we use document-centric metrics inspired by previous works (Yang
et al. 2016; Bagherzadeh and Khatchadourian 2019; Ahmed and Bagherzadeh 2018) to
measure the popularity and difficulty.

The popularity of a given Stack Overflow topic category is calculated as follows:

Popularityso = %\7/2 P1 x Z P2 x Z P3 x Z P4)

where for each document in that topic, P1 is the number of views, P2 is the score, P3 is the
favorites, P4 is the number of comments, and |7T'| is the number of documents in that topic
category.

The difficulty of a given Stack Overflow topic category is calculated as follows:

|T| Z D2 |T|accepled
X X
Z D1 |T|accepted Z D3

where for each document in that topic, D1 is whether the question has an accepted answer,
D2 is the time in hours to receive an accepted answer and D3 is the number of answers per
the number of views. As not all questions have answers or accepted answers, D2 and D3
are determined in relation only to posts that have an accepted answer. D1 and D3 have an
inverse relationship to difficulty; a higher value indicates an easier topic.

To the best of our knowledge, ours is the first work to attempt to formally quantify the
popularity or difficulty of GitHub Issues via their discussions. We adapt the metrics used for
Stack Overflow to also be suitable for GitHub documents as well, but due to the differences
in the sites metadata and activities we note that the conversion is not directly equivalent.

We define the popularity of a given GitHub topic category as follows:

1
Popularitycy = m\/z P1 x ZPZ X ZPS 6)

where for each document in that topic, P1 is the number of comments, P2 is the number
of unique users who contribute to the issue and P3 is the number of "up’ reactions.'> We
use GitHub reactions as a metric due to their possible resemblance to the score of a Stack
Overflow posts, and reactions are becoming increasingly commonplace in GitHub issue
discussions (Borges et al. 2019).

Difficultyso = (5)

2https://developer.github.com/v3/reactions/

@ Springer

https://developer.github.com/v3/reactions/

Empir Software Eng (2022) 27: 27 Page 21 of 52 27

The difficulty of a GitHub topic category is defined as:

o 1
Difficultygy = T 72 D1 x Y D2 (7

where for each document in that topic, D1 is the time in hours to close that issue and D2 is
the number of commits assigned to that issue. We find that there are a significant number
of outliers for issue close time due to stale issues (Wessel et al. 2019), so for D1 we remove
outliers using an outlier boundary of 1.5 % InterquartileRange.

It is important to note that these metrics are different to the topic share metric measured
in RQ3 and obtain a different ranking, which we confirm using the Kendall rank correlation
coefficient (Knight 1966) at the 95% confidence level. Whilst the topic share indicates the
overall prevalence of a topic, the popularity measures the interest and engagement of a post
for that topic when it occurs.

For expertise, we adopt the metrics proposed by Tian et al. (2019) which identify the
relative expertise of a user on either Stack Overflow or GitHub for a particular topic. The
full equations for the expertise of a Stack Overflow or GitHub user can be seen in their paper
(Tian et al. 2019). In our case the topic of expertise is security. We adopt this particular
approach as it considers various important user attributes and platform specific information.

For Stack Overflow, the expertise of a given user is calculated through a combination
of their profile performance (reputation and profile views) and their answer performance
(answer scores and score/favorites/views of questions they are answering). To relate the
expertise to a specific topic, only the answer performance for questions of that topic are
considered. Hence, we obtain the user answer performance for the security related posts. To
extend the generalizability of security knowledge, we also consider general security related
posts which are collected using the same heuristics as the dataset created by Yang et al.
(2016).

For GitHub, the expertise of a user is determined through their contribution to significant
repositories. This is calculated by the frequency of a user’s commits, and the total commits
and watchers of a repository. To make the expertise value topic specific, the topic weight
of the repository is also determined. We altered the weight formula proposed by Tian et al.
(2019) slightly, to better represent a user’s security contribution, and calculate it as:

numUser SecurityComments

Weight = - 3
numSecurityComments

As we intend to investigate how challenges are resolved, only the expertise of users who
provide answers to security related discussions are considered, either through the accepted
answer on Stack Overflow, or a comment on a GitHub issue.

The individual values of these metrics (popularity, difficulty and expertise) are not
indicative on their own, so we only consider the normalized values for the purposes of
comparison in RQ5 and RQ6.

4 Results and Analysis

4.1 RQ1: What is the Rate of Security Discussion Amongst Programming Languages
on Stack Overflow and GitHub?

The selected languages and their rate of security discussion is shown in Table 7. Related
literature has reported the frequency of security discussion on Stack Overflow to be between

@ Springer

27 Page 22 of 52 Empir Software Eng (2022) 27: 27

Table 7 The rate of security related discussion (%) for each programming language for each source

Programming Stack Overflow GitHub Difference* Average
Language Security Total Security Security Total Security
Posts Posts Rate Issues Issues Rate

Shell 5807 152203 3.82 6395 458529 1.39 +2.42 2.60
PHP 32191 1361990 2.36 20398 1157572 1.76 +0.60 2.06
PowerShell 1782 82460 2.16 4112 266222 1.54 +0.62 1.85
Go 809 46051 1.76 24288 1448882 1.68 +0.08 1.72
Erlang 126 8816 1.43 1495 78827 1.90 —0.47 1.66
Java 35576 1689665 2.11 13647 1234379 1.11 +1.00 1.61
Puppet 49 3762 1.30 198 11734 1.69 —0.38 1.49
Perl 942 65995 1.43 2188 145351 1.51 —0.08 1.47
C/C++ 2641 330139 0.80 16794 871251 1.93 —1.13 1.36
Ruby 2514 214226 117 14537 987441 1.47 —0.30 1.32
C# 22151 1432299 1.55 11892 1118533 1.06 +0.48 1.30
Groovy 329 25317 1.30 1259 119471 1.05 +0.25 1.18
Python 11353 1536950 0.74 15368 963333 1.60 —0.86 1.17
VB.NET 1332 131530 1.01 55 4655 1.18 —0.17 1.10
Elixir 82 7737 1.06 1145 108948 1.05 +0.01 1.06
JavaScript 22624 2016932 1.12 16246 2080976 0.78 +0.34 0.95
Objective-C 2093 291030 0.72 2472 270107 0.92 —0.20 0.82
Kotlin 298 39886 0.75 2011 236977 0.85 —0.10 0.80
Lua 111 17017 0.65 1340 143203 0.94 —-0.28 0.79
CoffeeScript 68 9767 0.70 933 105551 0.88 —0.19 0.79
Swift 1859 285658 0.65 2124 248266 0.86 —0.20 0.75
Clojure 82 16297 0.50 1236 123395 1.00 —0.50 0.75
Fstar 0 20 0 39 2642 1.48 —1.48 0.74
TypeScript 856 114778 0.75 10227 1455275 0.70 +0.04 0.72
Assembly 111 34129 0.33 252 27049 0.93 —0.61 0.63
QML 20 9094 0.22 85 8265 1.03 —0.81 0.62
Dart 194 29978 0.65 1253 212221 0.59 +0.06 0.62
Rust 44 16243 0.27 4568 498734 0.92 —0.65 0.59
Pascal 10 2156 0.46 187 25911 0.72 —0.26 0.59
Groff 0 56 0 77 6783 1.14 —1.14 0.57
Haskell 105 43795 0.24 1378 165280 0.83 —0.59 0.54
Vala 3 876 0.34 166 23085 0.72 —0.38 0.53
Scala 327 97971 0.33 3203 456422 0.70 —-0.37 0.52
TSQL 221 62276 0.35 246 47713 0.52 —0.16 0.44
OCaml 5 6206 0.08 698 98536 0.71 —0.63 0.39
Smalltalk 4 1563 0.26 63 12573 0.50 —0.25 0.38
VimL 0 41 0 255 121604 0.72 —0.72 0.36
D 3 2540 0.12 259 47265 0.55 —0.43 0.33
DM 0 49 0 736 121218 0.61 —0.61 0.30
F# 17 14631 0.12 211 46838 0.45 —0.33 0.28

@ Springer

Empir Software Eng (2022) 27: 27 Page 23 of 52 27

Table 7 (continued)

Programming Stack Overflow GitHub Difference* Average
Language Security Total Security Security Total Security
Posts Posts Rate Issues Issues Rate

Scheme 2 7196 0.03 57 10966 0.52 —-0.49 0.27
Raku 0 395 0 41 9101 0.45 —-0.45 0.23
Prolog 9 11246 0.08 3 883 0.34 —0.26 0.21
ELisp 3 3735 0.08 415 132570 0.31 —-0.23 0.20
R 320 346073 0.09 487 166897 0.29 —0.20 0.19
Coq 2 2053 0.10 14 7658 0.18 —0.09 0.14
Julia 6 6757 0.09 255 149348 0.17 —0.08 0.13
Fortran 1 10903 0.01 51 34087 0.15 —0.14 0.08
MATLAB 67 88285 0.08 3 18230 0.02 +0.06 0.05
Total 150285 11358546 1.32 235141 20832355 1.13 0.19 1.23

*A + symbol indicates the increase in rate of discussion on Stack Overflow compared to GitHub, and a -
symbol indicates a decrease in rate of discussion on Stack Overflow compared to GitHub.

1% (Yang et al. 2016) and 2% (Le et al. 2020), and the rate of security discussion on GitHub
to be between 3% (Zahedi et al. 2018) and 10% (Pletea et al. 2014). For our dataset, we
observe the average rate of security discussion on Stack Overflow to be 1.32% which is
inline with previous work. However, for GitHub we observe a lower average rate of 1.13%.
Using the same data filtering methods as Zahedi et al. (2018) on our dataset, we identify a
rate of 3.38%, but we occasionally found these posts to lack relevance and focus. Hence,
we used stricter keyword count thresholds for content-based filtering to ensure document
quality, which results in the lower rate of discussion.

Shell-based languages (i.e., Shell and PowerShell) have some of the highest rates of secu-
rity discussion (2.6% and 1.85%), which is likely due to their stronger coupling with the
underlying operating system. Languages commonly used for web development (i.e., PHP,
Ruby and JavaScript) also have slightly higher rates of security discussion (2.06%, 1.32%
and 0.95%) due to the increased security needs of these highly connected software systems.
Conversely, languages oriented towards numerical analysis (Scientific Programming Lan-
guages, i.e., R, Julia and MATLAB) have exceedingly low rates of security discussion with
less than 0.2% each.

General purpose languages typically have a higher average rate of security discussion,
and more obscure languages have a lower average rate of security discussion. Similarly,
several of the languages with the highest rates of security discussion are widely used (i.e.,
Go, Java, C/C++, C# and Python). However, these factors may only be because of their
naturally higher rate of overall discussion and use.

Interestingly, languages which require manual memory management (i.e., C/C++,
Objective-C, Pascal, Assembly and Fortran) do not necessarily have a higher rate of security
discussion compared to languages which are considered“memory-safe”. Programs written
in these languages are especially prone to extreme and unexpected input data via buffer
overflow and other related vulnerabilities. However, C/C++ exhibits the highest frequency
of security discussion for GitHub issues (1.93%).

@ Springer

27 Page 24 of 52 Empir Software Eng (2022) 27: 27

Thirty nine out of the fifty examined languages exhibit a cumulative rate of discussion
below the average (<1.23%). This might be an indication of a general lack of knowledge,
prioritisation, or consideration within these programming languages.

Using one way analysis of variance (ANOVA) (Howell 2012) we confirm that there is
no significant correlation between the rate of security discussion and the type class, compi-
lation class or memory class paradigms of a programming language. We also confirm that
there is no significant correlation between the creation date of a programming language and
its rate of security discussion, using the Kendall Tau Coefficient (Knight 1966).

RQ1 Summary: The average frequency of security discussion is around 1% for
both Stack Overflow and GitHub. Shell-based and Web-oriented languages exhibit
the highest rates of discussion (2.6% and 2.1% for Shell and PHP respectively),
whereas scientific programming-based languages exhibit the lowest (0.1% for R,
Julia and MATLAB).

4.2 RQ2:What is the Intention Behind Security Discussions for Different
Programming Languages?

Using a manually labelled sample, we examine the types of posts using the question taxon-
omy of Beyer et al. (2020), to determine the purpose and intent of the security discussions
for each language. The manually labelled and annotated samples as well as the full category
distributions can be viewed in our online appendix.!3

For the seven proposed question categories, we find that the Learning category was
extremely infrequent in our dataset. Only 3 out of 952 posts were assigned this label for
Stack Overflow, and none for GitHub, so we exclude this category from our analysis.
We found the nature of the discussions in our dataset to be more functionally orientated.
Similarly, the Conceptual category was also under-represented. As most posts discussed
implementation related tasks (especially for GitHub), we found the separation between this
category and Review to be indistinct. We have hence merged the two categories to increase
label consistency.

We present the overall trends for each category in Fig. 6. For Stack Overflow, API Usage
and Errors are the most prominent reasons for discussion as users are commonly asking for
assistance in solving a problem. For GitHub, there is a much higher proportion of Review
questions, as users require approval for proposed changes. We next inspect the difference in
distribution for individual programming languages.

We first consider whether there is a difference in the distribution of question categories
for different programming languages. Using a Chi-Squared Test of Independence (Pearson
1900), we find that there is an association between the programming language and the cat-
egory of a post, with p <0.01 for both Stack Overflow and GitHub. Using this knowledge,
we then examine how the distribution of question/issue types varies to the standard distribu-
tion of each category. Figure 7 displays the standard score (difference in standard deviations
to the mean) for the distribution of each question/issue category for each language. Lan-
guages with green bars consist of a higher than average proportion of posts with that type
of question/issue, and a lower proportion for red bars.

Bhttps://github.com/RolandCroft/Language- Security- Challenges/tree/master/Manual_Analysis

@ Springer

https://github.com/RolandCroft/Language-Security-Challenges/tree/master/Manual_Analysis

Empir Software Eng (2022) 27: 27

Page 25 of 52 27

300

250

Frequency
n
(=}
o

Stack Overflow

350

300

250

Frequency
[
(=]
o

-
ul
)

GitHub

Fig.6 The overall discussion categories for each source

Through these question/issue types, we can infer the motivations and purpose of the

security discussions for each language, and consequently identify the potential deficiencies:

API Usage: This category relates to the posts discussing implementation or use of a spe-
cific API. We find that posts of this nature indicate that security is generally hard for a
particular language. Implementation is intensive or lacking documentation; hence users
need support through discussion. For instance, “how to add interceptor in spring” (SO,
8033100) or “clarification of documentation for KeePassXC entry protection” (GH,
asbru-cm/asbru-cm/issues/565).

Discrepancy: This category involves the posts where users encounter unexpected
behaviour. The user wants to know what or why something does not work. We observe
that the posts of this nature imply a lack of familiarity with security flaws and issues.
Perhaps due to a lack of experience, the users have little understanding or knowledge of
the security concept or functionality, which may lead to confusion. For instance, “PHP
Login script only works with usernames known to mysql?” (SO, 56138399).

Errors: These posts are similar to those of the Discrepancy category, but explicitly
involve exceptions or errors. For GitHub, this category is extended to also consider
issues describing how to fix these errors. This category implies that implementation
of security is difficult or error-prone. Users make mistakes or miss critical functional-
ity, which needs to be fixed. For example, * ‘Unauthorized’ error in .net webservices
developed in C#” (SO, 1848508).

Review: This category is merged with the Conceptual category. These posts attempt
to review or understand concepts and functionality, for the purpose of improvement
or decision making. For GitHub, this is extended to include code improvement and
updates, as users are seeking review and validation. Questions of this nature may indi-
cate that a user’s current implementation and security expertise are not sufficient to
meet security requirements; they are not confident enough in their secure coding skills
to ensure security. For instance, “Is this sufficient security for user input in PHP?” (SO,
11003851).

API Change: Posts for this category discuss compatibility issues and discrep-
ancies between API and software versions. This implies that security issues

@ Springer

Empir Software Eng (2022) 27: 27

27 Page 26 of 52

GitHub

Stack Overflow

0
EE=

o~ o o~

I
abesn IdV

1I”US

#2
119Yysiamod
HIMS
uoyihd
D-9A1303[00
dHd
++2/0
jduosene(
1dudsadA L
09

enef

143d

Agny

09
2-9A13[00
++2/0
dHd

BIMs

IEES)

enef

#2

uoyikd
jdudsene(
1od
IoYySiomod
Agny
1dudgadA)

0 ..-

o~ o o~

|
Adouedaudsiqg

09

Aany
jduosene(
D-9A1329[00
#2

UIMS

IERS

enef

uoyikd
13d
1I3YSIdamod
dHd
++2/0
ydudsadA)

2
0
-2

jduosene(.
enef .
uouAd [|
dHd

l13Ysiamod

#2

2-9A1329[00

IEE

HIMS

43d

jdudgadA)

Agny -
09 [|
++2/ [|

o~ o o~
|

s10443

uoyiid

[
++2/2 [|
#D [|
enef

2-9A123[q0

09

1ad

HIMS

yduosenef

Aany

dHd

[[|
1dudgadAL [|
|IBYSiamod

1duosadA L

IIPYSIaMOd

I 2
== N 0

Agny

1ad

HIMS

09

1I”US

#2

D-9A1123[00

uoyihd

enef

jduosenef -

dHd

++2/0
o~ o o~

)
Malnay

|IPYsiamod
ydunsadAL
dHd

1ad

Aany
++2/0

09

enef
2-9A1323[q0
HIMs

11’YS
yduosenef
uoyifg

#D

++2/0

#2

Agny

dHd
uoyikd
ydudsenef
yduosadAL
1od

enef
D-9A1393[00
IECKY

HIms
11I9YSJIamod

09

0
EE=

o~

0
HEN

o~

I
abuey)d |dv

IENS
jdudsene(
143d

enef

Aany
jdudsadAl
dHd
++2/0
uoyifd
l19ysiamod
#D

HIMs

09
D-9AI3[q0

IEES)
++2/0
enef
1dudgadA)
jduosene(
dHd
D-9A1329[00
09

143d
I9YySiomod
HIMS

Aany
uoyifd

#D

Fig.7 The variance in standard deviation of the distribution of discussion categories for each of the selected

programming languages

arise from external software, either from package vulnerabilities or depre-

cated security features.

dentials” (GH,

For example, “Chrome drops support for added cre-

Codeception/Codeception/issues/4384), or ‘“DeprecationWarning:

crypto. DEFAULT_ENCODING is deprecated” (GH, textlint/textlint/issues/620).

Security discussions for C/C++ are more heavily oriented towards Review than other
languages. We observe that developers are much more conscientious of security for these

pringer

As

Empir Software Eng (2022) 27: 27 Page 27 of 52 27

languages. Questions often involve explanation of a vulnerability or attack (e.g., “Why check
if pointer is NULL after using it?” (SO, 26969565), “How to use Format String Attack?”
(SO, 27018864)), improvement of code (e.g., “In C, what is a safer function to use than
strtrns?” (SO, 9264942)), or security confirmation (e.g., “Do the openssl X509 _verify_cert()
verifies the signature in the certificate?” (SO, 10495903)). This implies that developers
are aware of the secure coding requirements for C and C++ (Seacord 2005), but require
knowledge support. To account for this variation, there is a lower than average distribution
of questions for Errors and Discrepancy.

PowerShell issues are less oriented towards Errors than other languages. They are also
more oriented towards Review, but neither of these trends are reflected in Stack Overflow
questions. Upon inspection, we found that a large proportion of GitHub issues related to
PowerShell involved updates or feedback on documentation. This is due to the inclusion
of Microsoft Documentation repositories,'* which are written in PowerShell, but primarily
oriented to documentation.

TypeScript also has a high distribution of issues about Review, as discussions were most
commonly about security code/feature updates and improvement, e.g., “Improve the settings
sync flows with authentication” (GH, microsoft/vscode/issues/94766). This indicates that
security in TypeScript is intensive and requires a lot of implementation.

Shell discussions are more oriented towards API Change on both Stack Overflow
and GitHub. We find that developers typically use Shell scripts to install, call or update
security related packages and components. Hence, these posts typically discuss ver-
sion issues (e.g., “Issue with Debian 10 <tls-crypt >empty” (GH, angristan/openvpn-
install/issues/523)) or updates (e.g., “update oraclelinux for openssl” (GH, docker-
library/official-images/issues/4957), “Update the OpenVPN mirror GPG key and finger-
print” (GH, StreisandEffect/streisand/issues/754)).

RQ2 Summary: There is a correlation between programming language and the pur-
pose of the security discussions. C/C++ developers are much more conscientious of
security but require knowledge support. TypeScript issues are often about security
updates and improvements. Security challenges for Shell are motivated through use
of external components.

4.3 RQ3: What are the Major Developer Security Discussion Topics?

To address this research question, we first create a taxonomy of the security discussion top-
ics, as identified via the topic models. The taxonomy is displayed in Fig. 8. This taxonomy
is based on the dominant and emergent discussion topics in our dataset. It should be noted
that this taxonomy is not exhaustive, nor does this encompass all elements of cybersecurity.
The taxonomy is focused around the content of our dataset, security related development
issues, rather than concepts and knowledge. Furthermore, if a category is absent for a par-
ticular language, it does not necessarily mean that the discussion is non-existent; it may just
be overshadowed by other topics.

Labels are not assigned to topics which do not implicitly relate to security or are too
ambiguous to label. Eleven out of the 395 total individual topics of all languages and sources

4https://github.com/MicrosoftDocs

@ Springer

https://github.com/MicrosoftDocs

27 Page 28 of 52

Empir Software Eng (2022) 27: 27

Java

PHP
JavaScript
C#

Python
Shell
C/C++
Ruby
Objective-C
Swift
PowerShell
Perl

Go
TypeScript
All

Java

PHP
JavaScript
C#

Python
Shell
C/C++
Ruby
Objective-C
Swift
PowerShell
Perl

Go
TypeScript
All

Crypto-
graphy

10

5

4

2

Access
Control

13

10

5]

9

Network
Security

Data
Security

5

6

9

11

Software

Vulnerabilities

2

Secure

Development

. [l =

6 2 5 10 2 5 3 4 6 4 11 3
9 4 12 5 3 3 6 3 | 18 2 3 1 1 n 5
14 8 17 7 6 2 10 1 18
12 2 18 10 2 6 15 7
16 18 17 13 11 5 9 11
14 s 9 10 4 6 10 9 11
i - =]
1 9 7 E 15
- |
17 10
10 3 11 8 1 4 5 3 8 3 6 1 1 1 14 18 6
8 7 11 5 5 3 3
5 16 10 5 5 5 5 10
2 4 14 6 2 5 4 5 4 9
8 4 12 8 4 7 4 4 3 4
5 5 5 5 9 4 5 11
10 18 9 18
14 5 6 6 10 11 5 12
10 10 7 9
14 15 7 8 13 7 8 7 8
E 15 17 1
6 4 4 5 4 8 5 3 1 2 6
3 7 15 5 8
6 2 11 5 2 5 4 1 3 2 1 1 7
c o [[c 0 = = [[4] c = [c o c 0
s £ 8 § & & ¢ ¢ 2 5 5 & § g s £ s %
=} S =] g = © c 4] © =} 2 =] I = =i =1 = o
o IS © > © %} [} < o © o © ko] ©] © Q
> O 2 i N = 0 © = c < o (9] c = o) [(0]
s § £ 5 E ¥ F 0 2 4 5 D 5 § " 3
g Y9 g £ ¢ 5§ o £ O ¢ = 2 O ¢ c g
s 5 Y9 = £ &8 ® ¢ g 5 o 5 Z
> < w © 2 £ 2 T o Qo =
< =2 T 2 o > < £ 5 06
=) s & =z G =]
&) = £ H
@ o 5
& = 5

MO[LIBAQ YOrlS

qnHio

Fig. 8 The heatmap of the topic share (%) for the identified topic sub-categories for the 15 selected
programming languages for Stack Overflow and GitHub

were not assigned a label, and thus excluded from this study. The impact of this exclusion
is minimal as the 11 topics each have a topic share value of less than 1.

The heatmap of the topic distribution for each programming language of each source is
shown in Fig. 8, where each value is the percentage topic share. Cells are rounded to nearest
integer, where cells with no number have a topic share value rounded to 0. As such, rows

@ Springer

Empir Software Eng (2022) 27: 27 Page 29 of 52 27

do not necessarily total 100. It should be noted that the distribution of each programming
language is limited to topics which actually appeared in the topic models. Thus, languages
with less diversity tend to have higher topic share values. The overall topic share value for
each data source (considering all documents of a data source as a single corpus, regardless
of language) is given in the A/l row to give an indication of the overall topic distribution. An
explanation and analysis of the taxonomy categories is below.

Category - Cryptography Cryptography relates to the techniques and practices for secure
communication and information security. Cryptographic systems are a security primitive,
essential for ensuring data confidentiality, data integrity, authentication and non-repudiation
(Menezes et al. 2018). As such, this category exhibits some overlap with other categories,
but the distinction lies in the focus of the techniques and methods, rather than the application
and uses. Noticeably, TypeScript exhibits no Cryptography related discussions or challenges
on both sources.

— Encryption: All discussion relating to encryption/decryption and relevant crypto-
graphic algorithms, without any explicit application. For instance, “How do you encrypt
large files / byte streams in Go?” (SO, 49546567) or “Encrypted String is wrong in
swift” (GH, krzyzanowskim/CryptoSwift/issues/774). This is one of the more prominent
sub-categories for both Stack Overflow and GitHub, due to its diverse applications.
Across the two sources, discussion is most dominant for C/C++, Objective-C, Swift
and Go, with each of these languages exhibiting a quarter of their overall discussion
for this topic. Topics for C/C++, Shell, JavaScript and Java have a bigger focus on the
cryptographic algorithms rather than encryption itself (e.g., “Deriving ECDSA Public
Key from Private Key” (SO, 49204787)). This is most noticable for C/C++ due to the
large number of discussions for OpenSSL,'3 a cryptography toolkit. This indicates that
use of cryptography is very strong for this language.

— Encoding: The encoding or decoding of data. Whilst encoding is not explicitly related
to cryptography, it was found that the majority of discussions of this topic fell under the
cryptography category. For instance, the post “Could not parse base64 DER-encoded
ASN.1 public key from iOS in Golang” (SO, 48761010) discusses encoding a public key
in Go.

Category - Access Control Access Control involves the methods, practices and techniques
of restriction and permissive access to resources, and other access management processes.
This is the second most prominent category, behind Secure Development. Challenges occur
for all languages across either source.

— Authentication: Discussion relating to user validation, typically through login,
accounts or credentials. We found the majority of topics and posts for this sub-category
to relate to implementing a login system, e.g., “Ruby on Rails: Devise - password
change on first login” (SO, 13121356). As such, challenges are particularly prominent
in languages oriented for app development (i.e., Web or Mobile development), like PHP,
C#, Ruby, Objective-C, Swift, PowerShell, and TypeScript. The high overall topic share
value for these discussions suggest that it is one of the most common security-related
tasks that developers face.

https://www.openssl.org/

@ Springer

https://www.openssl.org/

27 Page 300f52 Empir Software Eng (2022) 27: 27

Tokens: Token-based authentication and other similar mechanisms, such as API tokens,
cookies, and general session management. This sub-category is more frequent on Stack
Overflow, for languages such as Python, Ruby, Go and TypeScript. API tokens such as
OAuth token authentication are a prominent discussion point, e.g., “Google oauth how
Exchange code for access token and ID token” (SO, 22796143).

Authorization: The process of assigning and checking user permissions to access a
resource. This category is noticeably significant on Stack Overflow for Shell (10%) and
PowerShell (17%) due to the use of methods such as Secure Shell (SSH) for connecting
to remote servers (i.e., “Validate SSH connectivity using SSH-keys” (SO, 38006170)).
For all languages, discussion of Authorization is less than that of other Access Control
sub-categories.

Category - Network Security Network Security involves the practices required to enable
secure communication and data transfer over a computer network.

Digital Certificate: Secure communication through the use of digital certificates. One
of the more prominent topics for Network Security, with the highest topic share values
for Objective-C (33%) and Swift (17%) on Stack Overflow and GitHub respectively.
These languages are both commonly used for iOS development, e.g., “How do I accept
a self-signed SSL certificate using iOS 7’s NSURLSession” (SO, 30739149).
Client/Server: Secure communication over a network to a server and/or client. This
sub-category is most prominent for Shell (29% and 10% Topic Share for Stack Over-
flow and GitHub respectively), again due to the use of Secure Shell (SSH). For example,
“How do I access a WebService through an SSH tunnel?” (SO, 2289708). Besides Shell,
this topic is also noticeably evident for Perl and C/C++. These languages are commonly
utilized for socket programming. For instance, this issue “net.socket:connect() - leaks
memory on DNS lookup fail” (GH, nodemcu/nodemcu-firmware/issues/234) is about a
security problem for a socket connection in C.

File Transfer: Secure transfer and access of files over a network, e.g., “Security threats
with uploads” (SO, 11061355). This topic is most prominent for PHP and JavaScript
on Stack Overflow and GitHub respectively, but it is overall relatively infrequent.

Category - Data Security Data Security involves protecting digital data from attacks or
breaches.

Password/Data Storage: Secure storage of passwords or data, usually through cryp-
tographic means of encryption or hashing. Discussions for this topic often relate to
implementation of secure password stores, e.g., “Hash and salt passwords in C#” (SO,
2138429). As such, this topic is noticeably evident in languages commonly used for
app development. Interestingly, almost all of the security-related documents on GitHub
for Perl (96%) are for this topic, as well as a large portion from Stack Overflow (22%).
Aside from the higher proportion, we did not observe any distinct characteristics of the
Perl posts in comparison to other languages.

Digital Signature: Verifying the authenticity of data or documents through the
use of digital signatures, e.g. “Add script to verify signature” (GH, sparkle-
project/Sparkle/issues/896). Due to the much higher topic share value for Pass-
word/Data Storage, it implies that most challenges in data security relate to confiden-
tiality rather than integrity or authenticity.

@ Springer

Empir Software Eng (2022) 27: 27 Page 310of52 27

Category - Software Vulnerabilities This category relates to security weaknesses present
in a software system that can be exploited by an attacker. This involves the explicit flaws in
the code or security features.

— Network Exploits: Network exploits and vulnerabilities, such as SQL Injection, XSS,
CSRF and DDoS, as well as methods to prevent them, such as input validation.
For example, “How can prepared statements protect from SQL injection attacks?”
(SO, 8263371). As these attacks are often targeted at web applications, this topic is
noticeably most prominent in web-oriented languages, i.e., PHP, JavaScript, Ruby and
TypeScript. However, challenges are most frequent for Python on Stack Overflow, with
18% Topic Share. This is because of Python’s Django framework enforcing CSRF pro-
tection, leading to many Stack Overflow questions. For example, “When I try to send
POST request, Django requires CSRF token. How can I send POST request without any
problems?” (SO, 23743273).

— Mitigation: Vulnerability reports, scanning and patches. This topic does not fall under
other sub-categories as the discussion is often not explicit to any particular vulnerability.
For instance, the GitHub issue “chore: fix vulnerability” (GH, strongloop/loopback-
next/pull/2880) does not provide details about the actual vulnerability it fixes. Like
Network Exploits, this topic is evident for web-oriented languages: JavaScript, Ruby
and TypeScript.

— Memory Management: Discussion relating to the management and mitigation of
memory related issues. The dominant challenges in this topic relate to stack/heap mem-
ory and overflows, e.g., “buffer overflow exploits - Why is the shellcode put before the
return address” (SO, 16789241). Individual topics can also relate to dynamic memory
linking methods, such as pointers, but this discussion is only prominent in C and C#
as these mechanisms are often uncommon in other languages. GitHub issues for this
topic commonly relate to memory leaks, e.g., “Fixes memory leaks in loT” (GH, aws-
amplify/aws-sdk-ios/pull/1175). This topic is only dominant for C/C++, and discussion
is noticeably lacking for other languages. This is potentially expected, as these lan-
guages are memory and type unsafe, but these vulnerabilities can still manifest in other
programming languages, such as PHP (Cifuentes and Bierman 2019).

— Race Condition: Secure and safe management of access to shared resources by mul-
tithreaded or parallel processes, e.g., “Can Multiple Threads Read The Same Class
Member Variable?” (SO, 59191339). This is the least prominent sub-category, and is
only evident for Java, C#, and C/C++.

Category - Secure Development Secure development refers to the practices and tasks
involved with producing secure software. These discussions do not hold any explicit rela-
tion to the other categories. For example, debugging a security feature, or configuring a
secure framework. This category has the highest overall topic share value, as the major focus
of the collected dataset is secure development. As a result, discussion is prominent for all
languages in our dataset.

— Implementation: Implementation or requirements planning of security elements, e.g.,
“Submit button is not getting enabled after checking all the fields” (SO, 34253518) or
“Add best practice encryption requirements.” (GH, coreinfrastructure/best-practices-
badge/pull/3).

— Testing: Testing and debugging for general security defects or bugs, e.g., “initializa-
tionError FAILED java.lang.SecurityException” (SO, 29508622).

@ Springer

27 Page 320f52 Empir Software Eng (2022) 27: 27

— Libraries/Configuration: Integration and configuration of security-related libraries,
frameworks, plugins or addons; e.g., “spring security 3.2 java configuration” (SO,
26944600).

— GitHub/Reports: General GitHub development activities and reporting of software
issues and bugs, such as GitHub issues and pull requests, or bug reports. For GitHub,
this topic is heavily influenced by GitHub bots, e.g., googlebot'® which requests the
user to sign a license agreement. This topic is not very pervasive on Stack Overflow as
expected, but still appears for Shell due to the frequent usage of Git via the command
line, e.g., “How to switch from first github account to second?” (SO, 37782617).

The existing security state of the art also provides taxonomies for security theory and
knowledge. However, none of these taxonomies are empirically constructed through devel-
opment challenges or mapped to programming languages like ours. We position our findings
with respect to the state of the art by comparing our identified taxonomy to two exist-
ing security taxonomies. The Cybersecurity Body Of Knowledge (CyBOK) (Martin et al.
2019), is a mapping and collection of cybersecurity knowledge published in textbooks, aca-
demic research articles and technical reports. It identifies 20 knowledgebases for five key
domains. Additionally, the Common Weakness Enumeration (CWE) presents a taxonomy
of security weaknesses for software security (CWE 699).!7 We compare our taxonomy to
these existing security taxonomies in Fig. 9.

As our taxonomy is constructed empirically from development issues rather than security
theory, we notice several differences to the existing taxonomies. CyBOK is oriented towards
education, and as a result covers security aspects very broadly. Only two of the domains,
System Security and Software Platform Security, relate to the development challenges that
we identify. Furthermore, the sub-categories of the relevant chapters do not match the gran-
ularity of our analysis and are often topics that are quite specific to theoretical aspects,
such as Cryptographic Security Models. Additionally, the existing state of the art is not pro-
vided from a programming language perspective, which can make application difficult for
practitioners, managers, educators, and researchers who are concerned about this view.

The CWE taxonomy is primarily oriented towards vulnerabilities and exploits, which
only covers a small portion of our dataset. Challenges often relate to development and
implementation of security features rather than discussion of explicit flaws. Some of the
more simplistic vulnerabilities are not covered in our taxonomies, such as Numeric, String
and Type Errors. Although these vulnerabilities may still receive some discussion, they
do not experience enough discussion in developer communities to manifest as significant
challenges through our topic modelling process.

Although, CWE entries are substantiated using references to formal public reports and
vulnerability databases, these references are not systematic nor evaluated with respect to
publicly available security discussions and sources, like our taxonomy is. Additionally,
CWE provides the applicable platforms/programming languages for some CWE types, but
this information is considered far from complete. For instance, 75% of CWE types which
list Applicable Platforms (423 out of 566) are categorized as Language-Independent, which
may be theoretically true, but through our study we find the prevalence and nature of the
security challenges to vary across programming language. Furthermore, 63% (362 out of

16https://developers.google.com/open-source/github/accounts#googlebot
Thttps://cwe.mitre.org/data/definitions/699.html

@ Springer

https://developers.google.com/open-source/github/accounts#googlebot
https://cwe.mitre.org/data/definitions/699.html

Empir Software Eng (2022) 27: 27

Page 33 of 52 27

Cryptography

'Systems Security f—)

Our
Taxonomy

Encryption
Encoding

Operating
Systems and
Virtualisation

Distributed
Systems Security

Authentication,
Authorisation &
Accountability

:Software Platform
'Security

L‘>"Access Contrét
Authentication
Tokens
B Authorization
Network
~__Security
Y Digital Certificates
Client/Server
File Transfer

Data Security

Digital Signature
Password/Data Storage

Software Security

Security

Web & Mobile |)

Secure Software
Lifecycle

Network Exploits
Mitigation
Memory Management

Race Condition

Implementation
Testing
Libraries/Configuration

GitHub/Reports

CWE 699

(Software Development)

API / Function Errors

Audit / Logging Errors
Authentication Errors
Authorization Errors

Bad Coding Practices
Behavioral Problems

Business Logic Errors
Communication Channel Errors
Complexity Issues
Concurrency Issues

Credential Management Errors
Cryptographic Issues

Key Management Errors

Data Integrity Issues

Data Processing Errors

Data Neutralization Issues
Documentation Issues

File Handling Issues
Encapsulation Issues

Error Conditions, Return Values, Status Codes
Expression Issues

Handler Errors

Information Management Errors
Initialization and Cleanup Errors
Data Validation Issues

Lockout Mechanism Errors
Memory Buffer Errors

Numeric Errors

Permission Issues

Pointer Issues

Privilege Issues

Random Number Issues
Resource Locking Problems
Resource Management Errors
Signal Errors

State Issues

String Errors

Type Errors

User Interface Security Issues
User Session Errors

Fig. 9 The comparison of our discovered security taxonomy to the security state of the art

571) of the language examples on CWE are for Java and C, which does not provide a wide
view of different programming languages.

RQ3 Summary: We identify 18 topics and 6 topic categories: Cryptography,
Access Control, Network Security, Data Security, Software Vulnerabilities, and
Secure Development. Secure Development is the overall most prominent topic cat-
egory, followed by Access Control. Different languages experience different topic

distributions.

4.4 RQ4: How do Security Discussion Topics Change Over Time for Different
Programming Languages?

We examine the topic impact values of each topic category for each language on Stack
Overflow and GitHub for the time span of January 2009 to May 2020. Using the Mann-

@ Springer

27 Page 34o0f52 Empir Software Eng (2022) 27: 27

Kendall Trend Test (Hussain and Mahmud 2019) with a 99% significance level, we identify
each category as either increasing, decreasing or no-trend. The results can be seen in Table 8.

Topic Impact appears to be predominantly increasing for most topic categories, espe-
cially amongst languages on GitHub and topics. Secure Development in particular exhibits
a steadily increasing trend across nearly all languages and sources.

All languages exhibit an overall increasing trend in security challenges, particularly for
Secure Development. This implies a general increase in security discussion and challenges
over the past decade. PHP is the only language which has a higher number of decreasing
topic trends across both sources.

As questions, issues and discussions usually rise in response to problems, an increasing
Topic Impact value may imply a rise in challenges. However, an increase in discussion also
represents increased awareness and a larger knowledge-base, especially for Stack Overflow.

The Access Control topic category is overall decreasing on GitHub, which could be
interpreted as errors in Access Control are not occurring as commonly. PHP, Python and
Go have an increasing trend for Access Control on Stack Overflow, despite the decreasing
trend on GitHub. Access Control challenges are still increasing for JavaScript, Swift and
TypeScript on both sites.

For Stack Overflow, there are several decreasing trends for Network Security and Data
Security. This implies a growing lack of prevalence on these topics for the relevant lan-
guages. These decreasing trends are for the most popular languages of Stack Overflow
developers.'® Thus, these languages may be moving to other areas of focus due to their pop-
ularity. For Network Security, none of these trends are reflected on GitHub, which implies
they are still important factors of development. However for Data Security, this topic is not
represented commonly on GitHub.

These decreasing trends may be further supported by the sites attempted avoidance of
duplicate questions. Security questions and discussions that are posted earlier are typically
not re-posted, as users have the ability to visit the original post.

We examine the five most significant positive and negative trends for both Stack Over-
flow and GitHub in Fig. 10, as calculated by the Theil-Sen’s Slope estimation value (Hussain
and Mahmud 2019). We use a rolling average of window size 3 to help smooth the noise in
these trend graphs.

The major increases in both Stack Overflow and GitHub language security appear to be
caused by the inception of new languages. The major spikes in the top left graph of Fig. 10
align to the date that these languages first commonly appeared; Go: 2009, TypeScript: 2012,
Swift: 2014. As such, the trends for these graphs are noisy, but we can still observe an
initial surge of interest followed by a steady increase in discussion/challenges for the various
security topics of these languages, after their original inception.

This trend may be caused by general inexperience with these newer languages or lacking
documentation. For example, “I am new to typescript. I am able to integrate authO using
Javascript because authQ providing a sample for that but there is no sample app avail-
able for vue with typescript.” (SO, 59135589). This user admits that they are a novice to
TypeScript and are struggling to find support for this language.

8https://insights.stackoverflow.com/survey/2020

@ Springer

https://insights.stackoverflow.com/survey/2020

Page 350f52 27

Empir Software Eng (2022) 27: 27

*K1039180 JRY) 10§ $o1d0) OU SYUasaIdal sso1d B pue ‘puar) ou sjuasaldar ysep e ‘puan Surseardsp
© $Juasa1dar mo1re umop & ‘puan Sursearour ue sjuasaidor moire dn uy "qnHID sAEOIPUT JYSII O} UO [0qUIAS Y} PUB PUST) MO[JIIAQ JOBIS) SOILIIPUT 3J] oY) U0 [0qUIAS T,

348 g x X X 348 340 X X yduogadAy,
§x 8§ 8 x o4 3 o o0
g=— <3 —_— - P prgu— [1d
Jg=— X X X X x5 X m— <& [[9YySIomod
48 x x oy 48 oy oy s
g x -_—X g x -3 g— ﬁ«» D-9A122[qQ
— g— x4 g— 4+— X Aqny
g9— X x4 X 4+ x iyiy8 D
39 X X g x ﬁ‘ xJ X 1eus
4= " —— -3 0 4= uoukg
04 - a4t ot -3 _ #
“ g x xJ “ 98 -3 yduogeae(
9t " & 94— LY -3 dHd
38 38 x4 “ -y % BAR[
Juowdo[aA(J 2IN02S SANI[IqeIdU[NA IBM)JOS Kmnoag vleg AI1IN93S YI0MION [01IU0D) $$200Y KydeioydA1) a8en3ue]
K10391e) o1dog, Surwweidolg

020T KBN 01 600 Arenuef woxy puan oedur ordoy [e1AQ g 3|qeL

pringer

A's

27 Page360f52 Empir Software Eng (2022) 27: 27

Stack Overflow Top Increasing Trends Stack Overflow Top Decreasing Trends
1.0 Category Category
—— TypeScript Access Control —— Python Software Vulnerabilities
——— Go Network Security 0.5 ——— Shell Network Security
0.8 —— Go Cryptography —— Java Data Security
—— Swift Secure Development —— C/C++ Data Security
——— TypeScript Secure Development 04 ——— C# Data Security
0.6
0.3
0.4
0.2 0.2
0.0 0.1
P DR DD RO D I IR IR C R C BN C I C RN I C I C IO}
Q Q
I N A S i I A
e e e S S e R e e S N A R e
GitHub Top Increasing Trends GitHub Top Decreasing Trends
0.7 Category Category
—— TypeScript Secure Development —— Java Cryptography
——— TypeScript Access Control ~—— Ruby Access Control
0.6 —— TypeScript Software Vulnerabilities 0.4 —— PHP Access Control
—— Swift Network Security —— Python Access Control
0.5 | —— Swift Secure Development /-V\/W/ — Go Cryptography
‘v N W v 0.3
0.4
0.3 0.2
0.2
0.1
0.1
0.0 0.0
D DR DR P P DD PO
00“90\990«,“000'00«:”9@?‘9@5”00@9@3 90@,&50\99&6,0 00“90@90«}'00\9'00\7"0@P‘DQ«, ’00\, 90\:\ ,00@90\9,0&0,0
i e e S e R e e R A R e S S A

Fig. 10 The 5 most significant increasing and decreasing topic category trends for Stack Overflow and
GitHub

RQ4 Summary: The most popular languages experience decreasing challenges in
the areas of: Access Control (GitHub), Network Security (Stack Overflow), and
Data Security (Stack Overflow). However, challenges are overall increasing for
most languages, except for PHP. The most significant trends are for new languages,
which see a steady rise in challenges after their introduction.

4.5 RQ5: What are the Characteristics in Terms of Popularity and Difficulty of
Different Programming Languages and Their Identified Security Challenges?

The popularity and difficulty metrics provide insights into the characteristics of the iden-

tified and analyzed security challenges. Through these insights we can better inform
developers of the nature of these challenges; their ability to be resolved and handled. The

@ Springer

Empir Software Eng (2022) 27: 27 Page 37 of 52 27

popularity metric gives an indication of the interest and involvement of users for these chal-
lenges, which suggests how readily these challenges will be solved by online communities.
The difficulty metric gives an indication of the complexity and hardness of the challenges;
how much knowledge and labour is required to overcome the identified issues. The com-
bination of these metrics gives an indication of how significant the challenges are when
they occur. High popularity and low difficulty challenges are preferable as they would be
expected to be resolved relative quickly and easily.

The overall normalized popularity and difficulty for security of the languages for each
source is presented in Fig. 11. It is expected that developers would favor languages which
are both popular and not difficult; as it implies that there is an abundant amount of interest
and resources to solve potential issues, and that the encountered problems are not as chal-
lenging. For instance, Meyerovich and Rabkin (2013) find language popularity and learning
cost to be important factors for language adoption.

We observe that there is no significant correlation between the Stack Overflow and
GitHub metric values, using Kendall’s Rank Correlation Coefficient (Knight 1966). Simi-
larly, there is no significant correlation between the Popularity and Difficulty values, which
implies that the most popular languages and topics for security are not necessarily the least

Stack Overflow Popularity GitHub Popularity
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
N II IIII N I I
0.0 . 0.0
2 T B = c 0 a >8 0 % C + = T = + &€ 0 c O % >a = o 8 8§
S P22y 80035+ 2 §eiszs308zxz0 2
AT gogz2teg S9w S N A
v o &0 © [y) o O & b v ®©
sz ¢ 5 z g e 2
Fe 3 = & 3 oo
Stack Overflow Difficulty GitHub Difficulty
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
N N III
. 1l oo N
e g T8 &+ S H T 20 =0 0 Z &€ T 89 + 29 %8 2 ¢ a<T
re3es1583833z8 252831550803z 7
A A 0L ¥ v 2@ v o ung 2Qcx @ g
[J] © O & C o 9] v © O © &
Qo > o = 2 o o >
> © oy > F ©
[= 8 & & F 8 =

Fig. 11 The normalized popularity and difficulty values of each language for Stack Overflow and GitHub

@ Springer

27 Page 38o0f52 Empir Software Eng (2022) 27: 27

difficult and vice versa. Figure 12 displays the normalized popularity against difficulty for
each language and source.

On Stack Overflow, security related posts for Shell are significantly the most popular.
Upon closer inspection of the individual metrics, this is because Shell related security posts
receive significantly more views from the community. We find that high view posts for
Shell commonly relate to SSH Keys, an authentication method for an ecrypted connection
between systems. For instance, “Automatically enter SSH password with script” or “Cal-
culate RSA key fingerprint”. The popularity of these posts is likely due to the diverse usage
of SSH keys regardless of the application context. C/C++, Java and C# are also popular on
Stack Overflow.

The most popular languages on GitHub for security are JavaScript, TypeScript and Go.
The popularity of JavaScript and TypeScript on GitHub implies that security is a very pop-
ular topic for web development, receiving active interest from the community. Security

1.0 JavaScript _Shell
TypeScript Source
® Stack Overflow
Go GitHub
0.8
Shell
>}O.6 oC/C++ @lava
= Ruby
r_;i Objective-C~ eCH#H,
=)
S Scri Go
A 04 JPHP @lavaScript @Ruby q
' @Objective-C
Swift J z—ga
C/C++ on
PowerShell ePowerShell
T Scri
0.2 e@lypeScript
@Perl
0.0 aSwift Perl
0.0 0.2 0.4 0.6 0.8 1.0
Difficulty

Fig. 12 The normalized popularity against the normalized difficulty values of each language. Sources are
normalized separately

@ Springer

Empir Software Eng (2022) 27: 27 Page 39 of 52 27

related posts for web development languages (i.e., PHP, TypeScript, JavaScript) are also the
least difficult on Stack Overflow.

Perl appears to be an undesirable language amongst the community for security.
Posts receive very little attention (Popularity) from both the Stack Overflow and GitHub
community. It also has the most difficult to resolve issues on GitHub.

We further summarize the categories for which each language is considered most and
least Popular/Difficult in Table 9. The most popular categories for a language receive the
most user attention, and the least difficult categories are resolved the fastest and most easily.
Hence, from Table 9 practitioners can infer which security aspects of a language receive the
most and least community support. Languages which have an inverse ranking for popularity
and difficulty are highlighted in bold.

Table9 The most and least Popular and Difficult topic categories for each language

Metric Cryptography Access Con- Network Data Security Software Vul- Secure Devel-
trol Security nerabilities opment

Stack Overflow

Shell, - PowerShell, Java, PHP, Python, C, JavaScript
Most Objective- Go C#, Ruby, TypeScript
Popular C, Perl Swift
Python, Shell, Objective-C, Go JavaScript Java, PHP, C#, Swift
Least Perl PowerShell C, Ruby, Type-
Difficult Script
Ruby Java, PHP, Shell, C JavaScript C# Swift
Least Python,
Popular Objective-C,
PowerShell,
Perl, Go,
TypeScript
PHP, Go, Python, Swift - Java, C#, Perl
Most JavaScript TypeScript Shell,
Difficult C, Ruby,
Objective-C,
PowerShell
GitHub
C# - JavaScript, PHP, Shell, - Java, Power-
Most Python, C, Objective- Shell, Go
Popular Ruby, C, Swift,
TypeScript Perl
Swift C# TypeScript PHP, Java, Shell, Ruby,
Least Python, JavaScript, C, PowerShell,
Difficult Objective-C~ Go Perl
JavaScript, Ruby Shell, Swift - Java, PHP, C#, Pow-
Least Python C, Objective- erShell,
Popular C, Go, Perl
TypeScript
C#,C PHP, Swift, JavaScript, Shell, Perl Objective-C Java, Python,
Most Go, Type- Ruby PowerShell
Difficult Script

@ Springer

27 Page 40 of 52 Empir Software Eng (2022) 27: 27

The individual values for the metrics that comprise the Popularity and Difficulty Score
of each topic for each language can be seen in our online appendix.'®

RQS Summary: Popularity and Difficulty differs heavily for languages across
Stack Overflow and GitHub. Web-Oriented languages are the most popular on
GitHub, whereas they are the least difficult on Stack Overflow. Similarly, different
languages exhibit different rankings for individual topic categories.

4.6 RQ6: What is the Level of Security Expertise of the Users who Answer Security
Related Discussions for Different Programming Languages?

The level of security expertise gives an indication of a user’s knowledge and experience for
security related topics. For Stack Overflow users, a high expertise value implies a wealth
of knowledge, either theoretical or practical, and the ability to convey this knowledge well
to other users. For GitHub users, a high expertise value indicates a lot of experience in
software development and practices for high quality projects. Through this we can infer
whether there are enough experts to resolve the security challenges that a developer may
face for a particular programming language, and the quality of the provided answers. A
language with high expertise users is considered preferable, as it would be expected that
answers and hence resolutions are of higher quality. This research question helps us better
understand how the challenges are resolved. The normalized mean security expertise values
for all users who answer security related questions in our dataset is presented in Fig. 13.

Similar to RQS, we again observe a disconnect between Stack Overflow and GitHub.
For GitHub, the languages with the highest security expertise are languages commonly used
for mobile development (i.e., Objective-C, Swift, Java, JavaScript, C#). However, on Stack
Overflow the expertise of users for these languages is relatively low. This might suggest
that their is an abundance of experienced secure mobile developers, but their ability to detail
knowledge is lacking.

For Stack Overflow, languages with a lower level of abstraction (Shell, C/C++) have
relatively higher expertise values. These languages are typically considered both type and
memory unsafe which implies a greater level of security knowledge is required to avoid
potential vulnerabilities. Hence, it is a promising sign that the average security expertise of
users’ answers is relatively high. These languages also rank highly on GitHub, but still have
a much lower expertise value than the aforementioned mobile-related languages. Go also
ranks highly for Stack Overflow. Whilst this language is syntactically similar to C and C++,
it has added memory safety and garbage collection capabilities.

Perl ranks as the language with the highest average security expertise for Stack Overflow
users, which may explain its low difficulty values amongst this community in RQS5. How-
ever, the security expertise of Perl users on GitHub is relatively low, which is potentially
expected as Perl is the least popular and most difficult language for GitHub.

Except for JavaScript on GitHub, web-oriented languages (i.e., PHP, Ruby, TypeScript,
JavaScript) have a relatively low average user security expertise on both sources. This
implies that the answers given to challenges for these languages are fairly simplistic.

19https://github.com/RolandCroft/Language- Security- Challenges/tree/master/Document_Metrics

@ Springer

https://github.com/RolandCroft/Language-Security-Challenges/tree/master/Document_Metrics

Empir Software Eng (2022) 27: 27 Page 41 of 52 27

Stack Overflow GitHub
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
N IIII N II
. —=ill . -1l
E 0 a#t=%8 B0 c=o0+ T >= oa B T c =4+ %880 &0
55025 5E£¢2204+ ¢ §20F28982+0555 ¢
n = VREpEEIED Q -] 3 g un s w2
o © v O A& O [} [& O © s}
2 22 z = s g
€~ F 3 & F - 3

Fig. 13 The normalized mean security expertise values of each language for Stack Overflow and GitHub

RQ6 Summary: Language security expertise heavily differs for users of Stack
Overflow and GitHub. Mobile development oriented languages have the highest
expertise users on GitHub, whereas languages with lower levels of abstraction have
the highest expertise users on Stack Overflow.

5 Discussion

The goal of this study is to empirically investigate and compare developer security chal-
lenges across different languages. To achieve this, we investigated 6 research questions
to identify the different programming language security consideration, discussions and
support.

We observe that security related topics are relatively infrequent, only forming an aver-
age of 1.23% of all discussion for programming languages. In a recent developer survey
by Venson et al. (2019), it was estimated that security accounts for an average of 20% of
the development effort for most projects, which is considerably higher than our observed
frequency. This suggests that there needs to be more consideration for security aspects,
especially amongst programming languages. Shell and PHP exhibit high rates of discussion
(2.6% and 2.1%), approximately double the average rate, which indicates that security is
properly appreciated for these languages. However, discussion and issues are almost non-
existent for several languages, such as R, Coq, Julia, Fortran and MATLAB, which have an
average rate of 0.1%. This shows a lack of prioritisation or awareness of the security needs
in development using these languages, which should be improved.

Across the two sources, we find that the purpose of these discussions is most commonly
caused by Errors which users are trying to resolve. This indicates that secure development

@ Springer

27 Page 42 of 52 Empir Software Eng (2022) 27: 27

in most programming languages is difficult or error-prone. This is inverse to general devel-
opment discussions (Beyer et al. 2020) which observe Errors to be one of the less common
question categories on Stack Overflow. We also observe C/C++ discussions to have a signif-
icantly higher focus on Review, indicating a much higher examination of security for these
languages. This aligns with the findings reported by Bhattacharya and Neamtiu (2011) that
code quality is higher for C/C++ software repositories. However, it has been found that there
are a large number of software vulnerabilities in crowd-sourced code examples for C/C++
(Verdi et al. 2020; Zhang et al. 2021), which implies that security is not always the main
consideration for this language.

The majority of programming languages have Secure Development as the most dominant
topic category. This shows that programming language specific challenges are more oriented
towards development tasks, such as implementation, testing, and configuration; there is less
regard for theory and concepts. These findings suggest that developers still need a better
understanding and education of the security concepts that they are required to implement.
However, we identify that the challenges of our created security taxonomy are prevalent
across many different programming languages, which indicates that developers encounter a
wide array of problems regardless of technology, and urges that more solutions need to be
provided.

From our analysis in Section 4, we identify that the security challenges and their char-
acteristics are often oriented towards the task that the language is commonly utilized for.
We focus on Web and Mobile development as many programming languages are explic-
itly applied for these domains (Sebesta 2012), such as JavaScript and TypeScript (Web), or
Objective-C and Swift (Mobile). For general multi-purpose programming languages, such
as Python and Go, it is more difficult to observe the trends.

Web-Oriented languages have the most prevalent challenges in Access Control and Net-
work Security, whereas Mobile-Oriented languages have the most prominent challenges in
Cryptography, Access Control and Data Security. Another programming language trend we
observed are for languages with a lower-level of abstraction. That is, languages which have
strong coupling or control of the underlying operating system and architecture (i.e., C/C++,
Shell). We observe that their posts on Stack Overflow receive the most popularity, as well
as the most attention from expert users.

We can speculate the reason for these trends through the application domain. For
instance, if a programming language, such as JavaScript, is most commonly used for Web
Development, then we can expect the major security issues to involve Access Control and
Network Security. Web Development is a common task on GitHub, so we can also expect
that these issues would receive high engagement (popularity) from the GitHub community.

5.1 Implications

For Developers We firstly help practitioners to understand the impact that the choice of
programming language can impose on secure development. Our findings can help develop-
ers to gain security awareness and insight into their selected programming languages. We
identify what the prevalent security challenges of each language are, detail how common
and readily the challenges are solved, how difficult the challenges are, and whether there
is enough expertise in the community to help solve them. Through these findings, develop-
ers can identify what areas they should be better informed about and what areas they are
able to get help in. We provide preliminary recommendations based on the most significant
observations of our study.

@ Springer

Empir Software Eng (2022) 27: 27 Page 43 of 52 27

Firstly, developers should avoid security critical programming whilst using languages
primarily designed for scientific programming (i.e., R, Julia and MATLAB). We observe in
RQ1 that users of these languages have the lowest consideration for security, which implies
that they are not designed for this task and receiving community support will be challenging.

Developers should be more aware of the relation of security vulnerabilities to their
specific development context, and how to defend against them. From our constructed secu-
rity taxonomy, we found “Software Vulnerabilities” to be the least prominently discussed
security topic for programming languages. Aside from “Network Exploit” discussions for
web-oriented languages, and discussion of “Memory Management” for C/C++, these topics
are largely non-existent for programming language focused discussion, which aligns with
the findings of Zahedi et al. (2018). Whilst most vulnerabilities are language-independent,
it is still critical that developers have specific implementation knowledge of how to avoid
them.

In RQS5 and RQ6, we observe that security implementation for TypeScript and JavaScript
is relatively straightforward amongst the analysed communities. Challenges are resolved
relatively quickly (low difficulty values on Stack Overflow), and issues receive a lot of
attention (high popularity on GitHub). Despite the popularity and low difficulty, security
users for these two languages are also generally of lower expertise than other languages.
This could imply that sufficient security knowledge can be obtained relatively easily for
these languages, as users are able to quickly share security knowledge and resolve issues,
despite having lower average experience (as defined by GitHub expertise in Section 3.5).

We also identify that the concerns and interests of developers vary between Stack Over-
flow and GitHub. For example, for RQ5 and RQ6 we find that Web-oriented languages have
high popularity security issues on Stack Overflow but are low difficulty on GitHub, and that
users have more security expertise for Mobile-oriented languages on GitHub than on Stack
Overflow. These findings can help developers to find appropriate answers and discussions
for their problems. We elaborate this further in Section 5.2.

Additionally, our findings help motivate the creation of better security documentation
and APIs for languages in the categories which face challenges. This effort will allow for
easier secure use of the language and help reduce the faced challenges. For RQ2, we observe
API Usage to be the main reason for programming language security challenges on Stack
Overflow. Furthermore, we find C/C++ to have a significantly higher proportion of dis-
cussions requesting for code review and improvement, implying that these users are often
incapable of ensuring security on their own. Whilst users of C/C++ seem to be aware of the
need for security, experienced developers should help ensure that appropriate resources and
knowledge is available.

We especially observe the need for better security support and resources for new pro-
gramming languages, as we find users have significant security challenges after the initial
release. This aligns with the findings of Chakraborty et al. (2021), who identify that
adequate community resources are initially lacking for new programming languages.

For Managers Although developers are responsible for their own personal programming
language preferences, which may influence a project manager’s decision, project managers
ultimately have final say in programming language selection for a project (Naiditch 1999).
Our study helps raise awareness of the importance of programming language selection and
evaluation, promoting them to reserve project resources and time for these tasks. Through
our comparison of security challenges for different languages we can help managers in their
decision making for choosing what programming languages to use when starting a new
project. Particularly through the characteristics of the challenges analysed in RQ5 and RQ6,

@ Springer

27 Page 44 of 52 Empir Software Eng (2022) 27: 27

we can obtain an indication of what languages are better suited to different categories of
development. However, we acknowledge that not all languages can be used for all projects,
and language is sometimes unable to be chosen due to external factors, such as legacy code.
Thus, our findings and the identified challenges can also help guide necessary developer
training decisions; either for new security development tasks, or for new programming lan-
guage use. Additionally, educators can use the knowledge that we have synthesized from
publicly available data as a potential guide for important topics in security education or a
check-list for required security knowledge.

For Researchers The challenges we have identified can help direct and motivate researchers
to investigate potential solutions. The identified taxonomy of security issues can help direct
and align this security language research. Furthermore, our proposed method of sampling,
cleaning and analysing the data can be used by future researchers to identify the challenges
and knowledge of other domains. The findings of our study also suggest that programming
language should continue to be an important consideration in future security research, as we
have observed the challenges and their nature to differ for different programming languages.
Language consideration could also be potentially strengthened in several research areas.
For instance, vulnerability prediction models often do not consider the characteristics or
features of the languages that they target (Yang et al. 2017; Croft et al. 2021).

Additionally, we arouse the attention of language designers for the impacts that pro-
gramming language can have on secure development. Our findings help identify the major
security issues and considerations of developers, which can assist designers in improving
the supportive capabilities of security features in programming languages.

5.2 Difference in Discussion between Stack Overflow and GitHub

Interestingly, for RQ3-6 we observe a consistent disconnect between the security charac-
teristics of programming languages on Stack Overflow and GitHub. For instance, PHP and
Perl are some of the most difficult languages for security on GitHub but the least difficult
on Stack Overflow. Furthermore, the highest popularity security issues on GitHub are for
TypeScript and JavaScript, whereas the issues for these languages are relatively unpopular
on Stack Overflow. This separation is consistent with the analysis reported by Han et al.
(2020), who also observe a disparity between Stack Overflow and GitHub.

Through this disconnect, we can derive recommendations for where users should go for
assistance with security related challenges of a particular language. Although users do not
traditionally visit GitHub for answers to programming problems, GitHub issues of open
source projects are still a viable resource for developers to query project specific ques-
tions; questions have even been observed to be the third most common issue type Cabot
et al. (2015). Hence, for languages more oriented towards software and app development
(e.g., JavaScript, TypeScript, Swift, Objective-C), users should seek answers on GitHub, as
these challenges are more popular, less difficult and answered by more experienced users
on this platform. GitHub also exhibits a higher general rate of discussion for Secure Devel-
opment. For other languages, particularly general-purpose languages (e.g., Java, Python) or
languages with lower abstraction (e.g., C/C++, Shell), users should seek help from the Stack
Overflow community.

We conjecture that work should be done in connecting these two sources, as knowledge
gained from one source may not adequately prepare users. This is showcased through user
expertise, where we observe that Stack Overflow users are relatively inexperienced with

@ Springer

Empir Software Eng (2022) 27: 27 Page 45 of 52 27

Mobile-Oriented languages, whereas the users of these languages on GitHub exhibit the
most experience.

5.3 Vulnerabilities for Different Programming Languages

Another approach for determining the security of a programming language is to examine
how prone it is to vulnerabilities. By adopting a similar approach to Decan et al. (2018) and
Gkortzis et al. (2018), we can determine an indication of language vulnerabilities in their
packages and projects, via the vulnerability advisories Snyk.io and National Vulnerability
Database (NVD), respectively. Through this method we identify that projects written in C
and PHP, and packages written for Java, have the highest number of reported vulnerabilities.
However, few assertions can be made from this information. It does not take into account the
prevalence of the language; C is one of the oldest popular programming languages, and Java
is one of the most commonly used languages. Similarly, vulnerabilities in certain languages
are more well known and easier to detect (Shahriar and Zulkernine 2012), and the number
of annual reported vulnerabilities is generally increasing for all languages.?

Furthermore, the representation and reliability of NVD data has also been questioned
by several previous works (Massacci and Nguyen 2010; Nguyen and Massacci 2013).
NVD’s nature of only reporting observed and documented vulnerabilities has been shown
to potentially obscure and misconstrue the true vulnerabilities of a project (Massacci and
Nguyen 2010). Nguyen and Massacci (2013) also investigated the reported vulnerabilities
in Google Chrome and found several errors. It is further observed that developers them-
selves do not necessarily perform consistent reporting of vulnerabilities. For instance, this
GitHub issue?! discusses whether certain vulnerabilities should be reported to a vulnera-
bility database. Thus, vulnerability databases cannot be considered as a definitive view of
software vulnerabilities.

For the purposes of this study, we do not explicitly consider vulnerabilities as it is diffi-
cult to draw conclusions from this data alone; vulnerabilities are not directly equivalent to
secure development challenges. Vulnerabilities only indicate the specific exploits and weak-
nesses in a system. They also rely on proper identification, documentation and reporting.
It might be expected that some developers are unwilling to document or discuss vulnera-
bilities in their software publicly. Instead we try to examine the complete picture by also
investigating secure implementation, coding, defenses, knowledge and theory.

5.4 Reliability of Crowd-sourced Knowledge

Despite the existence of crowd-sourced security knowledge in our examined data sources,
its reliability has been a source of contention in past research. There is evidence that code
snippets on Stack Overflow contain security flaws (Acar et al. 2016; Fischer et al. 2017),
and a recent study into the security answer posts on Stack Overflow found almost 45% to be
insecure (Chen et al. 2019). However, approximately 70% of questions on Stack Overflow
receive an accepted answer,? which implies that discussion and knowledge-sharing is often
successful and informative for the original poster in the least.

2Ohttps://www.whitesourcesoftware.com/most-secure- programming-languages/
21 https://github.com/beit-ci/Codelgniter/issues/4020
22pttps://stackoverflow.com/questions ?tab=Unanswered

@ Springer

https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://github.com/bcit-ci/CodeIgniter/issues/4020
https://stackoverflow.com/questions?tab=Unanswered

27 Page 46 of 52 Empir Software Eng (2022) 27: 27

The success and validity of security discussion in GitHub issues also lacks confirmation.
We find that as of July 2020, 88% of the issues in our GitHub dataset are closed. If we
similarly consider closed GitHub issues as a discussion with a successful resolution, then
this also implies that the majority of GitHub issue discussions achieve a sufficient level of
conclusion.

6 Threats to Validity

Internal Validity We use topic modelling to automatically cluster documents, and identify
topics of discussion. Due to the size of our dataset, we are required to use the semi-
automated approach of topic modelling for analysis. However, the topics and clusters
produced by topic modelling are often volatile (Mantyla et al. 2018), and the interpretation
of the produced topics is often subjective. We note that the topics we identify in Section 4.3.
are not exhaustive or fully representative of the security challenges, but are the most preva-
lent in the text data. We use manual validation to help confirm the accuracy of the topics,
and cross-check our labels to help confirm their validity. Furthermore, although the metrics
outlined in Section 3.5 are able to give an indication of the characteristics of the data, we
acknowledge that they are not perfect.

The rigidness of the produced topics also limits the versatility of our identified security
categories and challenges. Documents can only be assigned to the available topics. If a
security topic is not reported for a language, it often does not mean that it does not exist, but
that is obscured by a more dominant topic.

Due to the nature of our empirical study, we acknowledge that there are threats which
affect our conclusions regarding the correlation between use of programming language and
security challenges. Our findings may be influenced by several confounding factors, such
as expertise of the users behind the discussions. However, we observe several potentially
interesting differences across the security challenges, which we report. These can be used
as a starting point for future research to help confirm our findings.

Similarly, the large size scale of the analysis prevents us from providing specific insight
into the experience or engagement within these programming language communities, and
we hence use popularity, difficulty and expertise metrics defined in Section 3.5 as proxies
for our analysis. However, we are still able to provide important insight into the prevalent
security activity within these different communities.

External Validity We conduct an extremely large-scale study to help improve the general-
izability of our findings by investigating two of the most prominent sources for developer
community support; Stack Overflow and GitHub. However, Stack Overflow and GitHub
may not be perfectly representative of all developers. We also discuss in Section 5.2 and
Section 5.3 that our findings are likely to change across different datasets. Due to the nature
of our study and methods, our findings can only be considered reliable for our selected
datasets.

For GitHub, our method of data collection has further flaws due to our repository sam-
pling method. The data of each language may be biased towards the repositories that were
sampled, which may obscure the true trends of the underlying language. However, this
assertion can be correct for several other similar empirical studies.

As the data sources from which we extract the data from are subject to change, our study
is not perfectly reproducible. For both Stack Overflow and GitHub, posts can be added,
removed, deleted, changed or updated, and thus someone using the same method as us

@ Springer

Empir Software Eng (2022) 27: 27 Page 47 of 52 27

would likely extract a slightly different dataset. Similarly, the posts referenced in this paper
for discussion may not always be available if they are deleted or removed.

Construct Validity Keyword and tag matching are not perfect methods for data extraction,
as they rely on a manually constructed keyword set and correct use of the keywords by the
users of the dataset (e.g., correct spelling, appropriate post tagging). However, we manually
review several samples of posts in our dataset to help confirm their relevance to the topic
our study, and thus help confirm the validity of our approach.

There is also the threat to validity regarding the implementation of the study. We inde-
pendently reviewed our scripts and code to check for correctness and reduce this potential
threat. We have also made our data and results publicly available for reproducibility.

7 Conclusion and Future Work

We have presented a large-scale comparative analysis of the security challenges encoun-
tered during development using different programming languages. To conduct this analysis,
we examined approximately 280,000 publicly accessible security-related developer discus-
sions from Stack Overflow and GitHub for 15 popular programming languages. We also
investigated the nature of these challenges and their ability to be resolved to help provide
recommendations to developers.

Our findings show that languages exhibit varying rates of security discussion, categories
of security issues, and characteristics in which these security issues are handled by the com-
munity. Language security trends emerge for languages with similarly oriented domains,
particularly web-oriented languages, mobile-oriented languages, and lower-level abstrac-
tion languages. The observed security challenges are handled better by different languages
for different categories and different sources. For example, it is suggested that TypeScript
is well suited for “Network Security” and avoiding “Network Exploits”, as we observe the
discussed issues to have high popularity and low difficulty amongst the community.

Our study is expected to motivate the need for practitioners to consider and evaluate the
influence that programming languages might impose on secure software implementation.
Our findings can help them understand and navigate the secure development landscape for
different languages. Additionally, our identified taxonomy of security challenges have the
potential to guide and increase the productivity of developer training, or secure software
engineering research.

For future work we plan to investigate whether the difference in challenges for different
programming languages is also reflected in the code and software. To achieve this we intend
to analyse the explicit security situations of different open-source repositories in more detail,
by examining the vulnerabilities, software metrics, and code quality. We particularly aim to
investigate Software Vulnerability related issues, as we noticed discussion for these topics
to be lacking for most programming languages. Additionally, we intend to extend our study
to also consider technology stacks (i.e., libraries and frameworks). We also aim to conduct
more fine-grained analysis into users’ expertise and engagement through more extensive
qualitative analysis or a user study. This additional analysis should help support our find-
ings and provide more specific insights. Furthermore, our analysis in Fig. 9 reveals insights
into how open source security challenges align and intersect with more formal security tax-
onomies from CyBoK and CWE. We aim to investigate in future how these software and
security communities can be brought together.

@ Springer

27 Page 48 of 52 Empir Software Eng (2022) 27: 27

Acknowledgements The work has been supported by the Cyber Security Research Centre Limited whose
activities are partially funded by the Australian Government’s Cooperative Research Centres Programme.
The work was also supported with super-computing resources provided by the Phoenix High Powered Com-
puting (HPC) service at the University of Adelaide. We would also like to sincerely thank Peter Sestoft and
Triet Le, as well as the anonymous reviewers for the insightful and constructive comments they provided
towards improving the paper.

Funding The work has been supported by the Cyber Security Research Centre Limited whose activities are
partially funded by the Australian Government’s Cooperative Research Centres Programme.

Data Availability All data has been made available via an online appendix.

Code Availability Not applicable.

Declarations

Conflict of Interests Not applicable.

References

Acar Y, Backes M, Fahl S, Kim D, Mazurek ML, Stransky C (2016) You get where you’re looking for: The
impact of information sources on code security. In: 2016 IEEE symposium on security and privacy (SP).
pp 289-305

Agrawal A, Fu W, Menzies T (2018) What is wrong with topic modeling? and how to fix it using search-based
software engineering. Inf Softw Technol 98:74-88

Ahmad A, Feng C, Ge S, Yousif A (2017) A survey on mining stack overflow: Question and answering (q&a)
community. Data Technol Appl 52:190-247

Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about? a large-scale study using
stack overflow. In: Proceedings of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement. pp 1-10

Allamanis M, Sutton C (2013) Why, when, and what: analyzing stack overflow questions by topic, type, and
code. In: 2013 10th working conference on mining software repositories (MSR). IEEE, pp 53-56

Bagherzadeh M, Khatchadourian R (2019) Going big: a large-scale study on what big data developers ask.
In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering. pp 432-442

Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceedings of
the 11th working conference on mining software repositories. pp 112—121

Bangash AA, Sahar H, Chowdhury S, Wong AW, Hindle A, Ali K (2019) What do developers know about
machine learning: a study of ml discussions on stackoverflow, IEEE

Barnum S, McGraw G (2005) Knowledge for software security. IEEE Secur Privacy 3(2):74-78

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? an analysis of topics and trends
in stack overflow. Empir Softw Eng 19(3):619-654

Bayati S, Heidary M (2016) Information security in software engineering, analysis of developers commu-
nications about security in social q&a website. In: Pacific-Asia workshop on intelligence and security
informatics. Springer, pp 193-202

Beyer S, Macho C, Di Penta M, Pinzger M (2020) What kind of questions do developers ask on stack
overflow? a comparison of automated approaches to classify posts into question categories. Empir Softw
Eng 25(3):2258-2301

Bhattacharya P, Neamtiu I (2011) Assessing programming language impact on development and mainte-
nance: A study on ¢ and c++, IEEE

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993-1022

Borges H, Brito R, Valente MT (2019) Beyond textual issues: Understanding the usage and impact of github
reactions. In: Proceedings of the XXXIII Brazilian symposium on software engineering. pp 397-406

Cabot J, Izquierdo JLC, Cosentino V, Rolandi B (2015) Exploring the use of labels to categorize issues in
open-source software projects, IEEE

@ Springer

Empir Software Eng (2022) 27: 27 Page 49 of 52 27

Campbell JC, Zhang C, Xu Z, Hindle A, Miller J (2013) Deficient documentation detection a methodology
to locate deficient project documentation using topic analysis, IEEE

Cardelli L, Wegner P (1985) On understanding types, data abstraction, and polymorphism. ACM Comput
Surv (CSUR) 17(4):471-523

Chakraborty P, Shahriyar R, Igbal A, Uddin G (2021) How do developers discuss and support new program-
ming languages in technical q&a site? an empirical study of go, swift, and rust in stack overflow. Inf
Softw Technol: 106603

Chen M, Fischer F, Meng N, Wang X, Grossklags J (2019) How reliable is the crowdsourced knowledge of
security implementation?, IEEE

Chen TH, Thomas SW, Hassan AE (2016) A survey on the use of topic models when mining software
repositories. Empir Softw Eng 21(5):1843-1919

Cifuentes C, Bierman G (2019) What is a secure programming language? In: 3rd Summit on advances in
programming languages (SNAPL 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

Cochran WG (2007) Sampling techniques. Wiley, Hoboken

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37-46

Croft R, Newlands D, Chen Z, Babar MA (2021) An empirical study of rule-based and learning-based
approaches for static application security testing. arXiv:2107.01921

Decan A, Mens T, Constantinou E (2018) On the impact of security vulnerabilities in the npm package depen-
dency network. In: Proceedings of the 15th international conference on mining software repositories. pp
181-191

Dhurjati D, Kowshik S, Adve V, Lattner C (2003) Memory safety without runtime checks or garbage col-
lection. In: Proceedings of the 2003 ACM SIGPLAN conference on language, compiler, and tool for
embedded systems. pp 69-80

Fincher S, Tenenberg J (2005) Making sense of card sorting data. Expert Syst 22(3):89-93

Fischer F, Bottinger K, Xiao H, Stransky C, Acar Y, Backes M, Fahl S (2017) Stack overflow consid-
ered harmful? the impact of copy&paste on android application security. In: 2017 IEEE symposium on
security and privacy (SP). IEEE, pp 121-136

Gkortzis A, Mitropoulos D, Spinellis D (2018) Vulinoss: a dataset of security vulnerabilities in open-source
systems. In: Proceedings of the 15th International conference on mining software repositories. pp 18-21

Grossman D, Hicks M, Jim T, Morrisett G (2005) Cyclone: A type-safe dialect of c¢. C/C++ Users J
23(1):112-139

Han J, Shihab E, Wan Z, Deng S, Xia X (2020), What do programmers discuss about deep learning
frameworks. Empir Softw Eng

Hanenberg S, Kleinschmager S, Robbes R, Tanter E, Stefik A (2014) An empirical study on the impact of
static typing on software maintainability. Empir Softw Eng 19(5):1335-1382

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 million links in source code comments: Purpose, evolution,
and decay, IEEE

Horschig S, Mattis T, Hirschfeld R (2018) Do java programmers write better python? studying off-language
code quality on github. In: Conference companion of the 2nd international conference on art, science,
and engineering of programming. pp 127-134

Howell DC (2012) Statistical methods for psychology. Cengage Learning

Hussain MM, Mahmud I (2019) pymannkendall: a python package for non parametric mann kendall family
of trend tests, vol 4, p 1556. https://doi.org/10.21105/joss.01556

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining github. In: Proceedings of the 11th working conference on mining software repositories (MSR
2014), pp 92-101

Khwaja AA, Murtaza M, Ahmed HF (2020) A security feature framework for programming languages to
minimize application layer vulnerabilities. Secur Privacy 3(1):e95

Kleinschmager S, Robbes R, Stefik A, Hanenberg S, Tanter E (2012) Do static type systems improve the
maintainability of software systems? an empirical study, IEEE

Knight WR (1966) A computer method for calculating kendall’s tau with ungrouped data, vol 61, pp 436—439.
http://www.jstor.org/stable/2282833

Kochhar PS, Wijedasa D, Lo D (2016) A large scale study of multiple programming languages and code
quality. In: 2016 IEEE 23rd International conference on software analysis, evolution, and reengineering
(SANER), IEEE, vol 1, pp 563-573

Le THM, Hin D, Croft R, Babar MA (2020) Puminer: Mining security posts from developer ques-
tion and answer websites with pu learning. In: Proceedings of the 17th international conference
on mining software repositories. Association for Computing Machinery, New York, pp 350-361.
https://doi.org/10.1145/3379597.3387443

@ Springer

http://arxiv.org/abs/2107.01921
https://doi.org/10.21105/joss.01556
http://www.jstor.org/stable/2282833
https://doi.org/10.1145/3379597.3387443

27 Page 50 of 52 Empir Software Eng (2022) 27: 27

Le THM, Croft R, Hin D, Babar MA (2021) A large-scale study of security vulnerability support on developer
q&a websites. In: Evaluation and assessment in software engineering. pp 109-118

Linares-Vasquez M, Dit B, Poshyvanyk D (2013) An exploratory analysis of mobile development issues
using stack overflow, IEEE

Lopez T, Tun TT, Bandara A, Levine M, Nuseibeh B, Sharp H (2018) An investigation of security conversa-
tions in stack overflow: perceptions of security and community involvement. In: Proceedings of the 1st
international workshop on security awareness from design to deployment. pp 26-32

Lopez T, Tun T, Bandara A, Mark L, Nuseibeh B, Sharp H (2019) An anatomy of security conversations
in stack overflow. In: 2019 IEEE/ACM 41st international conference on software engineering: software
engineering in society (ICSE-SEIS). IEEE, pp 31-40

Mailloux LO, Grimaila M (2018) Advancing cybersecurity: The growing need for a cyber-resiliency
workforce. IT Professional 20(3):23-30

Mantyla MV, Claes M, Farooq U (2018) Measuring 1da topic stability from clusters of replicated runs. In:
Proceedings of the 12th ACM/IEEE international symposium on empirical software engineering and
measurement. pp 1-4

Martin A, Rashid A, Chivers H, Danezis G, Schneider S, Lupu E (2019) The cyber security body of
knowledge. University of Bristol. https://www.cybok.org/

Massacci F, Nguyen VH (2010) Which is the right source for vulnerability studies? an empirical analysis on
mozilla firefox. In: Proceedings of the 6th international workshop on security measurements and metrics.
pp 1-8

Menezes AJ, Van Oorschot PC, Vanstone SA (2018) Handbook of applied cryptography. CRC press, Boca
Raton

Meyerovich LA, Rabkin AS (2013) Empirical analysis of programming language adoption. SIGPLAN Not
48(10):1-18. https://doi.org/10.1145/2544173.2509515

Mimno D, Wallach HM, Talley E, Leenders M, McCallum A (2011) Optimizing semantic coherence in
topic models. In: Proceedings of the conference on empirical methods in natural language processing.
Association for Computational Linguistics. pp 262-272

Naiditch D (1999) Selecting a programming language for your project. IEEE Trans Aerosp Electron Syst
14(9):11-14

Nguyen VH, Massacci F (2013) The (un) reliability of nvd vulnerable versions data: An empirical experiment
on google chrome vulnerabilities. In: Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security. pp 493-498

Nothman J, Qin H, Yurchak R (2018) Stop word lists in free open-source software packages. In: Proceedings
of workshop for NLP open source software (NLP-OSS). Association for Computational Linguis-
tics, Melbourne, pp 7-12. https://doi.org/10.18653/v1/W18-2502. https://www.aclweb.org/anthology/
W18-2502

Panichella A, Dit B, Oliveto R, Di Penta M, Poshynanyk D, De Lucia A (2013) How to effectively use topic
models for software engineering tasks? an approach based on genetic algorithms, IEEE

Pearson K (1900) X. on the criterion that a given system of deviations from the probable in the case of a
correlated system of variables is such that it can be reasonably supposed to have arisen from random
sampling. London, Edinburgh Dublin Philos Mag J Sci 50(302):157-175

Pierce BC, Benjamin C (2002) Types and programming languages. MIT press, Cambridge

Pletea D, Vasilescu B, Serebrenik A (2014) Security and emotion: sentiment analysis of security discussions
on github. In: Proceedings of the 11th working conference on mining software repositories. ACM, pp
348-351

Rafter D (2019) 2019 data breaches: 4 billion records breached so far. [Online; accessed 01-June-2020]

Rahman MM, Roy CK (2014) An insight into the pull requests of github. In: Proceedings of the 11th working
conference on mining software repositories. pp 364-367

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages
and code quality in github. In: Proceedings of the 22Nd ACM SIGSOFT international sym-
posium on foundations of software engineering (FSE 2014). ACM, New York, pp 155-165.
https://doi.org/10.1145/2635868.2635922

Rosen C, Shihab E (2016) What are mobile developers asking about? a large scale study using stack overflow.
Empir Softw Eng 21(3):1192-1223

Seacord RC (2005) Secure coding in C and C++. Pearson Education, London

Sebesta RW (2012) Concepts of programming languages. Pearson Education, Inc., London

Sestoft P (2005) Java performance: Reducing time and space consumption

Shahriar H, Zulkernine M (2012) Mitigating program security vulnerabilities: Approaches and challenges.
ACM Comput Surv (CSUR) 44(3):1-46

Sindre G, Opdahl AL (2005) Eliciting security requirements with misuse cases. Req Eng 10(1):34-44

@ Springer

https://www.cybok.org/
https://doi.org/10.1145/2544173.2509515
https://doi.org/10.18653/v1/W18-2502
https://www.aclweb.org/anthology/W18-2502
https://www.aclweb.org/anthology/W18-2502
https://doi.org/10.1145/2635868.2635922

Empir Software Eng (2022) 27: 27 Page 510f 52 27

Tian Y, Ng W, Cao J, McIntosh S (2019) Geek talents: Who are the top experts on github and stack
overflow? Comput Mater Contin 61(2):465—-479. https://doi.org/10.32604/cmc.2019.07818. http://www.
techscience.com/cmc/v61n2/33484

Treude C, Wagner M (2019) Predicting good configurations for github and stack overflow topic models. In:
2019 IEEE/ACM 16th International conference on mining software repositories (MSR). pp 84-95

Vasilescu B, Filkov V, Serebrenik A (2013) Stackoverflow and github: Associations between software
development and crowdsourced knowledge. In: 2013 International conference on social computing. pp
188-195. https://doi.org/10.1109/SocialCom.2013.35

Venson E, Alfayez R, MF GM, Rejane F, Boehm B (2019) The impact of software security practices on devel-
opment effort: An initial survey. In: 2019 ACM/IEEE international symposium on empirical software
engineering and measurement (ESEM). IEEE, pp 1-12

Verdi M, Sami A, Akhondali J, Khomh F, Uddin G, Motlagh AK (2020), An empirical study of c++
vulnerabilities in crowd-sourced code examples. IEEE Trans Softw Eng

Wan Z, Xia X, Hassan AE (2019) What is discussed about blockchain? a case study on the use of balanced
1da and the reference architecture of a domain to capture online discussions about blockchain platforms
across the stack exchange communities. IEEE Trans Softw Eng

Wessel M, Steinmacher I, Wiese I, Gerosa MA (2019) Should i stale or should i close? an analysis of a bot
that closes abandoned issues and pull requests, IEEE

Xiong Y, Meng Z, Shen B, Yin W (2017) Mining developer behavior across github and stackoverflow. In:
SEKE. pp 578-583

Yang L, Li X, Yu Y (2017) Vuldigger: A just-in-time and cost-aware tool for digging vulnerability-
contributing changes. In: GLOBECOM 2017-2017 IEEE global communications conference. IEEE,
pp 1-7

Yang XL, Lo D, Xia X, Wan ZY, Sun JL (2016) What security questions do develop-
ers ask? a large-scale study of stack overflow posts. J Comput Sci Technol 31(5):910-924.
https://doi.org/10.1007/s11390-016-1672-0

Zahedi M, Ali BabarM, Treude C (2018) An empirical study of security issues posted in open source projects.
In: Proceedings of the 51st Hawaii international conference on system sciences

Zhang H, Wang S, Li H, Chen THP, Hassan AE (2021) A study of c/c++ code weaknesses on stack overflow.
IEEE Trans Softw Eng

Zhang J, Li F, Hao D, Wang M, Tang H, Zhang L, Harman M (2019) A study of bug resolution characteristics
in popular programming languages. IEEE Trans Softw Eng

Zou J, Xu L, Guo W, Yan M, Yang D, Zhang X (2015) Which non-functional requirements do developers
focus on? an empirical study on stack overflow using topic analysis. In: 2015 IEEE/ACM 12th working
conference on mining software repositories, IEEE. pp 446-449

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.32604/cmc.2019.07818
http://www.techscience.com/cmc/v61n2/33484
http://www.techscience.com/cmc/v61n2/33484
https://doi.org/10.1109/SocialCom.2013.35
https://doi.org/10.1007/s11390-016-1672-0

27 Page 52 0f52 Empir Software Eng (2022) 27: 27

Affiliations

Roland Croft"2 ® . Yongzheng Xie' - Mansooreh Zahedi? - M. Ali Babar'-2 -
Christoph Treude3

Yongzheng Xie
Yongzheng.Xie @adelaide.edu.au

Mansooreh Zahedi
mansooreh.zahedi @unimelb.edu.au

M. Ali Babar
Ali.Babar@adelaide.edu.au

Christoph Treude
christoph.treude @unimelb.edu.au

School of Computer Science, The University of Adelaide, Adelaide, Australia
Cyber Security Cooperative Research Centre, Perth, Australia

School of Computing & Information Systems, The University of Melbourne, Melbourne, Australia

@ Springer

http://orcid.org/0000-0001-5011-6587
mailto: Yongzheng.Xie@adelaide.edu.au
mailto: mansooreh.zahedi@unimelb.edu.au
mailto: Ali.Babar@adelaide.edu.au
mailto: christoph.treude@unimelb.edu.au

	An empirical study of developers' discussions about security challenges of different programming languages
	Abstract
	Introduction
	Background and Motivations
	Programming Language Software Quality Analysis
	Publicly Available Security Discussions
	Topic Modelling of Software Engineering

	Methodology
	Research Questions
	Data Collection
	Manual Discussion Analysis
	Topic Modelling
	Topic and Language Characteristics

	Results and Analysis
	RQ1: What is the Rate of Security Discussion Amongst Programming Languages on Stack Overflow and GitHub?
	RQ2: What is the Intention Behind Security Discussions for Different Programming Languages?
	RQ3: What are the Major Developer Security Discussion Topics?
	Category - Cryptography
	Category - Access Control
	Category - Network Security
	Category - Data Security
	Category - Software Vulnerabilities
	Category - Secure Development

	RQ4: How do Security Discussion Topics Change Over Time for Different Programming Languages?
	RQ5: What are the Characteristics in Terms of Popularity and Difficulty of Different Programming Languages and Their Identified Security Challenges?
	RQ6: What is the Level of Security Expertise of the Users who Answer Security Related Discussions for Different Programming Languages?

	Discussion
	Implications
	For Developers
	For Managers
	For Researchers

	Difference in Discussion between Stack Overflow and GitHub
	Vulnerabilities for Different Programming Languages
	Reliability of Crowd-sourced Knowledge

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion and Future Work
	References
	Affiliations

