
Human-Like Summaries
from Heterogeneous and Time-Windowed

Software Development Artefacts

Mahfouth Alghamdi(B), Christoph Treude(B), and Markus Wagner(B)

School of Computer Science, University of Adelaide, Adelaide, Australia
{mahfouth.a.alghamdi,christoph.treude,markus.wagner}@adelaide.edu.au

Abstract. Automatic text summarisation has drawn considerable inter-
est in the area of software engineering. It is challenging to summarise the
activities related to a software project, (1) because of the volume and
heterogeneity of involved software artefacts, and (2) because it is unclear
what information a developer seeks in such a multi-document summary.
We present the first framework for summarising multi-document software
artefacts containing heterogeneous data within a given time frame. To
produce human-like summaries, we employ a range of iterative heuris-
tics to minimise the cosine-similarity between texts and high-dimensional
feature vectors. A first study shows that users find the automatically gen-
erated summaries the most useful when they are generated using word
similarity and based on the eight most relevant software artefacts.

Keywords: Extractive summarisation · Heuristic optimisation ·
Software development

1 Introduction and Motivation

Modern-day rapid software development produces large amounts of data, e.g.,
GitHub [4] now hosts more than 100 million repositories, with over 87 million
pull requests merged in the last year, making it the largest source code hosting
service in the world. The corresponding software development involves a lot of
communication: developers create many types of software artefacts – such as
pull requests, commits, and issues – and the amount can be overwhelming. For
example, the Node1 project contains more than 11k issues, more than 20k pull
requests, and over 29k commits. It also contains other software artefacts, such
as wiki entries and readme files created by the developers during the project
development life-cycle. In addition, these artefacts are frequently updated. For
instance, in the week from January 1 to January 7, 2020, developers created 17
new issues, closed 12 issues and submitted 82 commits. Let us now consider two
scenarios: (1) a developer has been on holidays during this period and would
like to be updated, and (2) a new developer joins the team after this period and
1 https://github.com/nodejs/node, accessed on February 2, 2020.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 329–342, 2020.
https://doi.org/10.1007/978-3-030-58115-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_23&domain=pdf
https://github.com/nodejs/node
https://doi.org/10.1007/978-3-030-58115-2_23


330 M. Alghamdi et al.

Fig. 1. An example of an anonymised student summary (left) linked to the content of
related software artefacts (right).

would like to know what has happened recently. In both cases, going through the
artefacts and collecting the most useful information from them can be tedious
and time-consuming. It is scenarios like these that we are targeting in our study,
as solutions to these can ultimately increase the productivity of software develop-
ers and reduce information overload [16]. To make these scenarios more tangible,
Fig. 1 shows a summary written by a student software developer, as well as the
various artefacts that contain parts of the information conveyed in this manually
written summary.

To offer solutions in such cases, we employ a combination of methods
from Data-Driven Search-Based Software Engineering (DSE) [8]. DSE combines
insights from Mining Software Repositories (MSR) and Search-based Software
Engineering (SBSE). While MSR formulates software engineering problems as
data mining problems, SBSE reformulates SE problems as optimisation prob-
lems and use meta-heuristic algorithms to solve them. Both MSR and SBSE
share the common goal of providing insights to improve software engineering. In
this present paper, we suggest to improve software engineering – in particular
the creation of software development activities – by mining the created artefacts
for summaries.

In recent years, several approaches have been developed to summarise soft-
ware artefacts. Rastkar et al. [12] summarised bug reports using a supervised
machine learning method. Rigby et al. [13] summarised code elements from Stack
Overflow using four classifiers based on context, location, text type, tf-idf, and
element type. Furthermore, Nazar et al. [9] and Ying et al. [18] utilised naive
Bayes and support vector machine classifiers to generate summaries of code frag-
ments taken from the official Eclipse FAQ. Interestingly, these techniques have



Human-Like Summaries from Software Development Artefacts 331

mostly focused on summarising a single type of artefact, and they have not taken
into consideration the production of summaries of content in a given time frame.
To address these issues, we present a first framework to create multi-document
summaries from heterogeneous software artefacts within a given time frame. In
particular, we aim at an extractive approach, which generates a new summary
from the relevant documents without creating new sentences [10,17].

The remainder of this paper is structured as follows. First, we describe the
creation of the necessary gold-standard based on 503 human-written summaries
in Sect. 2. In Sect. 3, we define the problem of summary-generation as an opti-
misation problem based on cosine-similarity and on 26 text-based metrics. In
Sects. 4 and 5, we report on the results of our computational study and expert
annotation of the results. We then discuss threats to validity in Sect. 6 and out-
line future work in Sect. 7.

2 Human-Written Summaries – Creation of a Gold
Standard

To better understand what human-written summaries of time-windowed software
development artefacts look like, it has been necessary to create our own gold
standard. The basis of our gold standard is formed by a total of 503 summaries
that were produced (mostly) on a weekly basis by 50 students over 14 weeks
and for 14 (university-internal) GitHub projects. The students were working in
teams of three or four on their capstone projects with clients from local industry
toward a Bachelor degree (43 students in total) or with clients from academia
toward their Masters degree (7 students in total). To ensure the usefulness of
the students’ summaries, each of the students’ summaries was assessed as part
of the student assessments during the particular semester. The summaries were
anonymised before conducting this work to ensure confidentiality and anonymity
of the students.

We make use of these summaries to understand the general properties of
human-written summaries, such as the summaries’ typical length and the amount
of information these summaries may contain. Additionally, the students’ sum-
maries can provide us with an understanding of the common types of artefacts
related to development activities mentioned in the students’ summaries and to
help us identify which sentences from which artefacts should be selected for our
extractive summarisation approach.

To automatically collect the summaries, we used a Slack bot that asked the
students to write summaries on a weekly basis about their projects development
activity (see again Fig. 1). The written summaries were automatically recorded
and collected in response to the question: If a team member had been away, what
would they need to know about what happened this week in your project?

We show an example in Fig. 1: the question and the student’s summary are
on the left, and the relevant artefacts on the right. Note that the students only
provide the summary, i.e., they do not provide a list of the relevant artefacts.



332 M. Alghamdi et al.

Table 1. Number of artefacts contained in the 14 GitHub projects, resulting in 56,152
sentences.

Type Number Sentences

Issue titles (IT) 1,885 1,885

Issue bodies (IB) 1,885 5,650

Issue body comments (IBC) 3,280 8,754

Pull requests titles (PRT) 1,103 1,103

Pull requests bodies (PRB) 1,103 5,176

Pull requests body comments (PRBC) 897 1,811

Pull requests reviews (PRRv) 2,019 2,762

Pull requests reviews’ comments (PRRvC) 1,286 1,737

Commit messages (CM) 4,562 7,856

Commit comments (CMC) 30 55

Milestone titles (MT) 103 103

Milestone description (MD) 103 142

Readme files (RMe) 14 2,678

Wiki files (Wiki) 492 16,436

Releases (Rel) 1 4

We considered the following 15 types of textual artefacts in the GitHub
repositories: issues (titles, bodies, and comments), pull requests (titles, bodies,
comments, reviews, and reviews’ comments), commits (messages and comments),
milestones (titles and descriptions), releases, wiki entries, and readme files. It is
worth noting that, after manually inspecting the students’ summaries, there was
no evidence that any of these summaries contained a reference to a particular
source code file.

The documents to be summarised as well as the summaries needed to first
undergo various pre-processing steps – including sentence splitting, stop-word
removal, tokenisation, and stemming – to reduce noise in the data. Also, we
remove source code blocks from the software artefacts due to lack of evidence of
student summaries citing code from actual files. Table 1 lists the total amount of
artefacts per type in our gold standard, as well as the total number of extracted
sentences for each type.

3 Methodology

In our approach, we intend to extract text from a set of heterogeneous software
artefacts so that the resulting summaries are similar in style to those found in
gold-standard summaries. In the following, we introduce two ways of measuring
similarity, we revisit the definition of cosine similarity, and we define the iterative
search heuristics used later on.



Human-Like Summaries from Software Development Artefacts 333

3.1 Generating Summaries Based on Word-Similarity and Feature
Vector Similarity

Historically, the selection of important sentences for inclusion in a summary is
based on various features represented in the sentences such as sentence posi-
tion [2], sentence length and title similarity [5], sentence centrality [3], and
word frequency [6]. Determining these features in the selection of important
sentences is not simple and depends largely on the type of documents to be
summarised [15].

We consider two ways of characterising sentences: (1) based on the similarity
of words, and (2) based on the similarity of feature vectors. In both cases, the
goal is to select sentences from the collection of software artefacts so that the
characteristics of the resulting summary are close to the characteristics of a
target.

First, word similarity between two texts is defined by the number of times
a term occurs in both texts, after the aforementioned stemming and removal of
stop words. To achieve this, we use a vector-based representation, where each
element denotes the number of times a particular word has occurred in the
sentence.

Table 2. Features used to represent each of the sentences.

No. Feature

F1. Word count

F2. Chars count including spaces

F3. Chars without spaces

F4. No. of syllables in a word

F5. Sentence length

F6. Unique words

F7. Avg. word length (chars)

F8. Avg. sentence Length (words)

F9. No. of monosyllabic words

F10. No. of polysyllabic words

F11. Syllables per word

F12. Difficult words

F13. No. of short words (≤3 chars)

No. Feature

F14. No. of long words (>= 7 chars)

F15. Longest sentence (chars)

F16. Longest words (chars)

F17. Longest words by number of syllables

F18. Estimated reading time

F19. Estimated speaking time

F20. Dale-Chall readability index

F21. Automated readability index

F22. Coleman-Liau index

F23. Flesch reading ease score

F24. Flesch-Kincaid grade level

F25. Gunning fog index

F26. Shannon entropy

Second, as an alternative to the word-similarity and for situations where
a reference text is unavailable, we consider a total of 26 text-based features
of sentences, which aim at capturing different aspects of readability metrics,
information-theoretic entropy and other lexical features (see Table 2). Each sen-
tence is represented as a 26-dimensional vector of the feature values. For an
initial characterisation of this high-dimensional dataset, we refer the interested
reader to [1].



334 M. Alghamdi et al.

3.2 Cosine Similarity

The most popular similarity measure used in the field of text summarisation
is cosine similarity [7] as it has advantageous properties for high dimensional
data [14].

To measure the cosine similarity between two sentences x and y – respectively
their representation as a vector of word counts or the 26-dimensional represen-
tation – we first normalise the respective feature values (each independently)
based on the observed minimum and maximum values, and then calculate the
cosine similarity:

cos(x,y) =
xy

‖x‖‖y‖ =
∑n

i=1 xiyi
√∑n

i=1 (xi)2
√∑n

i=1 (yi)2
(1)

We employ the cosine similarity in our optimisation algorithms as the fitness
function to guide the search toward summaries that are close to a target vector.

3.3 Algorithmic Approaches

Extractive multi-document summarisation can be seen as an optimisation prob-
lem where the source documents form a collection of sentences, and the task is
to select an optimal subset of the sentences under a length constraint [11]. In
this study, we aim to generate summaries with up to five sentences as this is
approximately the length of the summaries that the students have written.

We now present our optimisation algorithms to automatically produce sum-
maries from heterogeneous artefacts for a given time frame. We utilise five algo-
rithms, and we also create summaries at random to estimate a lower performance
bound. We use the aforementioned cosine similarity as the scoring function,
which computes either the word-similarity or the feature-similarity with respect
to a given target. In our case, the targets are the summaries in the gold stan-
dard. By doing so, we aim at capturing the developers’ activities found in the
software artefacts that were created or updated in the given time frame and that
are cited in the gold-standard summaries to generate human-like summaries.

Our first approach is a brute force algorithm, which exhaustively evaluates all
subsets of up to a given target size. We will use this as a performance reference,
because we do not know a-priori what good cosine-similarity values are.

The second algorithm is a greedy approach (Algorithm 1). It iteratively builds
up a summary sentence-by-sentence: in each iteration, it determines the best-
suited additional sentence and then adds it – unless the addition of even the
best-suited sentence would result in a worsening of the cosine similarity.

In addition, we use three variations of random local search (RLS) algorithms.
First, RLS-unrestricted (see Algorithms 2) can create summaries without being
restricted by a target length. Second, RLS-restricted is like RLS-unrestricted,
but it can only generate summaries of at most a given target length. Third,
RLS-unrestricted-subset runs RLS-unrestricted first, but it then runs the brute
force approach to find the best summary of at most a given target length. These



Human-Like Summaries from Software Development Artefacts 335

Algorithm 1: Greedy algorithm
Input: AS - artefacts’ sentences, SS - student summary, and TLGS - targeted

length of the generated summary.
Output: GS generated summary

GS ←Ø
while (len(GS) ≤ TLGS) do

K ←Ø{K: unused sentences in AS}
Kbest ←Ø{best single sentence to add in this iteration}
for all (Ki ∈ K) do

if cosSimilarity(GS + Ki, SS) ≥ cosSimilarity(GS + Kbest, SS) then
Kbest ← Ki

if cosSimilarity(GS + Kbest, SS) < cosSimilarity(GS, SS) then
return GS {do not add Kbest if it worsens the similarity}

return GS

Algorithm 2: Random Local Search with unrestricted summary length
(RLS-unrestricted)
Input: AS - artefacts’ sentences and SS - student summary
Output: GS generated summary

GS ←Ø
while (running time < 10 seconds) do

GStemp ← GS
select a sentence ASr from AS u.a.r. and flip its inclusion status in GStemp

if cosSimilarity(GStemp, SS) ≥ cosSimilarity(GS, SS) then
GS ← GStemp

return GS

algorithms share common characteristics, such as the execution time limit and
the ability to explore the search space by including and excluding sentences. One
notable characteristic of RLS-unrestricted is that it can produce summaries that
exceed the target length. We have done this to provide an indication of whether
five sentences were enough to create close summaries.

As the sixth approach, we use a random search as a naive approach to provide
a lower performance bound: it iteratively creates summaries of five sentences,
and it returns (when the time is up) the best randomly created five-sentence
summary.

Note that the student summary (SS) that we provide as an input to all
approaches can either be an actual summary (i.e., the words) in which case the
co-occurrence is calculated, or it can be a summary represented as a feature
vector in the high-dimensional feature space.

Lastly, to investigate the impact of the individual artefacts on the summaries,
we consider three scenarios as input source to generate summaries by each of the
algorithms at a given time window: 1) each of the artefacts listed in Table 1 is
considered individually as a source, 2) combining all the 15 artefacts in a single



336 M. Alghamdi et al.

source, and 3) assuming we know a developer’s preferences for particular types
of artefacts, we only consider sentences coming from these types.

Implementation Note. We remove a-posteriori all the cases when we encoun-
tered at least one empty summary for two reasons: (1) the word similarity
between a generated summary and the student’s summary can be zero, and (2)
we encountered co-linear vectors even in the 26-dimensional space. Generating
summaries from all artefacts as an input source, we detected 670 and 1065 empty
summaries generated from all algorithms using the word similarly and feature
similarity, respectively. On the other hand, we found 845 and 980 empty sum-
maries generated by all algorithms using word similarity and feature similarity,
respectively, when the most relevant artefacts considered as an input source.

4 Computational Study and Discussion

In our experiments, we consider the 503 summaries written by students, 6 algo-
rithms, and three scenarios (i.e., the sentences’ sources).

For both similarity measures, we use the gold standard as the target, i.e.,
the students’ original summaries either as bags of words or as high-dimensional
feature vectors. An alternative for the feature similarity is to use, e.g., the average
vector across all students to aim at the “average style”, however, then it would
not be clear anymore if it can be approximated. As this is the first such study,
and in order to study the problem and the behaviour of the algorithms in this
extractive setting under laboratory conditions, we aim for the solutions defined
in the gold standard.

A Comparison with Brute Force. To better understand what quality we can
expect from our five randomised approaches, we compare these approaches with
our brute force approach to extractive summarisation. The artefact type for
this first investigation is “issue title”. The maximum number of sentences here
per project and summary combination was 35. For our brute force approach,
this resulted in a manageable number of 324, 632 + 52, 360 + 6, 545 + 595 +
35 = 384, 167 subsets of up to five sentences for that particular week. The
computational budget that we give each RLS variant is 10 s.

Comparing the results obtained by these algorithms (see Fig. 2a), we can
observe that the Greedy algorithm has the ability to generate summaries whose
overall distribution is close to the distribution of summaries generated by brute
force.2 Similarly, the two RLS-unrestricted approaches also produce comparable
summaries. RLS-restricted performs worse, but still better than the Random
Selection.3 From this first comparison, we conclude that Greedy is a very good
approach, as it achieves a performance comparable to that of brute force (which
is our upper performance bound), while it requires only 0.49 s on average to form

2 Based on a two-sided Mann-Whitney U test, there is no statistically significant
difference at p = 0.05 between Greedy and Brute Force.

3 Let us recall let Random Selection does not generate only one summary at random,
but many until the time limit is reached, and it then returns the best.



Human-Like Summaries from Software Development Artefacts 337

a summary compared to other algorithms.4 We can moreover conclude that a
maximum summary length of five is acceptable, as the RLS-unrestricted subset
does not perform differently from the others that were restricted.

Fig. 2. Results of the computational study. (a): Cosine similarity based on word co-
occurrence of the generated summaries. (b): Average contribution of artefacts to sum-
maries, aggregated across the two similarity measures. (c): Average contribution of
artefacts to summaries, aggregated across all algorithms. (d): Similarities: when all
artefacts are used (blue, overall average 0.266) and when only the relevant eight are
used (red, overall average 0.258). (Color figure online)

To explain Greedy’s performance, and to explain that the performances of
Greedy and of some of the RLS variants is very comparable, we conjecture that
the problem of maximising the cosine-similarity w.r.t. a target vector given a set
of vectors is largely equivalent to a submodular pseudo-Boolean function without
many local optima. A formal proof of this, however, remains future work.

Used Types of Artefacts. Next, use each algorithm to create a weekly summary
for the cases where we have student summaries. In particular, we investigate from
which artefact types the sentences are taken from in these generated summaries.

4 The average running time per algorithm (in seconds) to generate a summary is, from
left: 151.92, 0.49, 10.0, 10.0, 10.20, 6.67 s.



338 M. Alghamdi et al.

In total, there are 22,313 (39.73% of the total) sentences found in the source input
linked to the students’ summaries. Note that while this number appears to be
very large, it includes the very large summaries produced by RLS-unrestricted
(average length 29.6), and we are nevertheless aiming at hundreds of different
target summaries for one-week time-windows, which thus appear to require very
different sentences from the artefacts.

In Fig. 2b, we can see that the generated summaries by each of the algorithms
are composed of sentences from almost all of the artefact types. In particular,
we can note that sentences from wiki pages are most commonly used. Possible
reasons for this include that (1) wiki pages make up the largest fraction of the
source sentences, and (2) developers might have best described their activities
on the wiki pages.

In Fig. 2c, we can see that content from wiki artefacts contributed around
27% to the summaries generated by all algorithms. Also, sentences found in
issue bodies (IB), issue body comments (IBC), and commit messages (CM) con-
tributed 13%–17%. On the other hand, artefacts such as pull requests reviews
(PRRv), pull requests title (PRT) and milestone titles (MT) have among the
lowest contributions, which indicates that the students did not commonly use
these artefacts – or at least mention them and related content – during their
project’s development life cycle.

Generating Summaries Based on the Most Relevant Artefacts. By generating
summaries based on the most relevant artefacts found in the students’ origi-
nal summaries, we aim at generating more human-like summaries that better
reflect the developers’ preferences for certain artefact types. To achieve this, we
consider the generated summaries as a starting point, as each of them was gen-
erated to be similar to a particular student summary, and hence it can indirectly
reflect a student’s preference. Then, we identify the most relevant ones by using
the median as the cut-off (i.e., based on Fig. 2c). As a result of this selection,
the eight most commonly referred to artefacts are (from most common to least
common): wiki, issue title, issue bodies, issue body comments, commit messages,
pull request bodies, readme files, and pull requests reviews. In total, this reduces
the number of candidate sentences by 10.5% to 50,246.

We now investigate the performance of the subset of artefacts in terms
of being able to generate good summaries. Fig. 2d shows the cosine word co-
occurrence similarity and feature similarity achieved by each of the algorithms.
Blue violin plots show the distributions of similarities achieved when all 15 arte-
facts were considered, and the red violin pots show the same for the eight most
relevant artefacts. As we can see, focusing on only eight artefact types appears
to have little to no negative impact.

5 Expert Annotation

To evaluate the extent to which the summaries that the different approaches
generate matched the summaries written by the students in the perception of



Human-Like Summaries from Software Development Artefacts 339

Table 3. Average rating from each annotator for output produced by the different
approaches.

Approach Annotator 1 Annotator 2

Word (all) 3.7 3.3

Word (subset) 3.8 3.5

Feature (all) 3.7 2.0

Feature (subset) 3.7 2.0

Random (all) 3.5 1.8

Random (subset) 3.0 1.8

software developers, we asked two expert annotators to evaluate the results –
both were in their first year of study of a Computer Science PhD, and both not
affiliated with this study. Both annotators indicated that developing software is
part of their job, and they have 4–6 years of software development experience.
Annotator 1 stated that they had 1–2 years of experience using GitHub for
project development, Annotator 2 answered the same question with 2–4 years.

The selection of algorithms to be used for expert annotation is based on
the highest median value of the cosine similarities between the gold standard
summaries and the generated summaries from each of the algorithms. Therefore,
summaries generated by the Greedy algorithm were chosen for the annotation.

For the study, we randomly selected ten out of the total of fourteen weeks,
and for each week, we randomly selected one project. For each of these ten, we
then produced six different summaries in relation to the gold standard (i.e., the
summaries written by the students):

1. the best summary based on word similarity between sentences contained in all
artefacts in the input data (issues, pull requests, etc.) and the gold standard
student summary,

2. same as (1), but only using the eight most relevant artefacts as input data,
3. the best summary based on feature similarity between sentences contained in

all artefacts in the input data and the gold standard student summary,
4. same as (3), but only using the eight most relevant artefacts as input data,
5. a random baseline by randomly selecting five sentences from all artefacts,
6. same as (5), but only using the eight most relevant artefacts as input data.

We created a questionnaire, which asked the annotators first to produce a
summary for the ten selected weeks after inspecting the corresponding GitHub
repositories (to ensure that annotators were familiar with the projects), and
then to rate each summary on a Likert-scale from 1 (strongly disagree) to 5
(strongly agree) in response to the question “Please indicate your agreement with
the following statement: The summary mentions all important project activities
present in the gold standard summary”.

Table 3 shows the results, separately per annotator. While it is apparent
from the data that Annotator 1 generally gave out higher scores than Annota-



340 M. Alghamdi et al.

tor 2, both annotators perfectly agreed on the (partial) order of the different
approaches: Word (subset) ≥ Word (all) ≥ Feature (subset) ≥ Feature (all) ≥
Random (all) ≥ Random (subset).

In summary, approaches based on text similarity achieve the best result in
terms of human perception, followed by approaches based on feature similarity,
and the random baselines.

6 Threats to Validity

Our study, like many other studies, has a number of threats that may affect the
validity of our results.

First, our research subjects involved summaries written by graduate and
undergraduate students. Although it is possible that Master students are more
knowledgeable about interacting with the GitHub platform than the Bachelor
students, the difference in the experiences of both subjects should not affect the
results. This is because the students require an intermediate level of skills to
work with the GitHub platform.

Our result, illustrated in Table 3, shows that the eight most relevant artefacts
are found to be sufficient when generating summaries containing developers’
activities. These types – such as issues, pull requests, and commits – are essential
elements of a GitHub repository. However, as these are essential elements of
probably any software repository, we expect this finding to be transferable to
other repositories.

Also, evaluating the automatically generated summaries relies on human
experts. Subjectivity and bias are likely to be issues when the number of human
experts involved to assess the generated summaries is small. Hence, we plan, for
future work, to include more experts to mitigate these issues.

7 Conclusion and Future Work

Software engineering projects produce many artefacts over time, ranging from
wiki pages, to pull request and issue comments. Summarising these can be helpful
to a developer, for example, when they return from a holiday, or when they try
to get an overview of the project’s background in order to move forward with
their team.

In this article, we have presented the first framework to summarise the het-
erogeneous artefacts produced during a given time window. We have defined
our own gold standard and ways of measuring similarity on a text-based level.
Then, we proceeded to compare various optimisation heuristics using diffident
input scenarios, and have found that a greedy algorithm can generate summaries
that are close to the human-written summaries in less running time compared
to other algorithms. A study then has found that experts preferred the combi-
nation that used word similarity to generate summaries based on the eight most
relevant artefacts.



Human-Like Summaries from Software Development Artefacts 341

Interestingly, the generated summaries have been found useful even though
the optimisation approaches have not yet considered temporal connections
between the sentences and also not yet the actual meaning. In the next steps,
we will focus on these two to further improve the quality of the summaries. An
additional, larger study with GitHub users will aim at the use of averaged and
personalised target vectors.

Acknowledgements. Mahfouth has been sponsored by the Institute of Public
Administration (IPA), Saudi Arabia. Christoph’s and Markus’ work has been sup-
ported by the Australian Research Council projects DE180100153 and DE160100850,
and by the 2019 Google Faculty Research Award “Rewriting software documentation
for non-native speakers”.

References

1. Alghamdi, M., Treude, C., Wagner, M.: Toward human-like summaries generated
from heterogeneous software artefacts. In: Genetic and Evolutionary Computation
Conference Companion, Prague, Czech Republic, pp. 1701–1702. ACM (2019).
ISBN 9781450367486

2. Baxendale, P.B.: Machine-made index for technical literature—an experiment. IBM
J. Res. Dev. 2(4), 354–361 (1958)

3. Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text
summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

4. GitHub. The State of the octoverse, February 2020. https://octoverse.github.com/
5. Kupiec, J., Pedersen, J., Chen, F.: A trainable document summarizer. In: 18th

Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pp. 68–73 (1995)

6. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2),
159–165 (1958)

7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

8. Nair, V., et al.: Data-driven search-based software engineering. In: 15th Interna-
tional Conference on Mining Software Repositories (MSR), Gothenburg, Sweden,
pp. 341–352. ACM (2018). ISBN 9781450357166

9. Nazar, N., et al.: Source code fragment summarization with small scale crowd-
sourcing based features. Front. Comput. Sci. 10(3), 504–517 (2016)

10. Nenkova, A., McKeown, K.: Automatic summarization. Found. Trends Info. Retr.
5(2–3), 103–233 (2011)

11. Peyrard, M., Eckle-Kohler, J.: A general optimization framework for multi-
document summarization using genetic algorithms and swarm intelligence. In:
26th International Conference on Computational Linguistics: Technical Papers
(COLIN), pp. 247–257 (2016)

12. Rastkar, S., Murphy, G.C., Murray, G.: Automatic summarization of bug reports.
IEEE Trans. Softw. Eng. 40(4), 366–380 (2014)

13. Rigby, P.C., Robillard, M.P.: Discovering essential code elements in informal docu-
mentation. In: 35th International Conference on Software Engineering (ICSE), pp.
832–841. IEEE (2013)

14. Sohangir, S., Wang, D.: Improved sqrt-cosine similarity measurement. J. Big Data
41, 25 (2017)

https://octoverse.github.com/


342 M. Alghamdi et al.

15. Torres-Moreno, J.-M.: Automatic Text Summarization. Wiley, Boca Raton (2014)
16. Treude, C., Filho, F.F., Kulesza, U.: Summarizing and measuring development

activity. In: 10th Joint Meeting on Foundations of Software Engineering (FSE),
pp. 625–636 (2015)

17. Verma, P., Om, H.: Extraction based text summarization methods on user’s review
data: a comparative study. In: Unal, A., Nayak, M., Mishra, D.K., Singh, D., Joshi,
A. (eds.) SmartCom 2016. CCIS, vol. 628, pp. 346–354. Springer, Singapore (2016).
https://doi.org/10.1007/978-981-10-3433-6 42

18. Ying, A.T.T., Robillard, M.P.: Code fragment summarization. In: 9th Joint Meet-
ing on Foundations of Software Engineering (FSE), pp. 655–658 (2013)

https://doi.org/10.1007/978-981-10-3433-6_42

	Human-Like Summaries from Heterogeneous and Time-Windowed Software Development Artefacts
	1 Introduction and Motivation
	2 Human-Written Summaries – Creation of a Gold Standard
	3 Methodology
	3.1 Generating Summaries Based on Word-Similarity and Feature Vector Similarity
	3.2 Cosine Similarity
	3.3 Algorithmic Approaches

	4 Computational Study and Discussion
	5 Expert Annotation
	6 Threats to Validity
	7 Conclusion and Future Work
	References


