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ABSTRACT
Developers often ask how-to questions using search engines, tech-
nical Q&A communities, and interactive Q&A systems to seek help
for specific programming tasks. However, they often do not formu-
late the questions in a specific way, making it hard for the systems
to return the best answers. We propose an approach (TaskKG4Q)
that interactively helps developers formulate a programming re-
lated how-to question. TaskKG4Q is using a programming task
knowledge graph (task KG in short) mined from Stack Overflow
questions, which provides a hierarchical conceptual structure for
tasks in terms of [actions], [objects], and [constraints]. An empiri-
cal evaluation of the intrinsic quality of the task KG revealed that
75.0% of the annotated questions in the task KG are correct. The
comparison between TaskKG4Q and two baselines revealed that
TaskKG4Q can help developers formulate more specific how-to
questions. More so, an empirical study with novice programmers
revealed that they write more effective questions for finding an-
swers to their programming tasks on Stack Overflow.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Documentation.
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1 INTRODUCTION
How-to questions are questions that ask for instructions [64], for
example “How to read a json file in java”. Developers often ask
how-to questions using search engines [34, 36], technical Q&A
sites [64], and interactive Q&A systems [12, 25, 63, 72], seeking
help for their programming tasks. For example, Treude et al. [64]
found that 39.22% of Stack Overflow (SO) questions are how-to
questions, while other researchers have analyzed and categorized
SO questions [14, 17, 18, 57, 64], with how-to questions consistently
emerging as one of the most important categories, shared by all
taxonomies.

Previous studies found that it is not easy for developers to for-
mulate a good question [41, 48, 72]. Rahman et al. [51] conducted
an empirical study on code search using Google and found that
developers often miss important technical details (e.g., program-
ming languages or operating systems) in their initial queries. A
programming task usually consists of essential elements such as
[actions], [objects], and [constraints] [29, 65]. For example, in the
task “read a json file in java”, “read” is the [action], “json file” is the
[object], and “in java” is the [constraint]. For a how-to question,
the key to whether it can be understood and answered correctly
by a human or automated approaches is whether the question is
specific enough, i.e., the essential task elements in the question are
completely and precisely expressed. For example, if the constraint
“in java” is missing, one may get answers in Python; likewise, if the
object is “file” or “json” instead of “json file”, one may get answers
for reading an XML file or a JSON array. At the same time, a pro-
gramming task can be expressed in many different ways, e.g., by
using different sentence patterns. Hence, developers may struggle
to choose the best formulation and need to refine and revise their
questions before getting the right answers. There are a total of
2,554,062 edit records for SO question titles and about 12% of the
questions with the keyword “how to” in the title have title edits (as
of 03/2021), underlining this phenomenon. More so, in a sample of
410 how-to questions with title edits, we found that task elements
(i.e., [actions], [objects], and [constraints]) were involved in 71% of
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the edits (see Sec. 3), which indicates that developers may struggle
to describe the task elements well enough the first time.

Software engineering researchers proposed several techniques
for helping developers improve their questions or queries for differ-
ent tasks, e.g., bug localization and code search. Some approaches
focus on automatically reformulating questions by expanding them
with relevant terms [21–23, 26, 35, 42, 44, 45, 49, 52–54, 56, 60],
while others help users improve their questions interactively [66,
73, 74]. For example, Zhang et al. [73] designed Chatbot4QR to help
developers refine their SO queries by asking clarification questions
based on tags from existing posts. However, it only helps adding
details to the initial query written by the user and it cannot replace
poorly chosen terms in the initial query.

One common aspect to these past research efforts is that they do
not address how-to questions explicitly. We argue that, due to their
prevalence, helping the formulation of how-to questions deserves
specific solutions, rather than “one size fits all” approaches, and this
is the main goal of this paper.

Our premise is that new how-to questions asked by developers
are similar to existing task-related questions, hence the structure
and content of these past questions can help formulate new ones.
Based on this idea, we propose an interactive approach and tool
(TaskKG4Q) that can help developers formulate specific how-to
questions. TaskKG4Q uses a programming task knowledge graph
(task KG in short), constructed from SO question titles. The task
KG provides a hierarchical conceptual structure for tasks in terms
of [actions], [objects], and [constraints]. Based on the task KG,
TaskKG4Q recommends appropriate and specific [actions], [ob-
jects] and [constraints] to developers, when they formulate how-to
questions, and also suggests details that may be missing.

Our task KG construction approach (Sec. 4) relies on a set of
three linguistic patterns, we manually identified in high-quality
SO questions. From here on, the approach is automated and it:
(1) extracts a set of seed tasks from SO questions, matching these
patterns; (2) incrementally and iteratively discovers additional tasks,
using task extension mechanisms; and (3) annotates questions with
the extracted task elements. The resulting task KG, includes tasks
with new concepts and corresponding questions with new linguistic
patterns, beyond those provided initially. Also, the task KG can
evolve automatically, as more data becomes available.

We constructed a task KG using 257,430 SO questions and found
that our approach can accurately (75.0% accuracy) extract tasks from
questions that refer to those tasks (Sec. 6.1). To evaluate TaskKG4Q’s
usefulness we asked novices to complete four programming tasks
and write questions with/without the help of TaskKG4Q during this
process (Sec. 6.3). They were able to write more effective how-to
questions for Stack Overflow using the tool, and deemed the tool
easy to use.

In summary, the contributions of this paper are:
• A conceptual model for describing tasks, task-related ele-
ments, and relations between them.

• An incremental and iterative approach that mines a task KG
from SO questions, by combining top-down and bottom-up
task extension strategies.

• A task KG with 266,659 tasks mined from SO questions.
• A first-of-its-kind interactive tool that helps developers for-
mulate specific how-to programming questions.

instanceOf
Task Action

ObjectConstraint

Question

synonyms/antonymsisA

hasAction

hasConstraint hasObjectisA

Concept
referTo referTo

Figure 1: Main Concepts Schema
While our evaluation focused on writing how-to question on

Stack Overflow and the task KG is built based on Stack Overflow,
TaskKG4Q can be used independent of Stack Overflow, with any
other programming related Q&A system or forum.

2 CONCEPTUAL MODEL
Fig. 1 shows the main concepts used in this paper and the relations
between them. A [task] is a specific programming task that a de-
veloper wants to complete and is described by multiple elements:
an [action], an [object] and multiple [constraints]. An [action] is
a verb or verb phrase to describe the main action of the task. An
[object] is a noun phrase representing the direct object of the action.
A [constraint] is a prepositional phrase representing a constraint
for completing the task. For example, the [task] “read a json file
in java” includes an [action] (i.e., read), an [object] (i.e., json file)
and a [constraint] (i.e., in java). We record this [task] as the tuple
Task(read, json file, in java) in the order of [action], [object]
and [constraints].

As for relations, an [object] and a [constraint] may refer to the
same concept, e.g., “json file” and “from json file”. There are hier-
archical relations (i.e., isA) between concepts, e.g., <java, isA, pro-
gramming language>. This type of conceptual relation may come
from existing knowledge bases (e.g., general knowledge graphWiki-
Data [11]). At the same time, there could be synonym (e.g., remove
and delete) or antonym (e.g., read and write) relations between [ac-
tions]. Furthermore, there are hierarchical conceptual relations (i.e.,
isA) between [tasks] as well, e.g., <Task(read, json file, in java),
isA, Task(read, json file)>. A [question] describing a [task] with
its elements (i.e., [action], [object] and [constraints]) is an instance
of the [task], e.g., the question “How to read a json file in java” is
an instance of Task(read, json file, in java).

We can annotate all [task] elements in the [question] and obtain
the annotated [question], i.e., “How to read a json file in java”.
read , json file and in java are the annotated elements in the [ques-
tion] with a role in the [task]. We use colors instead of tags to
improve readability. Words in red, orange and blue represent an-
notated [action] , annotated [object] and annotated [constraint] ,
respectively. An annotated question may imply a linguistic pattern
about describing a task and multiple questions may follow similar
linguistic patterns, e.g., “How to read a json file in java” and “How
to read a pdf file in java” only differ on the annotated [object].

3 MOTIVATIONAL STUDY
To understand issues with task-related questions, we sample a set of
such questions from SO and investigate how they were changed. All
the data used in this study is provided in the replication package [8].

Data. SO provides a data dump with 2,554,062 question title edit
records for 16,663,358 questions [1]. One question could have multi-
ple edit records. Among 16,663,358 questions, 13.4% questions have
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Figure 2: Task KG Mining of TaskKG4Q

at least one edit record. Of the 3,089,965 questions with the key-
word “how to” in the title (representing typical how-to questions),
12.1% (373,933 of 3,089,965) have at least one edit record. Note that
not all how-to questions have the “how to” keyword in the title.
We randomly selected questions with title edit records from the
dump and manually removed questions not related to how-to tasks.
For example, the question “React Native or React Js Memory Leak”
is about debugging, hence it is not a task-related question. The
sampling and removal were conducted several times (100 questions
per sample) until we obtained 410 task-related questions.

The sample size of 410 exceeds the sample size required to guar-
antee confidence interval of 5 at a 95% confidence level (i.e., 384 [59]).
The manual removal was conducted by two MS students indepen-
dently (with more than four years of Java experience), with a Co-
hen’s Kappa agreement [46] of 0.820, i.e., almost perfect agreement.
A third student was assigned to resolve the conflicts.

Protocol. We compared each title edit record with the previous
version of the question title (i.e., initial title or the last title edit
record) and classified the edit record into four categories:

(1) Edit [action] (e.g., change “load a file” to “read a file” );
(2) Edit [object] (e.g., change “load a file” to “load a large file” );
(3) Edit [constraint] (e.g., change “load a file in java” to “load a

file in java 8” );
(4) Others (e.g., adding “how to” to the question beginning with-

out changing the task elements).
One edit record could be classified into multiple categories, as

it may have multiple edits. This classification was done by two
students (same students as above) independently. The Cohen’s
Kappa agreement [46] is 0.895 (i.e., almost perfect agreement).

Results and Analysis. We identified 120 edit records in the
Edit [action] category, 175 in Edit [object], 331 in Edit [constraint],
and 150 in the Others category. 71.0% edit records are about modi-
fying task elements. There are 307 edit records modifying only one
[task] element; 55 edit records modifying two [task] elements; and
27 edit records modifying three [task] elements. On average, one
question has 1.3 edit records (min. 1, med. 1, max. 5) and 1.1 edit
records modifying [task] elements (min. 0, med. 1, max. 4). Overall,
[task] elements from 92.7% of the questions have been edited.

Summary.Developersmake frequent changes to SO task-related
questions, suggesting that they are often incomplete or unclear.

4 TASK KG MINING
An overview of the task KG mining is presented in Fig. 2. It starts
with seed task extraction, which identifies a small set of high-
quality tasks as seed tasks based on manually defined linguistic
patterns (Sec. 4.2). Based on the set of initial seed tasks, the approach
employs an iterative process to extract additional tasks and an-
notated questions, in two steps: concept mutation-based task

extraction (Sec. 4.3) and linguistic mutation-based task ex-
traction (Sec. 4.4). The collection of produced tasks and annotated
questions, with the relations between them constitute the task KG
(Sec. 4.5). All these steps are automated except the definition of the
linguistic patterns for the extraction of the initial seed tasks.

Concept mutation-based and linguistic mutation-based task ex-
traction promote and complement each other. Concept mutation-
based task extraction is to extract tasks with similar task elements
and linguistic mutation-based task extraction is to extract tasks de-
scribed with a similar linguistic pattern. During iteration, concept
mutation-based task extraction can discover annotated questions
with new linguistic patterns, and linguistic mutation-based task ex-
traction can discover tasks with new concepts. Note that we do not
aim to create new questions that do not exist in SO using mutation
but use SO questions to validate mutated tasks and questions. Only
valid tasks and questions are added to the task KG.

We compute a confidence score for each generated task and
corresponding annotated questions. Tasks with high confidence
scores are selected as seeds for the next concept mutation-based
task extraction, while annotated questions with high confidence
scores are selected as seeds for the linguistic mutation-based task
extraction. When no new tasks can be produced, the approach ends
with the resulting task KG as the output.

4.1 Running Example
Fig. 3 shows part of the task KG describing tasks related to reading
files. The white ellipses denote tasks and the gray ellipses denote
questions instance of tasks. The solid lines between the ellipses
denote “isA” relations between tasks, and the dashed lines denote
“instanceOf ” relations between questions and tasks. For brevity,
we omit in the figure some entities (e.g., [action], [object], or [con-
straint]) and some relations (e.g., hasAction, hasObject). We con-
struct the task KG to represent similar tasks to form a hierarchical
knowledge structure, e.g., read a pdf file with different languages
or on different platforms, or read different files.

To mine such a task KG, we obtain a list of questions from
SO as the corpus to run TaskKG4Q on, e.g., questions with popular
tags, such as, “java”, “android”, “javascript”, and “python”.

Before the iterative task and question extraction step, we se-
lect high-quality tasks from the corpus as initial seeds, based on
manually defined linguistic patterns (see Sec. 4.2). For example, we
extract Task(read, pdf file, in java) from the question “how to
read a pdf file in java” and Task(read, xml file, in java) from
the question “how to read xml file in java”, as initial seeds. In each
round of the iteration, we first perform concept mutation-based
task extraction and then linguistic mutation-based task extraction.
Next, we illustrate how we perform a round of iteration starting
from the seeds Task(read, pdf file, in java) and Task(read, xml

file, in java) as shown in Fig. 4.
For concept mutation-based task extraction, first we obtain

mutation tasks from the seed task based on domain knowledge
(see Sec. 4.3.1). Those mutation tasks are related to the seed tasks
at concept level and may be task candidates, e.g., Task(read, pdf

file, in python), Task(read, xml, in java). Then, we use those
task candidates (including seed tasks and mutation tasks) to match
with questions in the corpus to find the tasks’ instance questions
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Figure 4: An Example of One Round Iteration for Task KG Mining

(see Sec. 4.3.2). For example, we can identify the question “Python to
read pdf files” as an instance of Task(read, pdf file, in python);
and “best way to read xml in java” as an instance of Task(read,

xml, in java). We further annotate the elements of tasks in the
matching questions to get the annotated questions, i.e., “Python to
read pdf files” and “best way to read xml in java”.

At the end of the concept mutation-based task extraction, tasks
with corresponding annotated questions are added to the task KG
and conceptual relations are also added during this process (see
Sec. 4.5), e.g., <Task(read, pdf file, in python), isA, Task(read,
pdf file)>. We further compute confidence scores for tasks and
annotated questions in the task KG and select the Top-K unselected
questionswith the highest scores as the input for linguisticmutation
based task extraction (see Sec. 4.3.4). As a result, we select “Python
to read pdf files ” and “best way to read xml in java” as the seeds,
which describe tasks in linguistic patterns different from patterns
defined for seed task extraction.

For linguistic mutation based extraction, we generate lin-
guistic patterns from selected annotated questions by mutating the
annotated elements (see Sec. 4.4.1), e.g., linguistic patterns LP1: NP
to read NP and LP2: best way to read NP ADP java . Based on the
generated linguistic patterns, we can extract instance questions
of the new task from the corpus (see Sec. 4.4.2), e.g., the question
“linq to read xml” matches with the first linguistic patterns and the
annotated question “ linq to read xml” is extracted; the question
“best way to read structured binary files with java” matches with the

second linguistic patterns and the annotated question “best way to
read structured binary files with java” is extracted. Two new tasks
Task(read, xml, in linq) and Task(read, structured binary file,

with java) are extracted.
As before, the tasks with their corresponding annotated ques-

tions are added to the task KG and the necessary relations are added.
At the end of the linguistic mutation based task extraction, we com-
pute confidence scores for tasks and annotated questions in the task
KG as well and select the Top-N unselected tasks with the highest
scores as the seed tasks for the next concept mutation based extrac-
tion (see Sec. 4.4.3). For example, Task(read, structured binary

file, with java) is selected as a seed task for the next iteration.
In this way, we may extract new tasks related to binary files in the
next concept mutation based task extraction.

4.2 Initial Seed Task Extraction
To obtain the initial seed tasks for the iterative extraction, we use
manually defined linguistic patterns to extract high-quality
tasks from given SO questions.

We inspected the 100 top voted questions with the “java” tag
on SO, and then summarized the following linguistic patterns to
identify and extract tasks.

• How to V NP in NP
• How can I V NP in NP
• How do I V NP in NP
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Table 1: Mutation Operations With Examples
Mutation Operation Mutated Elements Task Mutated Task
Action based action Task(read, pdf file, in java) Task(load, pdf file, in java), Task(write, pdf file, in java)
Constraint Deletion based constraint Task(read, json file, in java, from server) Task(read, json file, from server), Task(read, json file)
WikiData based object, constraint Task(read, pdf file, in java) Task(read, pdf file, in python), Task(read, pdf file, in python 3)
SO Tag based object, constraint Task(read, xml file, in java) Task(read, xml file, in jdk), Task(read, pdf file, in openjdk)
Morphology based object, constraint Task(read, pdf file, in java) Task(read, pdf, in java), Task(read, file, in java)
Task KG based object, constraint Task(read, string, from file) Task(read, json string, from file)

Where, V matches with a verb as the [action]; NP matches with
a noun phrase as the [object]; in NP matches with a noun phrase
starting with “in” as the [constraint]. The other parts of the pattern
must be matched literally. In order to ensure the quality of the seeds,
we limit the length of the matched noun phrases to four words or
less (a convention in NLP [27, 32]). For example, the question “How
to read a pdf file in java” will be matched with the first linguistic
pattern and we extract Task(read, pdf file, in java). The articles
“a”, “an”, and “the” at the beginning of noun phrases are removed.We
use spaCy [9] to implement pattern matching and task extraction.

Further, we calculate the confidence score for each extracted
task. The confidence score of a task is the number of questions
which contain the task’s elements (i.e., [action], [object], [constraint]).
For example, assuming that “read”, “pdf file” and “java” appear in
100, 20, 200 questions respectively, then the confidence score for
the Task(read, pdf file, in java) is 320 (i.e., =100+20+200). Note
that when calculating the number of occurrences of the constraints,
we ignore the preposition, because the preposition may be different
in different questions for the same constraint (e.g., “in java” and
“with java” ). Finally, we rank the extracted tasks from high to low
according to their confidence scores, and then select the highest
top-K tasks as initial seeds.

4.3 Concept Mutation Based Task Extraction
To extract tasks related to seeds at concept level, we first identify
new candidate tasks by mutating the task elements of given seed
tasks based on domain knowledge. Then we verify the candidate
tasks by matching them with SO questions and extract valid new
tasks with corresponding annotated questions.

4.3.1 Concept-based Task Mutation. For any task discussed on SO,
there may be related questions. For example, if a developer found
a question about Task(read, pdf file, in java), it is natural to
think that there may be questions for similar tasks on SO, such
as Task(read, pdf file, in python) and Task(write, pdf file,

in java). This association is based on the background knowledge
of the developer, such as knowing that both Java and Python are
programming languages and that read and write are opposite ac-
tions in programming. Based on this idea, we design different ways
to obtain candidate tasks by mutating given tasks. Table 1 shows
mutation operations with examples. Note that one mutation type
may generate multiple candidate tasks for a given task.

Action Based Mutation. Replace the [action] in the [task] with
its synonyms and antonyms, e.g.,mutate the [action] from “read” to
“load” or “write”. Xie et al. [70] summarized 87 common categories
for describing API functionality, where each category contains
verbs (provided by previous research [2]). For example, “read” and
“load” belong to the same functionality category about reading
something from sources. In this work, we treat the verbs in the

same functionality category as synonyms. Among the 87 function-
ality categories, some represent opposite functionalities, e.g., the
categories represented by “read” and “write”. Functionality verbs
from opposite categories are considered to be antonyms.

Constraint Deletion Based Mutation. If the [task] has mul-
tiple [constraints], new tasks with all [constraint] subsets will be
generated. For example, for Task(read, json file, in java, from

server) shown in Table 1 with two constraints, three tasks are ob-
tained after mutation (two tasks have one constraint and one has
no constraint).

WikiData Based Mutation. Replace concepts and [constraints]
with similar concepts fromWikiData. Liu et al. [39] identified 78,182
software concepts from WikiData. Many WikiData concepts have
aliases, e.g., “python 2” and “python 3” are aliases for “python” [7]. If
a concept in the [object] or [constraints] matches with any alias of a
software concept, we replace it with: (1) other aliases of the matched
software concept; and (2) aliases of sibling software concepts of
the matched software concept. Two concepts are sibling concepts
if they have the same hyponymy relations (i.e., subclass of [10],
instance of [3], or part of [5]) with the same concept, e.g., Java [4]
and Python [7] are sibling concepts because they have an instance
of relation to “programming language” [6].

SO Tag Based Mutation. Replace [object] and [constraint] with
similar concepts from SO tags. Each SO tag has synonyms, e.g., the
“java” tag has the synonyms “jdk”, “jre”, “oraclejdk”, and “openjdk”. If
a concept in the [object] or the [constraint] matches with a synonym
of a SO tag, we replace it with other synonyms of the same tags, e.g.,
we replace “java” with “jdk”. Further, Zhang et al. [73] classified SO
tags into 20 categories (e.g., library, framework, tool). If a concept in
the [object] or the [constraint] matches with a synonym of a SO tag,
we replace it with other tags in the same category, e.g., we replace
“gson” with “fastjson”.

Morphology Based Mutation. Replace noun phrases in [ob-
ject] or [constraint] with all noun phrases extracted, e.g., from the
object “pdf file”, we extract two noun phrases “pdf” and “file” and
replace “pdf file” with the two extracted noun phrases.

TaskKGBasedMutation. Replace the concept in the [object] or
[constraint] with other sub-concepts in our task KG, e.g., “string”
could be mutated to “json string” because we extracted two objects
“json string” and “string” from tasks in previous iterations (e.g.,
Task(parse, json string, in python) and Task(read, string, from

console)) and create a relation <json string, isA, string> in the task
KG (see Sec. 4.5). In this way, we can mutate the concepts based on
the previous task extraction iterations.
4.3.2 Task Based Matching. Wematch SO questions with the candi-
date tasks (seed tasks and mutated tasks). If a question includes the
[action], [object] and [constraint] of one task at the same time, we
consider this question to match with the task and it is an instance
of the task. Note that a question includes a [constraint] if it includes
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the noun phrase of the [constraint]. We ignore the preposition in
the [constraint] because the same [constraint] may have different
prepositions or no prepositions at all, e.g., “Python to read pdf files”.
The matching is lemmatization-based rather than literal-based, thus
“reading” and “pdf files” in a question may match with “read” and
“pdf file” in a task respectively. In this way, we verify the mutated
tasks with real questions. Invalid mutation tasks that have no corre-
sponding question are filtered out. Sentence parsing errors caused
by NLP tools will not affect this step, because the matching is based
on task elements and not on the sentence parsing result.
4.3.3 Task and AnnotatedQuestion Completion. For each matching
question with a task, we further annotate the task components
(i.e., [action], [object], [constraint]) in the question to obtain the
annotated question for the task. After that, we analyze the entire
question and try to complete and correct the annotated question
and the task. We attempt to extract more prepositional phrases
as additional constraints, and identify whether the sentence has
a more suitable direct object as the [object]. For example, based
on Task(read, file, in java), we identify the question “how to
read data from file in java with stream” as a matching question. The
annotated question will be “ how to read data from file in java with
stream” at first. After completion, the annotated question will be
“how to read data from file in java with stream” corresponding to
a new task Task(read, data, from file, in java, with stream).
In some cases, the preposition in a constraint could be missing, e.g.,
“Android , read pdf files”. If the concept in the constraint already
exists in the task KG, we add the preposition that is most commonly
used with the concept as a supplement.We add a default preposition
“in” for the constraint, e.g., the corresponding task after completion
is Task(read, pdf file, in android) for the annotated question
with a missing preposition.
4.3.4 Seed Question Selection. To select high-quality annotated
questions as seeds for the linguistic mutation based task extraction
(Sec. 4.4), we compute the confidence scores for all tasks and anno-
tated questions in the task KG and select seed questions according
to the confidence scores.

We define the confidence score for questions differently than for
tasks before (which is a frequency count). We consider the coverage
and selectivity of a task corresponding to the question, defined
in Eq. 2 and Eq. 5 (Eq. is short for Equation), respectively. Task
coverage reflects the task’s availability in the corpus, and it is based
on the number of questions related to the task in the corpus. If a
task covers more questions in the corpus, it is more likely to lead
to the extraction of new tasks. Task selectivity reflects the task’s
ability to select questions from the corpus, and it is based on the
number of extracted annotated questions related to the task. If there
are more task-related questions extracted, then the task is more
likely to help extract new tasks. Selectivity is computed using the
annotated questions that have been extracted, while coverage uses
all the questions in the corpus.

We introduce notations necessary for formally defining the con-
fidence score. An annotated question is marked as 𝑎𝑞; a task is
marked as 𝑡 ; the task for which 𝑎𝑞 is an instance is marked as
𝑡𝑎𝑞 . 𝑒 represents an element of a task 𝑡 , i.e., [action], [object], or
[constraint], and𝑤 is a word in a task 𝑡 (except for prepositions in
constraints). 𝐸𝑁𝑡 and𝑊𝑁𝑡 represent the number of elements or
words in a task 𝑡 , respectively.

The confidence score of a task 𝑡 is defined using Eq. 1.
𝑆𝑐𝑜𝑟𝑒 (𝑡 ) = 1 − (1 −𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑡 )) ∗ (1 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑡 )) (1)

We use the Noisy-OR model [61] to combine the coverage and
selectivity. In this way, if either coverage or selectivity is large, then
the final confidence will be large.

We measure task coverage from two perspectives: (1) task ele-
ment level and (2) word level, using Eq. 3 and Eq. 4, respectively.
Task coverage is then the average of task element level coverage
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑒 (𝑡) and word level coverage 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑤 (𝑡).

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑡 ) = (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑒 (𝑡 ) +𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑤 (𝑡 ))/2 (2)
Consider 𝑄𝑁 is the number of questions in the corpus; 𝑄𝑁𝑒 is

the number of questions containing the element 𝑒 of a task 𝑡 ; and
𝑄𝑁𝑤 is the number of questions containing word𝑤 of a task 𝑡 .

When computing 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑒 (𝑡), we first compute the coverage
of each element 𝑒 from task 𝑡 in the corpus, that is, 𝑄𝑁𝑒/𝑄𝑁 . Be-
cause the number of questions in the corpus may be large, we use
the natural logarithm of both 𝑄𝑁𝑒 and 𝑄𝑁 to reduce the gap, i.e.,
𝑙𝑛𝑄𝑁𝑒/𝑙𝑛𝑄𝑁 . The product of the maximum and average of the
coverage of each element 𝑙𝑛𝑄𝑁𝑒/𝑙𝑛𝑄𝑁 is taken as 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑒 (𝑡),
ranging from 0-1. 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑤 (𝑡) is defined in the same way, except
that the proportion of each word𝑤 is calculated as 𝑙𝑛𝑄𝑁𝑤/𝑙𝑛𝑄𝑁 .

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑒 (𝑡 ) = max
𝑒∈𝑡

(𝑙𝑛𝑄𝑁𝑒/𝑙𝑛𝑄𝑁 ) ∗
∑

𝑒∈𝑡 𝑙𝑛𝑄𝑁𝑒/𝑙𝑛𝑄𝑁

𝐸𝑁𝑡

(3)

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑤 (𝑡 ) = max
𝑤∈𝑡

(𝑙𝑛𝑄𝑁𝑤/𝑙𝑛𝑄𝑁 ) ∗
∑

𝑤∈𝑡 𝑙𝑛𝑄𝑁𝑤/𝑙𝑛𝑄𝑁

𝑊𝑁𝑡

(4)

Only if the maximum coverage and average coverage of all ele-
ments are high, the element level coverage will be high.

We measure the selectivity from two perspectives: (1) task ele-
ment level and (2) word level, using Eq. 6 and Eq. 7 respectively.
Task selectivity is the average of task element level selectivity
𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑒 (𝑡) and word level selectivity 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑤 (𝑡).

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑡 ) = (𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑒 (𝑡 ) + 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑤 (𝑡 ))/2 (5)
In Eq. 6 and Eq. 7,𝐴𝑄𝑁 is the number of annotated questions in the
task KG; 𝐴𝑄𝑁𝑒 is the number of annotated questions containing
the element 𝑒 of a task 𝑡 ; and 𝐴𝑄𝑁𝑤 is the number of annotated
questions containing word𝑤 of a task 𝑡 . 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑤 (𝑡) is defined
in the same way, except that the proportion of each word 𝑤 is
computed as 𝑙𝑛𝑄𝑁𝑤/𝑙𝑛𝑄𝑁 .

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑒 (𝑡 ) = max
𝑒∈𝑡

(𝑙𝑛𝐴𝑄𝑁𝑒/𝑙𝑛𝐴𝑄𝑁 ) ∗
∑

𝑒∈𝑡 𝑙𝑛𝐴𝑄𝑁𝑒/𝑙𝑛𝐴𝑄𝑁

𝐸𝑁𝑡

(6)

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑤 (𝑡 ) = max
𝑤∈𝑡

(𝑙𝑛𝐴𝑄𝑁𝑤/𝑙𝑛𝐴𝑄𝑁 ) ∗
∑

𝑤∈𝑡 𝑙𝑛𝐴𝑄𝑁𝑤/𝑙𝑛𝐴𝑄𝑁

𝑊𝑁𝑡

(7)

Finally, the confidence score of an annotated question 𝑎𝑞 is de-
fined using Eq. 8. We consider two factors for computing the confi-
dence score of an annotated question: (1) task confidence and (2)
task information ratio. In Eq. 8, harmonic mean is used to combine
task confidence and task information ratio, as we deem both equally
important quality factors.

𝑆𝑐𝑜𝑟𝑒 (𝑎𝑞) =
2 ∗ 𝑆𝑐𝑜𝑟𝑒 (𝑡𝑎𝑞 ) ∗𝑊𝑁𝑡 /𝑊𝑁𝑎𝑞

𝑆𝑐𝑜𝑟𝑒 (𝑡𝑎𝑞 ) +𝑊𝑁𝑡 /𝑊𝑁𝑎𝑞

(8)

The higher the confidence of the corresponding task 𝑡𝑎𝑞 is, the
higher the quality of the annotated question 𝑡𝑎𝑞 . As for the task
information ratio, we consider it as the ratio of the number of words
in task 𝑊𝑁𝑡 and the number of words in question 𝑊𝑁𝑎𝑞 . The
larger the ratio, the more standard and concise is the way in which
the question describes the task, and the more likely the linguistic
pattern generated from this annotated question could match with
new questions. For example, for the same task Task(read, json
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file, in java), “read a json file in java” is better than “read a json
file that is very large in java” because the previous question contains
more words related to the task and is more likely to have other
questions sharing a similar linguistic pattern.

Note that we only used element-level coverage and selectivity
in the beginning. We found that the seed tasks selected are overlap-
ping on high-frequency task elements. Therefore, to increase the
variability of seeds, we added word-level coverage and selectivity.
In this way, we can select seed tasks with low-frequency task ele-
ments yet with shared words with high-frequency task elements,
e.g., the low-frequency task element “image file” benefits from the
high-frequency task element “file”.

When new annotated questions and tasks are added to the task
KG, we re-compute the confidence scores for all tasks and annotated
questions in the task KG. The seeds selected for the next iteration
may be affected by the scores. For example, if in one iteration,
we extract many tasks with annotated questions relevant to “pdf
file”, this may indicate that there are many questions discussing
tasks related to pdf files in the corpus. The confidence scores for
previously extracted tasks and annotated questions related to “pdf
file” will become higher and those tasks and annotated questions
are more likely chosen as seeds for the next task extraction.

4.4 Linguistic Mutation Based Task Extraction
Developers usually follow certain linguistic patterns to describe
tasks, e.g., the linguistic patterns that we used in the seed task
extraction (see Sec. 4.2). To extract tasks with similar linguistic
patterns to the ones contained in the seed tasks, we first mutate the
annotated elements of selected seed questions to generate linguistic
patterns automatically. Based on the generated linguistic patterns,
we identify new annotated questions and extract new tasks from
these new annotated questions.

4.4.1 Linguistic Pattern Generation. For a given annotated ques-
tion with N annotated elements, we mutate it to generate multiple
linguistic patterns. We randomly select 1, 2, 3, ..., N-1 annotated
elements in turn for mutation. Different annotated elements are
mutated to different linguistic elements:

(1) [action] is mutated to V ADP?, matching with any verb or
verb phrase (e.g., set up), where ADP refers to a preposition;

(2) [object] is mutated to NP, matching with any noun phrase;
(3) [constraint] is mutated to ADP NP, matching with any noun

phrase starting with a preposition.
In order to ensure the quality of the generated linguistic patterns,

we make sure that at least one annotated element of the generated
pattern is not mutated. All other words in the annotated question
except for mutated elements remain in the generated linguistic
patterns. For example, from the annotated question, “How to read
pdf file in java”, we generate six linguistic patterns (i.e., we mu-
tate [action], [object], [constraint], [action] + [object], [action] +
[constraint], [object] + [constraint]). How to read NP ADP NP is
one of the linguistic patterns generated by mutating one object
and one constraint. In order to generalize the generated patterns
and be able to match them with questions with subtle differences,
we allow for missing articles, numbers, and punctuation from the
original annotated question. We mark these as <DET?>, <NUM?>
and <PUNCT?>, respectively in the pattern.

4.4.2 Linguistic Pattern Based Matching. We use the generated
linguistic patterns to find matching SO questions and extract the
corresponding annotated questions and tasks, following the same
process as described in Sec. 4.2. After extracting tasks with anno-
tated questions, we follow the same steps as described in Sec. 4.3.3
to complete the annotated questions and the tasks. We perform
lemmatization of the actions, objects and constraints, and remove
stop words (e.g., a, an, my) at the beginning of the involved noun
phrases. In order to extract more possible questions without in-
troducing too much noise, we remove annotated questions where
noun phrases in the object or constraints have more than six words
(based on our experience), which is more relaxed than the threshold
in Sec. 4.2.
4.4.3 Seed Task Selection. To select high-quality tasks as seeds
for concept mutation based task extraction (Sec. 4.3), we compute
the confidence scores for all tasks and annotated questions in the
task KG and select seeds according to the confidence scores. The
confidence score is the same as for the seed question selection in
Sec. 4.3.4.

4.5 Task KG Construction
To build the hierarchical conceptual structure in the task KG, we
identify relations between concepts and tasks, when extracted tasks
and annotated questions are added to the task KG, at the end of the
task extraction steps. When adding tasks to the task KG, we add
the task elements (i.e., [actions], [objects], [constraints]) and build
the has-relations (i.e., hasAction, hasObject, hasConstraint), while
instanceOf relations are added between the annotated questions
and their corresponding tasks.

Further, we identify the relations between concepts and add them
to the task KG. This part is very similar to the previous concept
based mutation described in Sec. 4.3.1. The synonym and antonym
relations between actions are identified based on the functionality
categories provided by Xie et al. [70]. We identify isA relations
between concepts𝐶1 and𝐶2 referenced by [objects] or [constraints]
in three ways:

(1) WikiData hyponymy relations.𝐶1 and𝐶2 have corresponding
software concepts 𝑆𝐶1 and 𝑆𝐶2 respectively, and 𝑆𝐶1 and 𝑆𝐶2 have
one of three hyponymy relations (i.e., subclass of, instance of, part
of) between them, e.g., “json” and “file format”.

(2) SO tag categorization. If 𝐶2 is matching with one of the 20
categories defined by Zhang et al. [73] and𝐶1 is matching with one
of the tags belonging to the category.

(3) Morphology characteristics. If 𝐶2 is a prefix or suffix of an-
other concept 𝐶1.

As for tasks, a task has an isA relation to another task if it contains
additional constraints (e.g., Task(read, pdf file, in java) and
Task(read, pdf file)) or it refines the object or constraint with
more specific sub-concepts (e.g., Task(read, large text file) and
Task(read, text file)). If a task with fewer constraints does not
exist in the task KG, the task is added to the task KG.

4.6 Resulting Task KG
We could mine the task KG from all SO questions. However, in
order to improve efficiency, we only selected questions tagged
with at least one of the six most popular tags (i.e., java, python,
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Figure 5: User Interface for TaskKG4Q
javascript, php, c#, android) from the SO data dump [1], with at
least one upvote, as the corpus. Note that our approach is not
limited to specific programming languages. We only consider the
title of questions. The corpus includes 304,976 questions. We further
filtered out low-quality questions or questions not related to tasks
if one of the following criteria is met:

(1) questions containing no verbs or only passive verbs;
(2) questions with more than 15 words (5% of the questions were

filtered out based on this threshold);
(3) questions starting with “why”, “what does it mean” or “when”

or including thewords “difference”, “vs”, “exception” or “error”. These
keywords indicate that the question is related to technical compari-
son or debugging, not to programming tasks.

After filtering, we obtained 257,430 questions.
For seed task extraction, we extracted 934 tasks, using the three

manually defined linguistic patterns mentioned before, and selected
the top 500 tasks with the highest confidence score as the initial
seed tasks for TaskKG4Q. In each iteration, we selected the top 500
annotated questions as the seeds for linguistic mutation based task
extraction and selected the top 200 tasks as the seeds for concept
mutation based task extraction. The selected confidence thresholds
are both 0.5. The thresholds were determined via trial-and-error.

The resulting task KG contains 266,659 tasks and 102,283 anno-
tated questions. The task KG has 1,809 actions, 58,825 objects, 124,891
constraints and 97,875 concepts. There are 40,380 isA relations be-
tween tasks and 292,114 isA relations between concepts.

5 A TOOL FOR INTERACTIVE HOW-TO
QUESTION FORMULATION

We developed an interactive tool to help developers write how-to
questions based on TaskKG4Q. Fig. 5 shows the user interface of
our tool. The tool enforces the canonical format of <action, ob-
jects, and constraints> for the how-to question. The users can use
the drop-down boxes to fill in task elements (i.e., the [action], [ob-
ject] and [constraints]) highlighted in different colors, click on the
suggestions, or type freely. If the users need to write more than one
constraint in the task, they can click the add button on the right to
add more input boxes about constraints.

As the users fill in the task elements, the tool will provide on-
the-fly suggestions on the right based on what they already wrote.
The suggested options in the drop-down boxes are updated as well,
accordingly. The tool shows two types of suggestions: missing sug-
gestions and refinement suggestions. For example, if no [action] is
entered, the right side will show missing suggestions for the [ac-
tion]. If the [action] is entered and no [object] is entered, then the
right side will show missing suggestions for the [object], and so

on. The missing suggestions are based on the popularity of candi-
date suggestions. We define the popularity of a task element as the
number of questions that includes it. If the user has entered some
task elements, such as, [action] and [object], then the tool selects
questions that contain at least one of the entered task elements as
candidate questions from the task KG. We determine the popular-
ity for all candidate suggestions using Eq. 9 and list the top-10 as
missing suggestions based on the popularity. The users can expand
the suggestion list to see more suggestions, if needed.

In Eq. 9, 𝑒𝑐 is a candidate suggestion task element; 𝐸 is a set of
task elements have been entered and 𝑒𝑒 is a task element that has
been entered.𝐶𝑜𝑂𝑐𝑐𝑢𝑟 (𝑒𝑐 , 𝑒𝑒 ) is the number of questions including
𝑒𝑐 and 𝑒𝑒 at the same time and𝑂𝑐𝑐𝑢𝑟 (𝑒𝑐 ) is the number of questions
including 𝑒𝑐 .

𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 (𝑒𝑐 ) =

∑︁
𝑒𝑒 ∈𝐸

𝐶𝑜𝑂𝑐𝑐𝑢𝑟 (𝑒𝑐 , 𝑒𝑒 ) 𝐸 ≠ ∅

𝑂𝑐𝑐𝑢𝑟 (𝑒𝑐 ) 𝐸 = ∅
(9)

We remove the concepts that are sub-concepts or siblings of the
entered task elements from the suggestions. For example, if “in java”
is entered as the [constraint] then “python” and “java 8” will be
removed from the suggestions for the missing [constraint].

We also show refinement suggestions for the task elements al-
ready entered. For the [object] and [constraint], the refinement
suggestions are the sub-concepts in the task KG, ranked by pop-
ularity. For the [action], the refinement suggestions are [actions]
with higher popularity than the current [action]. For example, if
the current [action] and [object] are “load” and “file”, the tool will
show “read” as a refinement suggestion for the [action] because we
find that more questions are an instance of Task(read, file) than
Task(load, file).

6 EVALUATION
We conducted empirical studies to evaluate the intrinsic quality of
the task KG and TaskKG4Q’s effectiveness in helping developers
formulate specific how-to questions. As extrinsic evaluation, we
investigated TaskKG4Q’s usefulness in helping developers complete
actual programming tasks. More specifically, we focus on answering
the following research questions:

RQ1: What is the intrinsic quality of the task KG?
RQ2: How effective is TaskKG4Q in helping developers formu-

late specific how-to questions?
RQ3: How useful is TaskKG4Q in helping developers complete

programming tasks?
All the data used in these studies is provided in the replication

package [8].
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6.1 RQ1 Intrinsic Quality
We evaluated the intrinsic quality of the task KG by assessing the
correctness of the annotated questions in the task KG.

6.1.1 Protocol. Similar to previous studies [33, 40, 67], we adopt a
sampling method [59] to ensure that ratios observed in the sample
generalize to the population within a certain confidence interval
at a certain confidence level. For a confidence interval of 5 at a
95% confidence level, the required sample size is 384. We randomly
selected 384 annotated questions with corresponding tasks from
the task KG. We invited two Master students (not affiliated with
this work) with extensive development experience and familiarity
with SO to assess the label accuracy of the annotated questions
independently. The criterion is that the question is an instance of
the corresponding task and that all elements are annotated cor-
rectly in the question. For each sampled question, if it was assessed
differently by the two students, a third student was assigned to give
an additional assessment to resolve the conflict by a majority-win
strategy.

6.1.2 Results. The accuracy as determined by the annotation is
75.0%, i.e., 288 annotated questions are correct and 96 annotated
questions are at least partially incorrect (e.g., one task element
annotated incorrectly). The Cohen’s Kappa agreement is 0.885, i.e.,
almost perfect agreement. We analyzed reasons for the errors. Some
errors are caused by the NLP tool. For example, we only extracted
(disable on, google map) from the question “disable double left
click on google map” and failed to identify the correct object. The
NLP tool identifies the action “disable” as an adjective and can
not identify “double left click” as the object of “disable”. Another
reason is that questions are not related to a task, e.g., we extracted
Task(enter, custom text) from the question “combobox doesn’t
allow enter custom text if databinding is used”. However, in this
case, we argue that the task is still somewhat meaningful. Future
work will improve the accuracy further, for example, by training a
question classifier to identify task-related questions similar to the
work of Beyer et al. [17].

6.1.3 Summary. 75.0% of the annotated questions with tasks ex-
tracted by TaskKG4Q from the question corpus are correct.

6.2 RQ2 Effectiveness
We evaluated the effectiveness of TaskKG4Q by asking participants
to formulate how-to questions for programming tasks and compar-
ing with two baselines.

6.2.1 Programming Tasks. We randomly selected 18 questions from
the task-related questions we collected in the motivational study
from Sec. 3 as programming tasks. For each selected programming
task, we removed the original title and only kept the question
body and the question tags as the context for formulating how-to
questions. Those programming tasks cover different programming
languages (e.g., Java, JavaScript) and different topics (e.g., database,
user interface).

6.2.2 Baselines. We compared TaskKG4Qwith two baselines: Chat-
bot4QR [73] and WithoutTool (i.e., participants formulate how-to
question without any tool). Chatbot4QR is an interactive query
refinement approach designed by Zhang et al. for question retrieval.

Given a query, Chatbot4QR can generate several clarification ques-
tions to interact with the user, e.g., “What programming languages
do you prefer? e.g., java or c#”. Chatbot4QR combines the answers
of clarification questions with the original query to generate a re-
fined query and retrieve SO questions based on the refined query.
TaskKG4Q is different from Chatbot4QR because we help devel-
opers construct the question from zero while Chatbot4QR helps
developers refine an existing question. To enable the comparison,
we asked the participants to formulate an initial how-to question
without any tool first and then refining the initial question with
Chatbot4QR. We used the implementation of Chatbot4QR provided
by Zhang et al. in their replication package.

6.2.3 Protocol. We invited 9 students (not affiliated with this work)
with 1-5 years of development experience to conduct this exper-
iment. We first randomly divided the 18 tasks into 6 groups of 3
tasks each. The tasks in the same group are assigned to the same
three participants to formulate how-to questions, with different
approaches. We use a within-subject design where each participant
only uses one approach per task, i.e., participant X formulates a
question for task A without any tool, for task B with Chatbot4QR,
and for task C with TaskKG4Q; participant Y formulates a question
for task A with Chatbot4QR, for task B with TaskKG4Q, and for
task C without any tool; and participant Z formulates a question
for task A with TaskKG4Q, for task B without any tool, and for
task C with Chatbot4QR. As a result, each participant formulates
how-to questions for tasks from two groups (i.e., six tasks): two
task with TaskKG4Q, two tasks with Chatbot4QR, and two tasks
without any tool. When participants formulate how-to questions
for tasks, the body and tags of the original questions are provided
as the context. We collected 54 how-to questions formulated by the
participants for 18 tasks, three questions per task formulated with
three approaches.

We asked another two MS students to rank the how-to questions
for each task according to the quality of the questions. The quality
of a question was evaluated by its completeness, understandability,
and conciseness. The criterion for completeness is whether the
question contains all the necessary and specific information for the
task to be understood and answered correctly. Understandability
and conciseness require that the question is understandable and
contains no (or very little) unnecessary or redundant information,
e.g., without complicated clauses. The evaluators were asked to
consider all criteria together, when ranking the questions for a
task. Note that they were not informed how the questions were
generated or the purpose of the study. Moreover, the three questions
for each task were presented in random order for them to rank.
If the rankings of the three questions for one task are different, a
third MS student is assigned to resolve the conflict by a majority-
win strategy. The Cohen’s Kappa agreement is 0.703, representing
substantial agreement.

6.2.4 Results. The results of the comparison are shown in Fig. 6.
The average rankings of TaskKG4Q, Chatbot4QR, and Without-
Tool are 1.4, 2.3, and 2.3 respectively, i.e., participants were able
to formulate better how-to questions with the help of TaskKG4Q.
TaskKG4Q ranks higher than Chatbot4QR for 77.8% of the ques-
tions; TaskKG4Q ranks higher than WithoutTool for 72.2% of the
questions; and Chatbot4QR ranks higher than WithoutTool for
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Figure 6: Ranking of the how-to questions formulated with
TaskKG4Q and the baselines

50.0% of the questions. We used Welch’s t-test [69] to verify the
statistical significance of the difference between TaskKG4Q, Chat-
bot4QR, and WithoutTool on rankings. The differences between
TaskKG4Q and WithoutTool as well as TaskKG4Q and Chatbot4QR
are statistically significant (𝑝 << 0.05 for both).

6.2.5 Summary. TaskKG4Q helps developers formulate better how-
to questions than Chatbot4QR or without tool support.

6.3 RQ3 Usefulness
We evaluated the usefulness of TaskKG4Q by asking participants
to complete a set of programming tasks. When they need to learn
how to solve a specific task, we asked them to find the specifics on
SO. They did that by writing questions on their own and with the
TaskKG4Q tool. We then compared the questions written with or
without the tool support and assess which ones are better.

6.3.1 Participants. Novices are the main audience of TaskKG4Q, as
we expect experienced developers can write good questions without
tool support. Hence, we focused our recruitment on novices in a
certain programming language (i.e., familiar with the basic syntax,
but not familiar with many APIs). Such novices will have at least
one question and seek answers, when completing their tasks. To
recruit participants, we used a questionnaire to select 16 qualified
students from a class of 49 students. The questionnaire assessed
their programming knowledge and whether they would need help
to complete the four given programming tasks.

6.3.2 Programming Tasks. We designed four small programming
tasks such that they contain several features and that participants
may need to search on SO to find the solution (e.g., save a json file
in Java). These features are independent, meaning that participants
should not find the answer to one, while looking for another. The
programming tasks are extracted from lab assignments from a
Data Structures class and modified slightly to include the above
mentioned features. The four tasks are:
T1: import a list of students with their grades in json format and
convert it to a csv file, which also includes their GPA.
T2: get all file names in a given directory, rank them by size, and
calculate the file numbers for each type of file extension.
T3: read a text file and determine the frequency of each word and
output the top 100 most frequent words to a text file.
T4: read a list of students’ names from the console, then randomly
divide them into N groups, and save the groups into a json file.

6.3.3 Protocol. Wedivided participants into two comparable groups
PA and PB using similar programming languages, i.e., in each group,

Figure 7: Comparison between TaskKG4Q and Baseline

there are 4, 3, and 1 participants using Python, Java, and C++ respec-
tively, because they are novices in those languages. The questions
were divided into two roughly equal groups TA (T1 + T2) and TB
(T3 + T4), based on task difficulty. For PA, participants complete
TA with the baseline (i.e., without our tool) and TB with our tool.
For PB, participants complete TB with the baseline and TA with
our tool.

When completing a task, an example input and output are pro-
vided with more detailed task context (included in our replication
package [8]). Participants must submit the complete code for each
task and the code is reviewed by the authors to confirm its correct-
ness. While the participants complete a task, they can search on
SO and we ask them to record their queries. If they reformulate
the questions, we record the reformulations too. If they found an
answer they want using a question, we asked them to record the
answer with the ranking of the answer in the search results list.
When the participants use our tool, they will write the question and
refine it with the help of the tool, then use it to search on SO. On
the other hand, participants using the baseline can only construct
the query by themselves and reformulate the query based on the
feedback from SO search results. Each participant was first assigned
tasks where they had to manually formulate the questions, and then
tasks where they used the tool, to avoid a learning effect.

After completing all the programming tasks, we also conducted
interviews to get participants’ feedback on our tool. Participants
were asked to evaluate our tool in terms of usefulness and usabil-
ity on a 4-points Likert scale (1-disagree; 2-somewhat disagree;
3-somewhat agree; 4-agree) by rating the following statements:

Usefulness: The tool’s suggestions were helpful for writing the
questions.

Usability: The tool was easy to use.

6.3.4 Results. All participants agreed that the tool is helpful (43.8%
somewhat agreed and 56.2% agreed) and it is easy to use (50.0%
somewhat agreed and 50.0% agreed).

From the experiment, we collected 216 queries (80 with our tool
and 136 with the baseline). Only 4 of these are formulated the
same in the two conditions. We manually analyzed the queries
and grouped them based on features that participants needed to
complete, i.e., we aligned queries by features. If queries related to
one feature are only raised when using our tool or the baseline,
we remove the queries to facilitate comparison. After filtering, we
obtained 189 queries (70 with our tool and 119 with the baseline) for
12 features. We calculated MQN (mean query number) for our tool
and the baseline, i.e., for each feature, the number of queries that
participants have to write to obtain the correct answers on average.
We also computed MRR@FQ (mean reciprocal rank for the first
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query) for our tool and the baseline. MRR (mean reciprocal rank) is
the reciprocal rank of the correct answer in the search result list.

Fig. 7 shows MQN and MRR@FQ when using our tool and the
baseline. Using our tool, participants found answers with fewer
queries (1.3 vs 2.3 on average), compared to the baseline. At the same
time, the reciprocal rank of the correct answer with the first query
is better (0.72 vs 0.62 on average) compared to the baseline. We used
Welch’s T-test [69] for verifying the statistical significance of these
differences. The difference in MQN is statistically significant, with
𝑝 = 0.0001 << 0.05. The difference in MRR@FQ is not statistically
significant at an alpha level of 0.05, with 𝑝 = 0.1072.

In addition, the informal feedback we received from participants
shows that when using the baseline they are often frustrated be-
cause the queries they write cannot match with questions on Stack
Overflow, but the answers they actually want are often found by
changing the query with appropriate technical terms. When using
our tool, participants could write queries step by step guided by
our tool and suggestions provided are useful for them to choose
more appropriate technical terms. Several participants also asked
for similar support tools for other types of questions, e.g., questions
related to bug fixes. We will consider this in future work.

6.3.5 Summary. TaskKG4Q can help novices write better how-to
questions for SO and they consider it easy to use.

7 THREATS TO VALIDITY
A potential threat to internal validity stems from the use of the
natural language processing library, spaCy. We extract seed tasks
and perform linguistic mutation with spaCy. No natural language
processing library achieves 100% accuracy on any large data set, and
spaCy’s performance was found to be on par with the state of the
art [24] and outperforming other libraries when applied to software
documentation [13]. We design our approach to tolerate errors of
NLP tools to a certain extent as explained in Sec. 4.3.2 and 4.4.2.
The empirical study and the evaluation share common threats to
validity. A threat to the internal validity is the subjective judgments
in different parts. To alleviate this threat we used at least two
judges and reported the agreement for each subjective judgment or
the corresponding statistical significance. A threat to the external
validity is the limited number of subjects (e.g., programming tasks,
participants) considered in different parts. We also cannot claim
generalizability of TaskKG4Q beyond questions related to the six
most popular SO tags.

8 RELATEDWORK
Previous research has categorized Stack Overflow questions [14,
18, 38, 47, 57, 64] and how-to questions are identified as an impor-
tant question category on Stack Overflow. For example, Treude et
al. [64] identified ten categories of Stack Overflow questions: i.e.,
how-to, discrepancy, environment, error, decision help, conceptual,
review, non-functional, novice, and noise. In this paper, we focus on
formulating how-to questions.

Existing studies focus on extracting task-related knowledge [62,
65] or similar verb phrases from identifier names [28, 29, 31, 58],
API functionality description [70], documentation [65], and com-
ments [58]. For example, Treude et al. [65] extracted tasks from

documentation to help developers navigate documentation. Differ-
ent from these works, we standardized the representation of tasks
(i.e., action, object, constraints), and then designed a top-down and
bottom-up combination to iteratively extract tasks from a large-
scale corpus with the hierarchical conceptual relations between
tasks.

In the field of software engineering, some studies build other
types of KGs from different sources, such as KGs for bugs [68],
API caveats [33], domain terminology [67, 71], API concept and
descriptive knowledge [39], and API comparison [40]. Our work
is the first creating a task KG for how-to questions from Stack
Overflow.

Many studies focus on automatically reformulating queries by
expanding themwith relevant terms [21–23, 26, 30, 35, 37, 42, 44, 45,
49, 52–54, 56, 60] for different retrieval tasks, e.g., bug localization
and code search. For example, Hill et al. [30] reformulate queries
with natural language phrasal representations of method signatures.
Similarly, Lu et al. [43] also extend queries with synonyms based
on WordNet to improve the hit rate of code search. For searching
on Stack Overflow, Zhang et al. [73] designed Chatbot4QR to help
developers refine their queries, suggesting tags from existing posts.
Similarly Cao et al. [20] proposed SEQUER to support automated
software-specific query reformulation based on query logs provided
by Stack Overflow. In contrast, we focus here on helping developers
formulate questions from scratch, rather than refining an existing
query, and we only focus on how-to questions.

Calefato et al. [19] provided suggestions for writing questions
on Stack Overflow, while other research studied the factors that
affect the quality of questions [16, 55] and how to automatically
predict the quality of questions [15, 50]. Unlike that research, we
help developers write quality how-to questions from the beginning.

9 CONCLUSIONS AND FUTUREWORK
We observed that Stack Overflow questions are subject to many ed-
its, indicating that developers struggle to write good questions from
scratch. We also found that 71% of the edits to how-to questions are
modifying the elements of the underlying task (i.e., [actions], [ob-
jects], [constraints]). This is evidence that developers could benefit
from tool support in formulating how-to questions.

We posit that how-to programming questions posed by develop-
ers are important and frequent enough that they need specialized
tool support, as opposed to “one size fits all” query reformulation
approaches. Our solution (TaskKG4Q) is an interactive approach,
that leverages the structure and content of past how-to questions.

We built a task Knowledge Graph from 257,430 SO questions,
extracting 1,809 actions, 58,825 objects, 124,891 constraints, 97,875
concepts, and relations between them. We also found that using
the task KG to guide novices when formulating how-to questions
related to programming tasks helps them produce better questions.

In the future, wewill combine TaskKG4Qwith existing automatic
Q&A systems (e.g., AnswerBot [72] or APIBot [63]).
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