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ABSTRACT

Background. From information theory, surprisal is a measure-

ment of how unexpected an event is. Statistical language models

provide a probabilistic approximation of natural languages, and

because surprisal is constructed with the probability of an event

occuring, it is therefore possible to determine the surprisal associ-

ated with English sentences. The issues and pull requests of soft-

ware repository issue trackers give insight into the development

process and likely contain the surprising events of this process.

Objective. Prior works have identified that unusual events in

software repositories are of interest to developers, and use sim-

ple code metrics-based methods for detecting them. In this study

we will propose a new method for unusual event detection in soft-

ware repositories using surprisal. With the ability to find surpris-

ing issues and pull requests, we intend to further analyse them to

determine if they actually hold importance in a repository, or if

they pose a significant challenge to address. If it is possible to find

bad surprises early, or before they cause additional troubles, it is

plausible that effort, cost and time will be saved as a result.

Method. After extracting the issues and pull requests from 5000

of the most popular software repositories on GitHub, we will train

a language model to represent these issues. We will measure their

perceived importance in the repository, measure their resolution

difficulty using several analogues, measure the surprisal of each,

and finally generate inferential statistics to describe any correla-

tions.

CCS CONCEPTS

• Information systems → Language models; Data mining; •

Computingmethodologies→Anomaly detection;Maximum like-

lihood modeling.
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1 INTRODUCTION

Surprisal is a measure in information theory that can quantify how

unexpected and thus how informative awordFC is given thewords

that precede it (F1, ..., FC−1). A higher word surprisal value indi-

cates that the current word is less expected given the context. In

mathematical terms, surprisal is defined as the negative logarithm

of the word’s conditional probability of occurrence [18].

In this work, we propose to apply the surprisal measure to soft-

ware engineering artefacts, motivated by many researchers argu-

ing that software developers need to be aware of unusual or sur-

prising events in their repositories, e.g., when summarizing project

activity [19], notifying developers about unusual commits [7, 9],

and for the identification of malicious content [26]. The basic intu-

ition is that catching bad surprises early will save effort, cost, and

time, since bugs cost significantly more to fix during implementa-

tion or testing than in earlier phases [17], and by extension, bugs

cost more the longer they exist in a product after being reported

and before being addressed.

Following recent work on applying natural language techniques

to software engineering data [14], in this work, we investigate

whether the information-theoretic measure of surprisal is action-

able when applied to software repositories. In this study we anal-

yse issues and pull requests separately, but as a matter of conven-

tion, we will refer to these simply as issues going forward. In our

method, the differences are negligible, but separately theymay pro-

duce unique analyses.

We investigate two scenarios involving surprisal: its effect on

resolution difficulty and the perceived importance of surprising is-

sues. Prior work [23] found that conformance to project-specific

language norms reduces issue resolution time. Assuming that sur-

prising issues do not conform to such norms, we investigate whether

they are more difficult to resolve. Other work [22] has analysed

what kind of issues are reopened, and specific issue metrics such as

number of comments are shown to correlate. We conceptualise dif-

ficulty in terms of (1) reopened rate, (2) amount of discussion, and

http://arxiv.org/abs/2204.07363v1
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(3) resolution time. Further, prior work established that developers

want to be aware of unexpected issues in their repositories [19],

and that high importance issues are more likely to be included in

release notes [12]. In this work, we investigate whether surprising

issues are treatedwith higher importance.We conceptualise impor-

tance in terms of (1) mention in release notes, (2) first issues to be

worked on after a break, (3) issues attracting GitHub reactions [15],

and (4) priority labels being assigned to issues.

1.1 Motivating Examples

Take for example, a software product sustainment team that re-

ceives a steady stream of issue reports which they must triage.

Each of these issues have a cost increasing at a given rate, which

itself might be accelerating. This cost may be in safety, budget,

and/or reputation for example. It is in the interest of stakeholders

that cost is minimised across the lifetime of the product.

In order to predict the cost of the new issues coming in, someone

with experience needs to spend time comparing against previous

experience, or applying metrics based methods. Then time needs

to be spent addressing the issue for the cost to be eliminated.

If surprisal can be used to tell which issues are challenging or

notable without human input, it is possible that efficiency can be

gained in the resolution process. The triage process is better in-

formedwith notable issues thatmight need to be prioritised sooner.

The cost to address an issue, weighed against its cost to the project,

is better informed by the challenge that the issue presents. Chal-

lenging issues can have more people assigned to resolve it. Infor-

mation about notable issues can be distributed to other developers

so they know what mistakes to avoid in the future.

Another example is of a new developer just joining a project.

In order to familiarise themselves with the history and most im-

portant changes or developments that have occurred, they would

usually have to rely on release notes or a version history. In the

case where the project either lacks release notes, or in the case

where the release notes contain even the most minor changes, this

can be overwhelming and of limited value to the new developer. A

tool based on surprisal could extract the most important or notable

changes from amature project for this developer, or even tell some-

one who has been away from a project for a period what notable

things have happened since they left.

2 BACKGROUND

In Claude Shannon’s seminal work on information theory he de-

scribes radio signals and their ability to communicate information.

In doing so, he makes the first formal description of information

entropy or information uncertainty.

2.1 Uncertainty of an Event

Take two events, represented by the symbols ‘A’ and ‘B’. If we

know that these events are equally likely to occur, we could say

that we are equally uncertain which the next event will be. The

information that we gain from observing an event can be repre-

sented by � (G) = − log2 % (G) , where % (G) is the probability of

G occurring. In this example, we can see that for either outcome,

% (�) = % (�) = 0.5 and so � (�) = � (�) = 1. We gain exactly 1 bit

of information, as there are two possible outcomes and either is as

likely to occur.

If we take another example, and modify the probabilities of the

outcomes such that % (�) = 0.0 and % (�) = 1.0, we can see that

if we observe B, we gain exactly 0 bits of information from � (�) =

− log2 1 = 0. This is intuitive, since we already knew that the event

would be B, there was no uncertainty.

Now we take an example where an event is extremely unlikely

to happen. When % (�) = 0.999 and % (�) = 0.001, if we observe

the event A, we gain � (�) = − log2 0.999 ≈ 0.001 bits of informa-

tion. Since it was likely to happen, we do not receive much infor-

mation, but still a little. It is then surprising when we observe the

event B, since it is unlikely to happen. The information we gain

from observing B, � (�) = −;>620.001 ≈ 9.966, is extreme in com-

parison.

2.2 Statistical Language Models

Shannon describes an approximation of the English language by

utilising n-gram statistical language models. Initially he describes

a crude unigram model that selects the next word in a sentence

based on their relative frequencies in the English language. This

has an obvious flaw; unigram models assume that each choice of

word is independent from the last. Syntax and grammar demand

more careful choice of words than pure randomness alone, so to

account for this, greater order n-gram models are used.

Bigrammodels select the next word based on the previous word,

and trigrams select based on the previous two. These better capture

the structure of English, and while higher order models are possi-

ble, these tend to overfit the training data. The languagemodel also

becomes exponentially sparser as the order increases, which will

in turn require exponentially more training data or risk severely

underfitting the training data.

With a model that statistically represents the English language

in n-grams, we can now determine how likely a wordFC is, given

the words that precede it (F1, ..., FC−1).

2.3 Probability Distributions

Todetermine how closely an issue’s description represents thewhole

corpus of descriptions, in an effort to see how surprising or not it

is, we can use cross entropy. To understand cross entropy, it is im-

portant to discuss the underlying concept of entropy. Entropy can

be quantified as the average number of symbols needed to repre-

sent an event from a distribution of events. Take for example, a

distribution of events where:

% (�) = 0.5,

% (�) = 0.25,

% (�) = 0.25

This distribution is biased, or skewed in favour of observing the

event ‘A’. We can describe these events with their relative frequen-

cies in a Shannon–Fano coding [5], where:

� = {0},

� = {01},

� = {10}
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In this example, we can see that half of the time, we only require 1

bit of information to represent any event. The other half of the time,

we require 2 bits. We can therefore say that the average number

of bits required to represent an event from this distribution (its

entropy) is 1.5. Just as above, where an event that occurs often can

be represented with less bits, distributions that are more biased,

that yield one particular event more often, present less entropy.

Shannon formalises this into the following equation, using - as

the support for random events G :

� (%) = −
∑

G ∈ -

% (G) × log(% (G)) (1)

Cross entropy describes how many symbols on average are re-

quired to represent an event from one distribution in a coding opti-

mised for another, if both have the same support. In our setting, it

measures how many symbols are required to represent an issue’s

description, based on the distribution of words observed (%> ) in the

issue, in the true distribution (%tt ) of words in all issues.

� (%> , %tt ) = −
∑

G ∈ -

%> (G) × log(%tt (G)) (2)

When %> = %tt , Equation (2) is equivalent to Equation (1). Oth-

erwise, when the observed distribution (the issue’s use of words)

differs from the distribution of the training set (the set of all issues),

cross entropy increases. Higher values of cross entropy therefore

imply an issue is more surprising.

There are potentially other surprisal metrics that provide differ-

ent evaluations. More simplemeasures for instance, might take the

minimum, maximum, or average surprisal of all words in an issue.

Cross entropy is a very well-realised metric of model accuracy in

the literature [11], and it is for this reason that we are using it.

3 RESEARCH QUESTIONS

A number of research questions and hypotheses have been made

to guide the investigation.

RQ1: How well does information theory’s surprisal, as

measured by a statistical language model, align

with perceived surprisal?

With RQ1, we hope to find how statistical language models com-

pare to the human perception of surprisal, and also which factors

of the language model influence its ability to measure the surprisal

of an issue.

RQ2: Are surprising issues correlated with resolution dif-

ficulty?

In RQ2, we define “resolution difficulty” as a combination of the

following factors. Difficult to resolve issues are: reopened more of-

ten; attract more discussion prior to resolution; and take longer to

be resolved, when compared to issues with little or no resolution

difficulty. This is perhaps an incomplete list, but will serve as the

basis for the report.

RQ2 can be formalised into the following hypotheses:

H2.1: Surprising issues are more likely to be reopened.

H02.1: There is no significant difference in how often surprising

issues are reopened, compared to unsurprising issues.

H2.2: Surprising issues attract more discussion. (Number of peo-

ple involved)

H02.2: There is no significant difference in how much discussion

surprising issues draw, compared to unsurprising issues.

H2.3: Surprising issues attract more discussion. (Number of inter-

actions)

H02.3: There is no significant difference in how much discussion

surprising issues draw, compared to an unsurprising issue.

H2.4: Surprising issues take longer to resolve.

H02.4: There is no significant difference in time to resolve surpris-

ing issues, compared to unsurprising issues.

H2.5: Surprising issues are difficult, and difficult issues are best

represented as some combination of reopen rate, amount of

discussion, and time to resolve.

H02.5: Surprising issues are difficult, but difficulty is best repre-

sented as only one factor of reopen rate, amount of discus-

sion, or time to resolve.

RQ3: Are surprising pull requests correlated with resolu-

tion difficulty?

As in RQ2, RQ3 defines difficulty in the same way but for pull

requests rather than issues. The purpose of RQ3 is to determine

if the more structured and formal contents of pull requests are

more suitable than issues for establishing a relationship between

surprisal and difficulty. Pull requests offer a suitable alternative be-

cause they are intended to directly address a need that would typ-

ically be expressed in an issue. Additionally, merged pull requests

are reviewed and thus are unlikely to be duplicated, describe what

they are resolving, and what they address is far less likely to be

misreported as a defect if it is not.

The formal hypotheses for RQ3 are formulated in amanner iden-

tical to the hypotheses of RQ2, since pull requests and issues are

functionally identical in this context. In the interest of brevity, the

full text of these hypotheses H2.1 through H2.5 has been omitted.

RQ4: Are surprising issues correlated with perceived im-

portance?

In RQ4, we define “perceived importance” as a combination of

the following factors. Important issues are: mentioned in release

notes; addressed soon after periods of breaks; attract more GitHub

reactions; and have high-priority labels added. Once again, this is

perhaps an incomplete list, but will serve as the basis for the report.

RQ4 can be formalised into the following hypotheses:

H4.1: Surprising issues are more likely to be mentioned in release

notes.

H04.1: There is no significant difference in how often surprising

issues are mentioned in release notes, compared to unsur-

prising issues.

H4.2: Surprising issues are addressedwith priority over unsurpris-

ing issues after a hiatus.
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H04.2: There is no significant difference in the time addressing post-

hiatus surprising issues, compared to unsurprising issues.

H4.3: Surprising issues attract more GitHub reactions.

H04.3: There is no significant difference in how many reactions a

surprising issue receives, compared to unsurprising issues.

H4.4: Surprising issues are more often labelled as high-priority

issues.

H04.4: There is no significant difference in what priority surprising

issues are labelled, compared to unsurprising issues.

In H3.2, we define a hiatus as the top 25% longest times between

issue resolutions per contributor for a particular repository. Prior-

ity in this case is the order in which issues are worked on after a

hiatus.

RQ5: Are surprising pull requests correlated with per-

ceived importance?

As before with RQ2 and RQ3, RQ4 focuses on issues, and RQ5

will focus on their pull request counterparts. The full text of hy-

potheses H4.1 through H4.4 has been omitted for brevity.

4 VARIABLES

A summary of the variables involved for all the research questions

can be found in Table 1.

Predictor Variable:

• Surprisal. How surprising the content of the issue is to the

language model. This is calculated as the cross entropy of

the issue text and the corpus of issues.

Response Variables:

• Reopenings.Howmany times the issue has been reopened.

An issue can be labelled as closed and then reopened for nu-

merous reasons, just as a pull request can be merged and

then reopened. This usually indicates a regression of func-

tionality, reoccuring bug, or unsuccessful fix [8], all indi-

cations that the issue has additional complexity associated

with it.

• Participants.Howmany individual participants have inter-

actedwith the issue. Every event that takes place on an issue

has an actor associated with it. This actor represents some-

body interacting with the issue. If a particular issue involves

multiple assignees for example, it may be a sign that addi-

tional expertise is needed to resolve it. It could also mean

that it affects a lot of people but is not necessarily more dif-

ficult. Kavaler et. al. [23] show that there is a significant in-

crease in issue resolution time with an increased number of

unique participants.

• Interactions.Howmany interactions have beenmadewith

the issue, including comments, mentions, taggings, assign-

ments and state changes. A full list of events is available

in the GitHub Issue API documentation [3]. Some of these

interactions are considered a normal part of the resolution

process, although we expect to see more interactions if the

issue reveals hidden complexity over time. Kavaler et. al. [23]

also show there is an increase in issue resolution time cor-

responding to the number of comments made.

• Open State Duration. How long the issue has been unre-

solved; from first submission to last closure, or if it has not

been closed, the time of analysis. While some issues may

not be difficult but especially time consuming, we expect

to see longer resolution times for issues that are difficult to

diagnose or replicate.

• Mentions in Release Notes. How many times the issue

has been mentioned within release notes on GitHub. Some

repositories make no use of GitHub’s Releases feature, so

only the repositories that do, and that mention issues at

all in them will be considered. Highly important issues are

more likely to be included in release notes [12].

• Order of Address. After lengthy breaks of development,

whether independently taken or due to holidays, it is likely

that themost pressing of issues in the backlog are chosen for

immediate resolution. Commits after extended breaks have

been described as interesting, in a previous paper [19]. Each

contributor has a time between addressing issues, so taking

the top 25% of these breaks, and then ordering the issues

that they worked on afterwards gives us an indication of

what importance that author places on each issue.

• Reactions. How many reactions have been made on the

issue. Reactions give a quick way for users to interact with

an issue. For example, users can express joy that a particular

issue is closed, or frustration if it disrupts them personally,

through reactions. This can be seen as a community rating

of importance, rather than that of the maintainers [15].

• Labelling.Many repositories use theGitHub issue labelling

system to triage incoming bug reports and feature requests.

Issues are sorted by maintainers into priorities and labelled

as such, from low priority to high priority [1], §3.B. These

labels can be seen as the maintainer’s rating of importance.

5 DATA SETS

In this section we present the data sources that we will use, and

how we will use them.

5.1 Sources

For this study, open-source software stored on GitHub serves as

our primary and sole source for software issues. Unfortunately,

GitHub imposes a restrictive limit to how many interactions with

its API a user canmake. Typically this is 5000 calls per hour [2], and

so we take the top 5000 most ‘starred’ repositories as our data set.

Stars represent a user liking a repository, and therefore indicate

popular repositories, more likely to have high numbers of issues

due to increased testing and feature requests — a result of more

users [13].

This supposes that GitHub is used in the same way by the main-

tainers of those 5000 repositories, which is not the case. Many of

these repositories do not make use of the Issues feature; many of

these repositories are not software development related and pos-

sess little to no code; and other repositories are simply a mirror of

a repository developed and hosted elsewhere [29]. Additionally, we
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Table 1: Variables

Variable Hypotheses Description Measure Operationalisation

Surprisal Predictor for

all hypotheses

How surprising an issue is to the statistical

language model.

Ratio Cross entropy of issue, obtained with

probability from SLM trained on cor-

pus of all issues.

Reopenings Response for

H1.1, H2.1

After an issue has been labelled as closed

or resolved, it can be reopened either due

to a fix being unsuccessful, a regression, or

reoccurring bug.

Ratio GitHub Issue API’s “reopened” event.

Participants Response for

H1.2, H2.2

Number of unique individuals involved

with the issue. Each event (as described by

the GitHub API [3]) associated with an is-

sue has an actor that initiates it, whether

that event is a comment, or a state update.

Ratio GitHub Issue API’s event “actor” for

each event associated with an issue.

Interactions Response for

H1.3, H2.3

Number of events associatedwith the issue. Ratio Count of events, as described by the

GitHub Issue API [3].

Open State

Duration

Response for

H1.4, H2.4

Length of time between the issue’s creation,

and it being resolved for the final time.

Ratio Difference between GitHub Issue API’s

“created_at” value for the issue and fi-

nal “closed” or “merged” event.

Mentions Response for

H3.1, H4.1

Number of mentions within a repository’s

release notes.

Ratio Scrape for issue numbers through

GitHub’s Releases API.

Order of

Address

Response for

H3.2, H4.2

Issue order after top 25% of contributor’s

inter-issue resolution times.

Interval Issues assigned to a contributor are re-

trieved through the GitHub Issues API.

Reactions Response for

H3.3, H4.3

Number of reactions on a particular issue. Ratio Count of reactions for an issue, from

GitHub’s Reactions API.

Labelling Response for

H3.4, H4.4

Assigned priority or importance label of a

particular issue.

Interval Labels are extracted via the GitHub

Issues API, and then normalised

(per repository) to a 3-degree scale,

‘low-importance’, ’regular-importance’,

‘high-importance’.

wish to limit the scope to English language repositories. To find the

repositories that fit these conditions, we plan to use G-Repo [16] as

a means to filter out non-software repositories, repositories mak-

ing little use of the Issues feature (less than 1000 issues), and non-

English repositories.

5.2 Language Model Transfer

The statistical language model (SLM) used to determine the sur-

prisal of an issue, is intended to represent a probabilistic model of

what the content of an issue looks like. Software issues are typi-

cally written in such a way that requires domain-specific knowl-

edge of terminologies and jargon, and are in most cases very spe-

cific to the project they reference. As a result, a more specific SLM,

trained on a software-based corpus would see some improvement

in accurately modelling the software language used, compared to

a more general pre-trained model [4], §5.3. For this reason, it was

decided that a bespoke language model will be trained for the task.

5.3 Pre-processing

Issues are composed of a title and description. Both of these ele-

ments have the possibility of individually containing pertinent in-

formation, and in some examples do not describe the information

the other holds. It is for this reason that during the pre-processing

stage, wewill prepend the issue descriptionwith the issue title. The

SLM will then be trained on these title-description combinations.

Before training a model on the issue text, we will clean the data

with the following pre-processing steps:

(1) HTMLVoid Elements [27] are translated into special tokens,

e.g., <br> becomes [BR].

(Also code blocks, see details following.)

(2) Other HTML elements are replaced with their contents, e.g.,

a list element becomes a simple string of its content.

(3) Text undergoes normalisation of its Unicode forms. Canoni-

cal Composition (NFC) is used in accordance with the Char-

acter Model standard proposed by W3C [10].

(4) Punctuation and symbols are removed on word boundaries,

and when isolated.

(5) Stopwords are removed, and remaining words are stemmed.

(See details following.)
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As singular code tokens — variable names and the like — may

provide important contextual information across multiple issues,

they will be preserved in the training data. Code blocks on the

other hand risk introducing too many globally-unique tokens into

the model without introducing useful and actionable information

to the description. The reason is that the syntax of code is entirely

disparate with that of English for example, and so code blocks

will be replaced with a special token [CODE] where they are de-

marcated with the <pre> and <code> HTML tags (as is typical on

GitHub).

It is possible that the quality of the language model could be im-

proved by further transforming the text in a final step. Inmany nat-

ural language processing applications, stop word removal is con-

ducted to remove low-information tokens, thereby increasing the

average entropy. In other applications, lemmatisation or stemming

is used to reduce the occurrence of high-information tokens. Con-

cepts are learned better if you can reduce “fishing” and “fishlike” to

“fish”. However we cannot know for certain what using either will

achieve when modelling surprisal, and a preliminary investigation

will be conducted to see if it indeed increases the accuracy of the

model. The choice of algorithms is still to be determined, and will

be revisited in the final report.

5.3.1 Priority Labelling. SomeGitHub repositories use the labelling

system to assign priority grades or importance to issues in their

triage process. These labels are user text input and can represent

these grades in a number of different ways. For example, one repos-

itory may use the labels ‘Low Priority’, and ‘High Priority’, where

another may use the labels ‘P1’ through ‘P5’.

In order to process these priorities, it is necessary for manual

classification to normalise these different ranges. For the purpose

of this experiment, priority is distributed among the three degrees

‘low-importance’, ‘regular-importance’, and ‘high-importance’. Tie-

breaking is settled by ruling in favour of a higher importance, using

the previous examples for example; ‘low-importance’ would take

‘P1’ and ‘Low Priority’; ‘regular-importance’ would take ‘P2’ and

‘P3’; and ‘high-importance’ would take ‘P4’, ‘P5’, and ‘High Prior-

ity’.

To ensure that these have been correctly classified, we propose

giving two researchers a list of 400 randomly selected labels from

the population of approximately 9000 different labels and asking

them to classify them using the method above, or classify them

as ‘unrelated’ to priority or importance. The agreement between

the researchers is then calculated using Cohen’s kappa, and in the

event that a consensus value of 0.7 is reached, we consider the

task sufficiently unambiguous, and a single researcher can then be

trusted to accurately represent the rest of the ∼ 9000 labels. If not,

a more involved process needing agreement by more researchers

is required to classify the labels.

6 EXECUTION PLAN

In this section we present the method we plan to use for the study.

It is important that all the decisions made during the experiment

will be recorded, along with intermediate outputs. For example:

a record will be made listing the 5000 most starred repositories

on GitHub at the time of the experiment; after repositories are re-

moved when failing to meet selection criteria, those will also be

made into a record; and decisions such as how the total issue count

was calculatedwill bemade into a record too. All the code usedwill

be made available in a GitHub repository for the final report.

6.1 Method

To test all hypotheses the following method is proposed:

(1) Using the GitHub API, query the 5000 most starred reposi-

tories on GitHub.

(2) Query the number of issues. If any repository has less than

1000 issues, remove it from the pool.

(3) Extract all GitHub issues from each repository.

(4) Train SLM on entire issue description corpus.

(5) For each repository:

(a) Determine if it uses priority/importance labels, and nor-

malise those labels into three degrees of importance. Ties

broken in favour of being more important.

(b) For each issue:

(i) Determine and record surprisal of issue.

(ii) Record how many re-openings have occurred.

(iii) Record how many unique participants have interacted

with the issue.

(iv) Record how many interactions have been made with

the issue.

(v) Calculate and record open duration for the issue.

(vi) Record number of reactions to the issue.

(vii) Record normalised importance label, if any.

(c) Parse all release notes for the repository, incrementing

the mentions of a particular issue when it appears.

(d) For each contributor:

(i) Determine top 25% of inter-issue resolution times.

(ii) Split all issues assigned to the contributor into bands

following a break of at least the 25th percentile’s length.

(iii) Order the issues by oldest assigned time.

(iv) Record the ordinal position of each issue in its inter-

break band.

(6) Split issues from GitHub into pull requests and simple is-

sues.

(7) Generate descriptive statistics for each repository according

to analysis plan.

(8) Generate inferential statistics across entire issue data set ac-

cording to analysis plan.

6.2 Statistical Language Modelling

N-gram models saw some popularity during the 2000s and 2010s,

but gradually saw declining popularity due to their perceived con-

textual fragility [28](2000), and competitive neural language mod-

els being developed [21](2012). Despite this, n-gram models still

perform admirably in Natural Language Processing applications.

For our SLM, we use a trigrammodel using word tokens (shingles).

We chose this due to its simplicity, familiarity, popularity, and rea-

sonably effective results [6]. More modern statistical approaches

typically use a n-gram model utilising a backoff strategy to deal

with unknown tokens.

We train the SLM using the entire corpus of issues. This gives

us the advantage of never coming across an unknown token, as all

the tokens that we generate surprisal values for are contained in
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Figure 1: Method Flowchart

the training set. Any unknown, in this case ‘unique’, tokens would

otherwise be infinitely surprising, which might not accurately rep-

resent how common it is to appear in say a larger sample size of

repositories and issues.

The loss of generality realised by the lack of testing set is in-

significant when compared to the small sample size of 5000. For

this study, we are more concerned with the formulation of sur-

prisal, and the two correlations applying to the repositories we

have selected. Transferability can be further investigated after this

proof of concept, if successful. Conversely, because singular repos-

itories have a small sample size of issues, the specificity gained by

training only on a single repository introduces massive sparsity

in the model. This is another reason we include all issues into the

training set.

6.3 Model Smoothing

Despite the lack of unknown tokens, we still apply a smoothing

algorithm to obtain a more uniform, less sparse, and more repre-

sentative model of the larger corpus of issues outside of the repos-

itories that we have selected. The modified Kneser-Ney algorithm

described by Chen and Goodman [6], §3, was chosen due to its

excellent smoothing performance.

6.4 Model Improvement

While trigrams were chosen for the reasons previously mentioned,

it is worth understanding how n-gram order affects the language

model’s calculation of surprisal. It is also worth understanding how

the use of a testing set from the training data affects this calculation

of surprisal.

These two factors contribute to the SLM and reveal important

information regarding RQ1. In order tomeasure the affects of these

factors, we propose the following additional experiment which com-

pares the SLM performance against a manual classification:

(1) A repository of relatively few issues is chosen as a model.

(2) Take a representative sample of issues from the repository.

(3) Two researchers are asked to rate the surprisal in each issue,

after reading all issues thoroughly.

(a) Issues are rated on a Likert scale.

(b) A value of 1 means that the description of an issue is not

surprising.

(c) A value of 5 means that the issue contains almost com-

pletely unique information.

(d) Surprisal judgements should be based on factors such as

topic, formatting, length, and word usage.

(4) Choose the SLM training set:

(a) Entire issue descriptions corpus.

(b) Entire issue descriptions corpus, with the chosen reposi-

tory absent.

(c) Entire issue descriptions corpus, with each issue removed

individually.

(5) Choose n-gram order, repeating from 1-grams to 10-grams.

(6) Measure and record surprisal of each issue (the same indi-

vidually removed from the training set if that type of train-

ing set is chosen).

(7) Generate agreement statistics between each model and the

manual classification.

7 ANALYSIS PLAN

This is a correlational study of independent random variables, the

following is a design of the quantitative analysis that will be under-

taken. All calculations will be performed using a statistics package.

Model Analysis. In Section 6.4 we propose a method with which

the surprisal of a repository-representative sample of issues is judged

manually by two researchers. The surprisal of the issues is then

measured using the surprisal calculated by the SLM. We propose

using Cohen’s kappa to measure the agreement between the two

researchers, and report how contentious this task is. We also pro-

pose using a Kendall rank correlation to measure the agreement

between the SLM- and manually-computed surprisal values. In the

event that the agreement is statistically significant, it can be said

that SLMs can calculate surprisal to a similar degree as a human

participant can, and are suitable for the following analyses. A quali-

tative analysis of the issues that have disagreement in the surprisal

ratings is conducted. Both the case of inter-researcher disagree-

ment and researcher-SLM disagreement will be analysed in an ef-

fort to understand what caused this disagreement.

We expect that a languagemodel using the entire corpus of issue

descriptions and trigrams sufficiently agrees with the researcher’s

judgements. However, we will run the deeper analysis using dif-

ferent training sets and n-gram orders to confirm those choices

are indeed correct. A combination of each choice will maximise

the agreement with the manual computation, and this combina-

tion will be used in the analyses going forward. In the event that

even the combination that maximises the agreement is still not sta-

tistically significant, a more thorough inspection of the factors in-

fluencing the SLM is required.

Descriptive Statistics. Wewill present descriptive statistics of the

predictor and response variables in a summary of the complete
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data set. Sample size, mean, standard deviation, maximum, and

minimum values for each variable will be included

Inferential Statistics. Before presenting a correlation and regres-

sion analysis using a linear regression, we graph the relationship

between the surprisal and each response variable for the issues in

a repository. We will then test each hypothesis separately with its

corresponding variable, and look for statistical significance.

A Shapiro-Wilk test is used to determine if the data shows nor-

mality [24]. If the data is normally distributed, we can choose to

use the additional descriptive power of a Pearson correlation. If

not, a Spearman correlation can be used instead [25], §1.2.a).

In order to test H1.5 and H2.5, we will perform a multiple linear

regression, this time including one statistically significant measure

of difficulty into the null model. If the F-test is not statistically

significant, we can accept the alternate hypothesis.

This test shows if a combination of our chosen difficulty factors

is better in representing difficulty as a whole, in comparison to the

measure added to the null model on its own.When performing this

second regression, we expect to see multicollinearity, a high Vari-

ance Inflation Factor for these measures [20], §10.5, as our belief is

that they represent the same variable: difficulty.

Interpretation of Results. We will present our interpretation of

our findings, a discussion on any assumptions discovered, limita-

tions, threats to validity, and future research.
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